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ABSTRACT

Literature on medical imaging segmentation claims that hybrid UNet models containing both Transformer and
convolutional blocks perform better than purely convolutional UNet models. This recently touted success of
Transformers warrants an investigation into which of its components contribute to its performance. Also, previous
work has a limitation of analysis only at fixed data scales as well as unfair comparisons with others models where
parameter counts are not equivalent. This work investigates the performance of the window-Based Transformer
for prostate CT Organ-at-Risk (OAR) segmentation at different data scales in context of replacing its various
components. To compare with literature, the first experiment replaces the window-based Transformer block with
convolution. Results show that the convolution prevails as the data scale increases. In the second experiment,
to reduce complexity, the self-attention mechanism is replaced with an equivalent albeit simpler spatial mixing
operation i.e. max-pooling. We observe improved performance for max-pooling in smaller data scales, indicating
that the window-based Transformer may not be the best choice in both small and larger data scales. Finally,
since convolution has an inherent local inductive bias of positional information, we conduct a third experiment
to imbibe such a property to the Transformer by exploring two kinds of positional encodings. The results
show that there are insignificant improvements after adding positional encoding, indicating the Transformers
deficiency in capturing positional information given our data scales. We hope that our approach can serve as
a framework for others evaluating the utility of Transformers for their tasks. Code is available via https:

//github.com/prerakmody/window-transformer-prostate-segmentation.
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1. INTRODUCTION

Cancer treatment via radiotherapy requires the segmentation of tumors and organs-at-risk (OAR) on diagnostic
scans like CT. Convolution-based UNet architectures1 have dominated this task for years. However, the recent
success of Transformers in the vision domain has raised the question whether they can replace convolutions as
the primary image processing operation in deep learning.2–4 Specifically in the 3D medical imaging domain,
the window-based Transformer2 has been used since the vanilla Transformer has a computational complexity
quadratic to the image size. However, owing to the scarcity of medical data, one of the deficiencies of such works
is that their data sets are small, leading to potential overfitting.2,3 Also, it is well known that Transformers need
large datasets to perform well. Our work remedies this by analysing transformers in a UNet-based architecture at
six different data scales. Inspired by ConvNeXt5 we analyse different components of a transformer and replace
them with more traditional deep learning operations like convolutions and pooling while at the same time
ensuring equivalent parameter count and similar neural architectures. The results indicate that window-based
Transformers perform worse than the comparison model in all our data scales for 3D prostate CT segmentation.
Perhaps, Transformers need to evolve further to replace convolutions in the medical segmentation domain.
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2. METHOD

2.1 Data

We use prostate CT data containing annotations for four organs: bladder, prostate, rectum, and seminal vesicles.
The data is collected from three institutes c.f. Haukeland Medical Center of Norway (HMC), Leiden University
Medical Center of Netherlands (LUMC) and Erasmus Medical Center of Netherlands (EMC) containing 179, 475
and 56 CT scans respectively. EMC is used as the test data set while HMC and LUMC are used as the training
datasets. Due to differences in clinical protocols for CT scan acquisition, the EMC dataset has larger volumes
of the prostate and bladder which makes for a challenging test dataset.

2.2 Network Architecture

The Window-based Transformer network in evaluation is nnFormer,2 which employs Swin (shifted-window)-
Transformer blocks in the encoder and decoder of a UNet architecture. Note, that the first two layers of this
architecture are convolution-based patch-embedding layers to extract low-level feature maps.

2.2.1 Method 1: Replacing Swin-Transformer block with convolution block

Literature on medical image segmentation has shown superior performance of window-based Transformers over
convolutions.2,3 We test this notion by replacing the window-based Transformer blocks with a sequence of two
convolutions. We also ensure their parameter counts are equivalent and proceed to compare these models across
multiple data scales. It is hypothesized that the Transformer will perform poorly in low-data regimes, since its
attention mechanism is incapable of understanding relative position information of voxels, a quality important
for precise tasks like segmentation and inherent to convolutions. Conversely, the lack of an inherent prior for
imaging data, may allow Transformers to learn complex dependencies in the large-data regime and hence boost
performance.

2.2.2 Method 2: Replacing the Self-Attention with Pooling

In the spirit of further analyzing components of the Transformer block and inspired by6 to reduce computational
complexity, we replace the attention mechanism with a much simpler spatial feature mixing operation, i.e pooling.
Replacing the complex attention mechanism with a simpler pooling operation, may also reduce the chance of
overfitting in low-data regimes. We hypothesize that max pooling will outperform self-attention in small data
scales while self-attention will prevail gradually with increased data scale. This is because the complex nature
of the attention mechanism when compared to max pooling might allow it to model spatial features provided
additional data.

