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Abstract.

1 Introduction

The human visual system is a signal processing system with extremely high
performance. Information about our natural environment is extracted from the
enormous quantity of visual information. A general vision system is considered to
be able to process visual sensory information to interpret the physical surround-
ing. The human visual system is a very well adapted example of a general vision
system. Computer vision in this respect is disappointing, as there are only a
few areas where it can compete with the capabilities of human perception. Two
reasons are apparent. First, a major bottleneck is the difference between the
physical scene and the observation of the scene. The observation is affected by
accidental imaging circumstance, the viewpoint to the scene, the aspects of inter-
action between light and material, the limited resolution of the sensory system,
and several other factors. The semantic interpretation of the scene depends on
the intrinsic properties of the viewed object, i.e., the ‘observables’. Therefore,
observation effects may complicate the interpretation of a scene such as recog-
nition of objects. Only recently computer vision aims at solving this bottleneck
by measuring intrinsic properties that are invariant to the irrelevant variation
[5, 34, 9, 10, 13].

The second bottleneck comes from knowledge and expectations of what we
see. Human perception actively assigns knowledge and anticipation to the ob-
served scene, using semantic information for reasoning on a higher level than
from purely visual evidence can be achieved. The difference between the inter-
pretation as can be derived from the data, in respect to the additional semantics
added by knowledge, is referred to as the semantic gap [44]. A better knowledge
of the assignment of semantic information to visual data is rudimentary for the
sustained development in content based image retrieval.

We start with the prerequisite that any general sensory system is adapted
to the outside world it is processing, specifically to the statistical structure of
the input signals (Barlow 1961). For one, the statistics of the sensory input is



dominated by physical laws of image formation and by the reflection from ma-
terials [13]. These physical laws are basically domain independent, as they cover
the universally applicable laws of light reflectance from materials. They gener-
ate scene specific imaging aspects, which are undesirable for the recognition of
objects in the scene and their labelling with general categories. The scene ac-
cidental conditions have to be removed first by an invariant description. This
is a requirement for general vision systems as is posed in current philosophy as
the proper way to describe all conscious perception (Nozick 2002). In addition,
statistics of the sensory input may be shaped by the structure of our environ-
ment. For example, parts of an image which deviate from the common structure
around us are likely to contain perceptually salient details.

Image formation involves physical laws that generate scene specific obser-
vation effects. The scene is illuminated by a light spectrum and reflects parts
of this spectrum. Reflectance is influenced by the geometry of the scene [5, 13].
The contents of a scene and its physical and geometrical properties cause its ob-
servation to be structured [37] and to contain geometrically similar forms [40].
Consequently, the visual stimulus is redundant [7]. Processing of visual informa-
tion turns out to fit the statistics of the physical image formation process well
[7, 3, 4, 41]. Clearly human vision’s sensory system is adapted to the more or less
stable environment it processes: the visual system and the environment are each
other’s duals [9].

For instance, color constancy is the ability of the visual system to correct for
reflectance deviations caused by a difference in illumination, which is important
to determine the reflectance of an object [10]. Likewise, lightness invariance is of
interest to human vision, because a rather general class of linear as well as non-
linear transformations of the retinal irradiance distribution has little effect on
perception, or at least on recognition [5]. We believe that the visual system coun-
teracts these scene accidental effects by representing the scene in many diverse
invariant syntactical representations that simplify the visual interpretation task.
Invariant representations require knowledge of the physical variables involved in
the stimulus formation.

To counteract the accidental aspects of the scene, a general vision system will
represent the image in many diverse invariant representations. We consider the
transformation of sensory responses to invariants an important and inevitable
information reduction stage in general vision system. The resulting directly ob-
servable quantities are believed to be an essential part of human perception
(Foster and Nascimento 1994; Koenderink 1984). Computer vision has partly
solved the problem of invariant transformations. Koenderink (1984) has made
a significant step forward by his work on the structure and scaling behavior of
receptive fields. He has been followed by many, among others the subsequent
categorization of geometrical invariants by Florack (1991) and Van Gool (1995).
The level of invariance may well be the level at which it starts to make sense to
abstract from the very local detailing [21]. In our opinion, invariant representa-
tions minimize the computational burden arising from the observation task of a
visual scene.



In this chapter, we model visual invariants for the purpose of content based
image retrieval. The chapter is organized as follows. We identify the observables
and associated physical variables important for human vision (Sect. 2). The re-
ceptive fields are formalized in Sect. 3. Invariants are extracted from the recep-
tive field measurements, and the relation between invariants and observables is
described in Sect. 4.

2 Analysis of Visual Observables and Unwanted

Variations

In order to analyze what might be observed from a scene in general without too
much a priori knowledge about the scene or the objects in the scene, we follow
the light. When we ignore the influence of the medium as well as inter-reflections,
the main degrees of freedom are the source, the object, its surroundings and the
camera. It is modelled as free parameters in the Kubelka-Munk reflection model
[13] as follows.

2.1 Follow the light

The light starts at the source, where there is freedom to have 1 or more sources.
Each source has a direction relative to the scene, a spectral composition and
intensity. Likewise, the essential free parameters of the camera are the spectral
sensitivity, the gain, its direction relative to the scene and its distance. As the
spectral content of the source and the spectral sensitivity of the camera have
practically the same effect, we take them together under the name spectral con-
tent. The same holds for the source intensity and the gain of the camera under
the name of intensity.

For the object, the free parameters can be grouped in the cover, ranging
from glosse to matte objects. Glosse produces specular reflections. The albedo
describes the true color of the object, and the texture describes the spatial layout
of the albedo patterns at its surface. The touch of an object describes the 3D-
nature of the surface as it introduces a large variability in the perception of the
object. In this simplification, the final group of object parameters is grouped
under form.

For a scene, the one group of parameters left is the stage setting where the
objects are placed in the scene in a certain depth order with respect to the light,
causing shadows, and with respect to the view, causing occlusion and clutter,
preventing the object to be delineated amidst similarly appearing objects.

In listing the main groups of accidental, unknown causes of variation in a
general scene, we ignore light-emitting, mirroring, fluid, and transparent objects.

2.2 The outer scene

Given all the sources of variations in a scene, Tab. 2.2 gives an overview of what
can be observed about a general scene [42].



free as seen directly see
parameters in scene observables

source direction shadows one source [15]
∼ directions direction source
∼ locations direction source
cast ∼ depth order

source extent specularity [2]
spectral content spectral composition color source [8]
intensity contrast composition contrast
camera direction projection affine distortion
camera distance size composition depth [30]
stage setting occlusion depth order to view

clutter –

objects specularities color source
∼ locations number sources
∼ size shape source
self-shadow one source
shading direction source
∼ maxima number of sources [2]

Table 1. Inspired by [5], page 122. What is directly observable from the outer scene?
Free parameters of the scene and the single features that can be observed in general
without a priori knowledge about the specifics of the scene. Methods listed in the
references generally assume sufficiently rich scenes.



free parameters as seen constraint directly see
on object on free observables

parameters

cover albedo
gloss specularity – cover type [14]

∼ locations – facing
apparent color – object color [13, 14]

matte apparent color white source object color [13, 14]
color source constancy [13, 14]

texture
albedos – [46]
∼ layout – [18]

touch
meso-highlights gloss roughness
meso-shadow one source roughness
meso-shading matte meso-shape [26]

one source

form
matte macro-shading one source shape

discontinuity direction folds [39]

Table 2. Directly observables in the inner scene.

From the table, it is clear that many instances of knowledge about the scene
parameters are far from complete. And, we treat the causes as independent fac-
tors, ignoring any inter-reflections among them. Especially for closely packed,
transparent, mirroring or poly-limbed objects this may not be a valid assump-
tion, but we have to start somewhere.

2.3 The inner scene

Table 2.3 provides a list of free parameters of the object and what can be done
to find them [42].

3 Visual Observation and Physical Quantities

A general vision system may be considered as a remote sensing device, able to ex-
tract directly observables from light measurements. Hence, vision can be viewed
as the process of deriving invariants from physical quantities as coded in the
energy distribution falling onto the eye. Note that this “coding” is non-trivial; it
involves the projection of a three-dimensional world described by infinite physi-
cal entities onto a two-dimensional retina only able to capture spatial, spectral,
and temporal information. The resulting measurements have a direct or indirect
correlate with directly observables. Every measurement is implemented on the



retina by an integration over area, wavelength, and time, the only variation im-
posed by a task-tuned sensitivity curve to combine these quantities. The shape of
these sensitivity curves essentially determine which information is emphasized.
Since a limited amount of orhogonal physical quantities can be derived from
the visual data, these sensitivities can be catagorized. The categorization yields
typical receptive field structures, each related to one physical quantity which
is measured when probing the visual stimulus with the receptive field. In what
follows, we derive relevant image measurements for obtaining correlates of the
directly observables.