2.2.3 Method 3: Evaluating Positional Encoding

Under the assumption that failures of window-based Transformers might be due to its inability to model positional
dependencies, we explore two different positional encoding methods and compare them with a model without
any positional encodings. The first is absolute positional embedding that is added after the convolutional patch-
embedding; the second is the relative positional bias that is added when computing the attention matrix in each
Swin-Transformer block. Our base Transformer model uses relative positional bias which we expect to perform
better as per work done in literature.2

3. EXPERIMENTS AND RESULTS

This work uses two datasets for training i.e. HMC (or clinic A) and LUMC (or clinic B). The HMC dataset is
split into two parts for 2-fold cross validation and also creating smaller data scales. They contain 94 and 85 CT
scans respectively and are henceforth referred to as A1 and A2. We make 6 combinations of these datasets c.f.
A1, A2, A, A1+B, A2+B, A+B to create multiple data scales. Note, that the data from clinic B is not used for
pretraining, but rather as additional scans during training. Three experiments are conducted to compare the
window-based Transformer to its counterparts on two geometric metrics i.e. Dice and 95th percentile Hausdorff
Distance (HD95) averaged over all scans of the test dataset. The models were trained using a combination of
Dice and cross-entropy loss for 500 epochs. The window-based Transformer and convolution contain 158.49M
and 155.85M parameters respectively. The CT scans were first resampled to the median spacing of each dataset



and then randomly sampled patches of size (128,128,64) were input to the network. Models were trained with
Pytorch 11.3 on a single Nvidia RTX6000 (24GB memory).
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Figure 1. Line plots showing the mean and 95th percentile confidence interval of Dice and HD95. The x-axis denotes the
various training data scales with clinics A and B while A2, A1 denote the first and second part of clinic A. For (a) and
(b), ∗ denotes a statistical difference in at least one organ and † denotes a statistical difference on average and for at
least one organ. In (c), †, ‡ and ∗ denote the statistical difference between the relative bias and no encoding, absolute
embedding and no encoding, and the two positional encoding respectively on the average of all organs.

Surprisingly, Figure 1 (a) and Figure 2 (a)(b)(c)(d) show that the Transformer performs better at lower data
scales and the convolution gradually surpasses it with increase of data. The convolution performs poorly in the
lower-data regime since the lack of data coupled with its locality bias may not allow it to learn sufficient global
shape-based information, but only local textural information in the neighbourhood of a voxel (seminal vesicle in
Figure 2 (b)). A lower supervision loss during training and higher performance in cross-validation experiments
on clinic A also are also indicators of the overfitting nature of convolutions in our smaller data regimes. The
higher performance of convolutions in our larger data scales may imply that the Transformer needs more data
to learn the dependencies within the data (jagged nature of bladder in Figure 2 (c)).

In line with our expectations, Figure 1 (b) and Figure 2 (e)(f)(g)(h) show that max-pooling outperforms
in small data scales compared to the window-based self-attention mechanism and the latter surpasses with the
increase of data scale. Thus, both convolution and window-based Transformer fail to be well-trained under small
data scales. These results indicate that the simplicity of pooling may be essential to high performance in small
data regimes.

Figure 1 (c) shows that in spite of statistical differences, the gaps in performance across the different positional
encodings is not large. The lack of a large difference between the models with some form of positional encoding
and those without, indicates that the current data scales are either insufficient to train the positional encodings
well or that a better positional encoding design is needed for medical segmentation. Contrary to Transformers,
both convolutions and pooling have some form of inductive bias (i.e. locality and neighbourhood structure).
This could be one reason that the window-based Transformer is not the best choice in both our smaller and
larger data scales.

4. DISCUSSION AND CONCLUSION

This study evaluates different components of the window-based Transformer to understand their role in its
performance. Unlike previous work, we maintain a constant parameter count across models and also analyse the
effect of the components under different data scales. Our results show that purely convolutional UNet models
perform slightly better (or at least as good as) hybrid UNet models containing window-based Transformers
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Figure 2. CT scans showing the prediction (dotted line) and ground truth (solid line) for the prostate (red), bladder
(green) and seminal vesicle (yellow). (a),(b),(e),(f) and (c),(d),(g),(h) show results when trained on the smallest and
largest data scale respectively.

and convolutions. This result suggests that under fair experimental settings, the claimed superiority of the
Transformer does not hold for prostate CT OAR segmentation. which we believe might be due to the the lack of
understanding of positional information of voxels in our data scales. The results of the pooling operation suggest
that it may always be better to choose simpler operations in low data regimes. The comparable performance
of models with and without positional encodings further supports our first claim. Thus, we conclude that for
our dataset the window-based Transformer is not the best choice in both small and larger data scales. Note
here, that our largest data scale may not be sufficient for Transformers which are well-known to be data hungry.
Future work could use our approach to understanding Transformers by either segmenting other organs or using
different medical imaging modalities. Additionally, it may be worth exploring self-supervised methods as they
could potentially benefit the data hungry Transformer.
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