3.1 Generic Requirements for Receptive Fields

Before relating the observables to measurements of different receptive fields, we
specify their generic requirements.

We have no prior knowledge of what is where within the visual stimulus.
Hence, no positions are preferred or prioritized when measuring a physical vari-
able. Consequently, measurements are performed by a linear operator [20, 9] that
integrates the energy E of a physical variable x (e.g., space, time, wavelength)
over its domain with a receptive field G. Note that a linear integrator tends to
be relatively insensitive to corruption of the visual data by noise.

Definition 1 (Receptive Field Measurement). The measurement Ê : R ×
R 7→ R of the physical variable x with a receptive field G : R × R 7→ R becomes:

Ê(x) ≡
∫

E(x′)G(x′ − x) dx = E ∗ G(x),

where (∗) denotes convolution.

The receptive fields cannot be infinitesimal. The free scale parameter is also
a natural requirement for uncommitted measurements, in this case due to the
lack of a priori knowledge of the perceived size [20]. For instance, when we turn
to the spatial domain, we have no knowledge of the size of a perceived object: the
spatial scale must be a free parameter. A receptive field probing in more than
one spatial dimension is tuned to a specific orientation, that is, anisotropic, when
scales in the different dimensions are not equal. A lack of knowledge considering
orientation therefore imposes the constraint of probing at an abundant range of
orientations [9]. Without loss of generality we only consider isotropic receptive
fields.

At larger scales no spurious detail should be created by the receptive field
measurements, nor should information in the visual stimulus be enhanced with-
out prior knowledge of the information. Respecting such causality in the scale
domain singles out the Gaussian family of receptive fields [20].

Definition 2 (Receptive Fields). The receptive field G : R × R 7→ R probing
at position x and located at x0 ∈ R and scale σx is defined as:

Gx0,σx(x) =
1√

2π σx

e
−

(x−x0)2

2 σ2
x .



The Gaussian family receptive fields Gxi are then given by:

{

G
x0,σx

xi

}

i≥0
≡ Hi(x)Gx0,σx ,

with Gxi the i-th derivative of G with respect to x and Hi the i-th order Hermite
polynomial. This family is complete, i.e., fit to represent the physical variable to
any accuracy [23].

Including these receptive fields in the front-end is advantageous, because a
physical variable can locally be approximated by a Taylor expansion up to order
n of derivative receptive field measurements:

Ê(x) ≈
n

∑

j=0

1

j!
(x∇x)j Ê(x),

where ∇x
j Ê = Êxj = E ∗ G

x0,σx

xj .

3.2 Taxonomy of Receptive Fields

The visual stimulus is analyzed in the spectral, spatial, and frequency domain.
Probing these domains is necessary to gather information about the observables.
Cover reflectance is measured in the spectral domain. Local geometry is appar-
ent in local reflectance changes and determines object shape. Size and distance
are spatial properties. Regularity involves a certain frequency tuning. Simultane-
ous measurements are performed by multi-dimensional receptive fields probing
different variables. Due to the separability of the Gaussian [20], we start off by
considering the different receptive fields probing a single variable. Simultaneous
probing of spatial, spectral, and frequency information is given in the last few
paragraphs.

Wavelength Spectrum The wavelength spectrum λ is probed at position λ0:

G
σλ,λ0

λi (λ) i ∈ {0, 1, 2}, (1)

where the spectral receptive fields measure at scale σλ. Knowledge of the pho-
toreceptor’s sensitivity curves as imposed by daylight gives λ0 = 520nm. Due to
smooth reflectance of common surfaces we obtain a fairly large scale: σλ = 55nm.
Fixing for these parameters gives us the tuned spectral receptive fields. Re-
flectance information is obtained from the derivatives with respect to λ. The
zeroth order derivative Gλ0 measures the intensity of the spectral distribution.
The first Gλ1 and second order derivative Gλ2 compare yellow and blue regions
of the spectrum, and middle (green) and two outer (magenta) regions of the
spectrum, respectively [12]. The spectral receptive fields show resemblance to
the Hering basis [16] and are approximately colorimetric with human vision,
that is, the sensitivity curves can be approximated by linear transformations of
the CIE XYZ sensitivities [12].



Local Geometry Local geometry depends on the differential spatial struc-
ture [24]. The local geometry receptive fields probe the spatial structure (x, y)
at (x0, y0):

G
σxy,x0,y0

xiyj (x). (2)

For instance, first order measurements with the receptive fields Gxiyj yield
the gradient, i.e., a direction and a magnitude (for a framework of directionally
polarized measurements we refer to [11]). Second order measurements yield the
pair of receptive fields expressed in gauge coordinates (v, w): (Gvv, Gw), which
enable the visual system to determine the curvature −Gvv

Gw
. For derivations of

higher order local geometry we refer to [24].

Since no knowledge of object sizes is involved, we relate the size of perceived
objects or surface elements to the appropriate scale of observation of local ge-
ometry, Îx

m . For the selection of scale we turn to the scale at which the local
geometry receptive fields give maximum responses, that is, the scale over which
spatial variation is maximized [31]. However, because at larger scales and higher
orders of differentiation m responses inherently decrease, these have to be nor-

malized: Înorm
x

m = σ
m

γ
4

x Îx
m . The size now relates to the scale σx that maximizes

Înorm
x

m . For instance, we get the normalized second order local geometry mea-

surement that reflects a blob-like shape: Înorm
x

2 = σ
γ
2
x (Îxx + Îyy) [31], for which

we take γ = 1 [35]. We assumed isotropy, that is, σx = σy, but scales can also
be analyzed for the anisotropic cases, in which elongated geometry is regarded.

Spatial Frequency For a receptive field tuned to a frequency we turn to the
spatial frequency domain. Probing the spatial frequency (u, v) domain at position
(u0, v0) and scale σuv with a Gaussian receptive field Gσuv,u0,v0(u, v) gives in the
spatial domain (x, y) the Gabor spatial frequency receptive field [6]:

G̃σxy,x0,y0;u0,v0(x, y) = Gσxy,x0,y0(x, y) e
2πi( u0

v0
·

x

y
)
, i2 = −1, (3)

Here,
√

u2
0 + v2

0 is the radial center frequency and tan−1( v0

u0
) the orientation.

Note that σxy is inversely proportional to σuv (see for a survey [6]).

Spatiospectral Introduction of a spatial extent in the spectral receptive fields
yields an expansion at wavelength λ0 and position (x0, y0). The measurements
of a spatiospectral energy distribution has a spatial as well as a spectral scale,
respectively, σxy and σλ. Probing an energy density volume in a 3-dimensional
spatiospectral space at (x, y, λ) requires a spatiospectral receptive field, or color
opponent receptive field [12]:

G
σλ,λ0;σxy,x0,y0

λixjyk = G
σλ,λ0

λi ∗ G
σxy,x0,y0

xjyk . (4)



Spatiospectral Frequency Probing the wavelength spectrum in the spatial
frequency domain results in the spatial domain in a spatiospectral frequency
receptive field [17]:

G̃
σxy,x0,y0;u0,v0;σλ,λ0

λi = G̃σxy,x0,y0;u0,v0 ∗ G
σλ,λ0

λi . (5)

4 Invariance

We have argued that not all of the measured visual stimulus is considered to be
relevant, in that measurements correlate with directly observables. This is our
motivation for identifying invariants that describe the observables, i.e., invariant
to accidental observation effects but maintaining discriminative power within
the relevant information about the important object properties. Invariants in-
volve knowledge about the physical variables involved and how the irrelevant
parameters may be eliminated.

In Sect. 2 we discussed the main degrees of freedom in the variation of recep-
tive field measurements:

– Illumination: direction relative to the scene, spectrum and intensity;
– Scene objects: size, 2- and 3-dimensional shape, surface, cover, distance,

motion;
– Scene setting: object order which causes occlusion, inter-reflections, and clut-

ter;
– Inherent measurement properties: spectral sensitivity, intensity gain, viewing

direction and distance to the scene.

The illuminant, scene setting and inherent measurement properties may cause
general transformations. A property f of the object t of the group of objects T

is invariant under the group of transformations W if and only if ft remains
the same regardless the state of condition W : t1

W
∼

t2 ⇒ ft1 = ft2 [43]. More
specifically, object placement causes translational and rotational variation. Scene
setting causes accidental effects such as shadow and shading. The illumination
spectrum may deviate causing reflectance variation. Viewing distance causes
scale variation, and direction, finally, causes affine variation.

4.1 Photometric Invariance

Important for the observation of object reflectance, is the visual system’s ability
to correct for deviations caused by a difference in illumination spectrum as well
as intensity. Furthermore, irrelevant variations may be caused by the observer’s
viewpoint, object surface orientation, and the direction of the illuminant. The
visual system should be enabled to discriminate in a natural scene the shadow,
shade and highlight edges from object edges [12].

Modelling the physical process of the formation of the wavelength spectrum
stimulus provides insight into the effect of different parameters on object re-
flectance. Finding invariant properties of the spectral measurements relies on a



reflectance model and the required discriminative power of the measurements
performed.

Reflectance Model The formation of the wavelength spectrum stimulus is
modelled by means of the Kubelka-Munk theory [27, 19]. We consider the Kubelka-
Munk model as a general model for the wavelength spectrum stimulus forma-
tion. The reflected spectrum in the viewing direction is given by: E(λ,x) =

e(λ,x)(1 − ρf (x))
2
R(λ,x) + e(λ,x)ρf (x), where x denotes the position at the

imaging plane and λ the wavelength. Further, e(λ,x) denotes the illumination
spectrum and ρf (x) the Fresnel reflectance at x. The object reflectance is de-
noted by R(λ,x).

Required Discrimination and Invariants We consider ‘white’ or arbitrary
illumination wavelength spectrum as an accidental observation circumstance.
Note that natural objects mostly have a matte cover type. Different required
discrimination abilities result in suited invariant expressions (for derivations we
refer to [12]).

The spatiospectral receptive fields are considered the general probes for these
invariants. Spatiospectral measurements are denoted by Êλixjyk .

Edges invariant to shadows With white illumination and no intensity variations,
the reflectance model reduces to: E(λ, x) = i R(λ, x), of which the invariant set

Wλmxn =
{ Êλmxn

Ê

}

m≥ 0, n≥ 1
(6)

can be derived. We denote the intensity measurement Ê ≡ ˆEλ0x0y0
.

W determines object reflectance invariant to shadows. Wλw and Wλλw are
the color gradient magnitudes of the first and second order spectral derivative,
respectively, representing the blue-yellow and green-red color transitions.

Edges invariant to shadows, shading and highlights With white illumination and

intensity variations, the reflectance model reduces to: E(λ, x) = i(x)
{

(1 − ρf (x))
2
R(λ, x)+

ρf (x)
}

, of which the invariant set

Hλmxn =
∂m+n

∂λm∂xn

{

arctan(
Êλ

Êλλ

)
}

m, n≥ 0
(7)

can be derived (arctan guarantees numerical stability).

H determines object reflectance invariant to shadows, shading and highlights.



Edges invariant to shading With colored illumination and intensity variations,
the reflectance model reduces to: E(λ, x) = e(λ) i(x)R(λ, x), of which the in-
variant set

Nλmxn =
∂m+n−2

∂λm−1∂xn−1

{ ÊλxÊ − ÊλÊx

Ê2

}

m, n≥ 1
(8)

can be derived.

N determines object reflectance invariant to shading and a change of illu-
mination spectrum over time (note that the time parameter not explicitly mod-
elled). Illumination spectrum changes over space are not common in natural
scenes. Nλw and Nλλw detect material edges.

The object cover type can be detected by the photometric invariant gradi-
ents: high responses of Ww and Nw indicate highlights caused by object cover
specularity.

The intensity measurement Ê is invariant under the group of general intensity
transformations ι [9].

An example of the set of transformations ι is a logarithmic rescaling of the
intensity domain. Logarithmic scaling obtains a uniform sampling in the intensity
domain and is due to a lack of preference for a scaling in measurement time, and,
consequently, in intensity [25]. For an arbitrary intensity unit E0 the rescaling
becomes [25]:

I0 = log(
Ê

E0
), (9)

with I0 the intensity measurement invariant to shadows and shadings. The
logarithmic rescaling allows for a linear operation to correct for ‘gamma trans-

formations’ (i.e., intensity transformations of the form i′ =
(

i
i0

)γ

). Gamma

transformations are caused by unevenly illuminated scenes or object reflectance
gradations [25].

4.2 Geometrical Invariance

Requiring invariance under the intensity transformation group ι amounts to con-
sidering equivalence classes of locally defined structures that share a common
local iso-intensity, or isophote structure. Due to the remaining isophote structure
the relevant ι-invariant local geometrical properties correspond to geometrically
invariant local properties of isophotes [9]. For gauge coordinates (v, w), a com-
plete and irreducible set of geometrical invariants is given by [9]:

I = {Êλ0vmwn}m,n≥0,m6=1. (10)



The 2-dimensional Case In the set I we find the for human vision impor-
tant geometrical descriptions of intensity distribution. Local geometry describes
object shape, and includes edges, corners, curves, etc. Well known instances of

the set I are the gradient w = Êw and the curvature κ = − Êvv

Êw

. Corners of or

within objects may be detected by high isophote curvature and intensity gra-
dient, whereas junctions (e.g., occlusion of objects) may be derived from those
points where a contour ends or emerges, thus where the curvature changes much
in the direction of the normal.

Note that we do not consider affine geometrical invariants. Affine invariants
may counteract the measurement of corners and junctions under the accidental
viewing direction. However, measurement of such constellations of edges is very
dependent on the contrast with a background and is therefore dependent on
accidental observations circumstances anyway. Consequently, there is no point
in invariantly measuring corners and junctions and inherently and unnecessarily
losing information.

The 3-dimensional Case General 3-dimensional shape descriptors are the
principal curvatures κ1, κ2, which, together with their derivatives to the curve arc
length a, form a complete and irreducible set of differential geometric invariants
of curves [22]. From this set curvedness (i.e., flat, concave, convex) c = κ1+κ2

κ1−κ2

and shape index (e.g., spherical, saddle, cylindrical) s = 1
2

√
κ1

2 + κ2
2 can be

derived.
The 3-dimensional shape of an object is apparent in the shading of the object

cover.
Shading. Shading is informative of 3-dimensional shape. Shading can be ob-

tained by the measured intensity gradients. We relate the gradual changes within
the 3-dimensional shape of the object to the changes of tilt and slant of the object
surface normal.

4.3 Spatial Frequency Invariance

Regularities within a surface or cover are present under different viewing and
illumination directions, which cause unwanted intensity deviations and rotational
variation.

Luminance intensity (Ê) normalized summed measurements of spatial/spatiospectral
receptive fields (Ŝ) yields:

s =
Ŝ

Ê
. (11)

The normalized measurement ∫ is invariant to shadows and shading [17].
Measuring with spatial/spatiotemporal frequency receptive fields at an abun-

dant range of locations (u0, v0) and scales σuv in the frequency domain implies
measuring at an abundant range of orientations (tan−1( v0

u0
)) in the spatial do-

main. We consider simultaneous measurements at such a range of orientations
to be rotational invariant.



Surface or cover regularities may become apparent within a repeated arrange-
ment of motifs (different from a stochastic process that organizes motifs [33, 28]).
Meaningful motifs are organized by translation, rotation, and reflection [32]. Any
motif arrangement that is constructed from translation, rotation, and reflection
of the motif conforms to one of 17 groups (Si, 1 ≤ i ≤ 17) that can be generated
by the Cartesian transformations [32].

4.4 Observables and Invariants

Table 3 summarizes observables obtained from the invariants that in turn are
associated with the receptive fields measurements. An asterisk (?) denotes in-
variance that is inherently implied by the receptive field measurement.

5 An Image Retrieval System Based on Local Invariants

A Taylor series yields a point operator to describe local shape. Hence, the Taylor
coefficients as measured by the Gaussian derivative receptive fields provide a
basis for local image features, characterizing the neighborhood around a pixel.
Every pixel may be characterized, creating a redundant representation of the
image. The overlap at the boundaries between the patches introduces spatial
correlation between local structures. When the spatial ordering is lost, as in
a jigsaw puzzle, this correlation makes it possible to reconstruct the original
image. Alternatively, the coherence in the Taylor representation allows histogram
matching of coefficients while maintaining global similarity.

For image retrieval, discretization of the receptive field measurements is ad-
vantageous, such that histograms can be constructed. Labeling each element in a
discrete partition of the color N-jet creates prototypical shapes representing the
local color structure of an image. Each label then says something about the be-
havior of the image at a certain pixel. Hence, similar image patches are described
with the same label. Local structure with similar color and similar curvature are
then grouped. Discretizing the local color N-jet yields a vocabulary that can be
used to describe local spatial color structure.

For our example retrieval system, a multidimensional histogram is used for
the discretization process. The dimensions of the histogram are equal to the
number of derivatives in the color N-jet. Each spatial-spectral derivative is par-
titioned in equally sized bins each with their own bin number. The concatenation
of bin numbers in which a single pixel is classified make up a typical local shape
structure. The partitioning of the color N-jet is a form of weak image segmen-
tation, as similar image structures are grouped. The labeling of the color N-jet
segments the image into its primary shape primitives. It groups low level image
features to describe the local behavior of the image and operates at a low seman-
tic level. The grouping of similar structures for various invariants is visualized
in Fig. 1.

An example of the proposed retrieval scheme is shown in Fig. 2. The proposed
method eliminates the problems with image segmentation and blocks of pixels.



Physical vari-
able

Receptive field Observable Extracted informa-
tion about observable

Irrelevant pa-
rameter(s)

Invariant(s)

Wavelength G
σλ,λ0;σxy ,x0,y0

λixjyk

Geuse-
broek [12]

Cover reflectance Reflectance Shadow, shading W

∼ and highlights H

∼ and illumina-
tion spectrum

N

Cover type Highlights Wλw,Hλw,Nλw

Geuse-
broek [12]

Local geome-
try

G
σxy ,x0,y0

xiyj

Koen-
derink [24]

Object shape (2-
dimensional)

Edges, curvature, Intensity trans-
formation,
object orienta-
tion

w, κ

corners, junctions,
. . .

. . . Koen-
derink [20,
24, 22], Flo-
rack [9]

,, (3-dimensional) Principal curvatures ,, c, s Koen-
derink [22]

Shading ,, w Lee [29]

Spatial fre-
quency

G̃σxy ,x0,y0;u0,v0

Bovik [6]
Surface/cover reg-
ularity

Frequency Shadow, shad-
ing, intensity
transformation,
object orienta-
tion

s Hoang [17]

G̃
σxy ,x0,y0;u0,v0;σλ,λ0

λi

Hoang [17]
,, Motif arrangement Position and ori-

entation of mo-
tifs

Si Liu [32]

Size Gσxy ,x0,y0

Linde-
berg [31]

Object size Edges, . . . Intensity trans-
formation,
object orienta-
tion

?

Surface/cover
coarseness

,, ,, ?

Distance G̃σxy ,x0,y0;u0,v0

Sanger [38]
Object distance Relative distance

(near)
Intensity trans-
formation,
object orienta-
tion

?

Gσxy ,x0,y0

Pentland [36]
Distance (far) Object size z

Time Dynam-
ics

G
σt,t0;σλ,λ0;σxy ,x0,y0

tiλ0xjyk

Adelson [1]

Object motion Relative motion of
edges

Object distance,
orientation,
intensity trans-
formation

vz

G
σt,σt′ ,t0;u0;σλ,lambda0;σxy ,x0,y0

λixjyk ∼ periodicity Spatiospectral-
temporal frequency

Intensity trans-
formation,
object orienta-
tion

?

G̃
σt,σt′ ,t0;u00;σxy ,x0,y0;u10,v10;σλ,λ0

λi

Table 3. Summary of the different physical variables, measured by the receptive fields
that constitute the selectivities of the visual system. The visual measurements aim
at obtaining information about observables that relate to physical object properties.
Irrelevant parameters in the measurements of observables are eliminated by invariants,
i.e., combinations of particular measurements.
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Nr. Different words: 117 Nr. Different words: 65 Nr. Different words: 115 Nr. Different words: 11

Fig. 1. The effect of using invariance on the vocabulary. Each word is represented with
a different color. Identical colors in a single image represent identical words. The size
of the vocabulary is displayed above each labeled image. The labeling is done with
the second order color jet using 17 bins for each value at a scale of σ = 2 pixels.
(a) The original image. (b) Labeling the image using no invariance. (c) Labeling the
image with rotational invariance. Note the contour of the object is labeled everywhere
with the same word and the vocabulary size decreases. (d) Labeling the image with
rotational and luminance invariance W. Note the disappearance of intensity changes.
The vocabulary size increases, as shadows are labeled incorrectly. (e) Labeling the
image with rotational and shadow invariance C. Note the significant reduction of the
words in the vocabulary and the disappearance of the shadow of the object. For details
see [45].

The discrete color jet operates at a low semantic level, yet incorporates image
content by the use of invariant properties.

Light photomicrographs of dura mast cells stained
with either: (A) toluidine blue or (B) berberine sulfate;
bv=blood vessel; white arrowhead=nerve fiber; black
arrow=mast cell. Bar=20 µm.

Synapsin I mRNA expression in coronal sections of rat
hippocampus. Photomicrographs of 10 µm-thick
sections hybridized with 35S-labeled synapsin I probe
were dipped in photographic emulsion and
counterstained with cresyl violet. Autoradiographs of
the dentate gyrus ipsilateral to the stimulating
electrodes of control rats (A) and rats killed 8 h after
stimulation (B) are shown. Marked synapsin I mRNA
expression in the dentate gyrus after LTP-inducing
stimulation, mainly localized over the granule cell
layer (B), is evident, whereas only a few grains can be
seen in the control tissues (A).

Expression of tie 1 in ischemic brain at 2 h after MCA
occlusion. In situ hybridization (A) shows tie 1 mRNA
on a microvessel (arrow head) in the area with
shrunken neurons (arrows). An adjacent section
stained with H&E (B) shows triangular and scalloping
neurons (arrows). Bar=40 µm.

In situ hybridization of Dems. (a) Expression of
CaMKIIa (left two panels) and ß-tubulin (right two
panels, marked as ßT) in the cerebral cortex. AS and S
refer to anti-sense and sense probes, respectively. (b)
Expression of Dem 7. (1–3) Cerebral cortices. (4 and
5) CA1 region of hippocampus. (6 and 7) Cerebellum.
The probes used for tissue (3) in (b) was
complementary to those used for the other tissues, and
did not produce a hybridization signal. KA indicates
specimens prepared from a rat treated with kainate.
Some dendritic stainings are labeled with arrows.

Bcl-2 and Bax immunoreactivity in the external
granule cell layer of the cerebellum (A, D) in control
rats and at 24 h (B, E) and 48 h (C, F) following MAM
administration. Apoptotic cells at 24 h and 48 h after
MAM treatment are not stained with anti-Bcl-2 and
anti-Bax antibodies. Haematoxylin counterstaining,
bar=25 µm.

mast ,arrowhead ,fiber ,vessel ,dura ,blood ,white ,light ,nerve ,toluidine

0.552968 0.530538 0.395131 0.368442 0.303640

Image:

Caption:

Pixels:

Terms:

Score:

Query:

Fig. 2. Example of image searching in the combined images and text space. The query
image is part of the first retrieved image (upper right corner). The 5 most relevant
images are shown (upper row), together with the most relevant visual structures per
image (lower row). Non-relevant pixels are left white. For details see [45].



6 Conclusion

To counteract the accidental aspects of the scene, any content based image re-
trieval system has to represent the image in many diverse invariant represen-
tations. We consider the transformation of sensory responses to invariants an
important and inevitable information reduction stage in general vision system.
The resulting directly observable quantities are believed to be an essential part
of human perception (Foster and Nascimento 1994; Koenderink 1984).

We modeled visual invariants for the purpose of content based image retrieval.
Evidently, we considered the observables present in the visual stimulus. A way
to conceive the receptive fields as meaningful visual observation units adding up
to the front-end is to characterize them syntactically according to their measure-
ment properties, i.e., a constellation of selectivities along the observable dimen-
sions. Invariants represent the observables and consequently provide important
cues for the capture, extraction and interpretation of visual information.

In our view, the physical and statistical constrains on the sensory input de-
termines the construction of content based image retrieval systems. The simpli-
fication of the sensory input by invariant representation advances towards bet-
ter retrieval performance. Local features provide robustness to object occlusion
and background changes. Invariance includes a low-level of semantic knowlegde,
hence achieves a rudimentary level of visual cognition. Rather than aiming for
one complete geometrical representation of the visual field, cognition based im-
age retrieval may be based on weak description of the important features in the
scene, as long as mutual correspondence between observation and objects in the
world is maintained.
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