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Abstract

Unsupervised hashing is important for indexing huge image
or video collections without having expensive annotations
available. Hashing aims to learn short binary codes for com-
pact storage and efficient semantic retrieval. We propose an
unsupervised deep hashing layer called Bi-half Net that max-
imizes entropy of the binary codes. Entropy is maximal when
both possible values of the bit are uniformly (half-half) dis-
tributed. To maximize bit entropy, we do not add a term to the
loss function as this is difficult to optimize and tune. Instead,
we design a new parameter-free network layer to explicitly
force continuous image features to approximate the optimal
half-half bit distribution. This layer is shown to minimize
a penalized term of the Wasserstein distance between the
learned continuous image features and the optimal half-half
bit distribution. Experimental results on the image datasets
Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist and the video
datasets Ucf-101 and Hmdb-51 show that our approach leads
to compact codes and compares favorably to the current state-
of-the-art.

1 Introduction
Semantically similar images or videos can be found by com-
paring their output features in the last layer of a deep net-
work. Such features are typically around 1,000 continuous
floating point values (He et al. 2016), which is already too
slow and large for moderately sized datasets of a few million
samples. Speed and storage are greatly improved by replac-
ing the continuous features with just a small number of bits.
Unsupervised hashing aims to learn compact binary codes
that preserves semantic similarity without making use of any
annotated label supervision and is thus of great practical im-
portance for indexing huge visual collections.

In this paper, as illustrated in Fig. 1, we see the transition
from a continuous variable to a discrete binary variable as a
lossy communication channel. The capacity of a hash bit as
measured by the entropy is maximized when it is half-half
distributed: Half of the images are encoded with −1 and the
other half of the images is encoded with +1. We minimize
the information loss in the hash channel by forcing the con-
tinuous variable to be half-half distributed. Other methods
have optimized entropy by adding an additional term to the
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Figure 1: Hashing compresses N images to K bits per im-
age. K continuous features are learned, and thresholded to
K binary values. We see the continuous to binary transi-
tion as a lossy communication channel –a hash channel– be-
tween a single continuous value u to a single discrete binary
value b. The green histograms (standard hashing) and blue
histograms (our approach) show how a single feature is dis-
tributed over the N images. Instead of adding an additional
loss term, we design a Bi-half layer to explicitly maximizes
the bit capacity in the hash channel, leading to more infor-
mative hash codes, as measured by the entropyH of the bits
over the images which leads to improved hashing accuracy.

loss (Erin Liong et al. 2015; Liu et al. 2014; Shen et al. 2018;
Weiss, Torralba, and Fergus 2008; Xu et al. 2013) which
adds an additional hyper-parameter to tune and is difficult to
optimize. Instead, we propose Bi-half: A new parameter-free
network layer which is shown to minimize the optimal trans-
port cost as measured by the Wasserstein distance. We here
explicitly design a new layer to maximize the bit capacity in
the hash channel, leading to compact and informative hash
codes which yield excellent hashing similarity accuracy.

We have the following contributions.
• A simple, parameter-free, bi-half layer to maximize hash

channel information capacity;
• A Wasserstein distance is minimized end-to-end to align

continuous features with the optimal discrete distribution;
• We study 2 alternatives to maximizing bit entropy using

an additional term in the loss;
• We show state-of-the-art results for unsupervised hashing

on 5 image datasets, and 2 video datasets, and make our
code available1.

• ;
1https://github.com/liyunqianggyn/Deep-Unsupervised-Image-Hashing



2 Related Work
Amount of supervision. Hashing methods can be grouped
into data-independent hashing methods and data-dependent
hashing methods. Data-independent hashing methods (Datar
and Indyk 2004; Gionis, Indyk, and Motwani 2000; Kulis
and Grauman 2009; Kulis, Jain, and Grauman 2009; Mu
and Yan 2010; Raginsky 2009) design hash function inde-
pendent of a dataset. In contrast, data-dependent hashing
methods can exploit the data distribution. As such, with
the availability of labeled training data, supervised hashing
methods (Chang 2012; Lai et al. 2015b; Lin et al. 2014a;
Raziperchikolaei and Carreira-Perpiñán 2016; Shen et al.
2015; Zhang et al. 2014) learn hash codes by optimizing
class labels. Particularly successful supervised image hash-
ing methods use deep learning (Cao et al. 2018; 2017;
Lai et al. 2015b; Li et al. 2017; 2019; Liu et al. 2016; 2017;
Yuan et al. 2018; Chen et al. 2018) to learn feature repre-
sentations and binary codes. Supervised methods work well,
yet rely on data annotations done by humans, which are ex-
pensive or difficult to obtain. Unsupervised hashing meth-
ods (Gong and Lazebnik 2011; He, Wen, and Sun 2013;
Jiang and Li 2015; Kong and Li 2012; Liu et al. 2014;
2011; Weiss, Torralba, and Fergus 2008) skip this prob-
lem, as they do not rely on annotation labels. Recent un-
supervised hashing methods rely on deep learning for rep-
resentation learning (Dai et al. 2017; Yang et al. 2019;
Shen et al. 2018; Ghasedi Dizaji et al. 2018; Lin et al. 2016;
Erin Liong et al. 2015). We follow these works and focus on
the unsupervised setting.
Quantization from continuous to discrete values. The typ-
ical approach for deep learning hashing is to optimize a con-
tinuous output and in the last step quantize the continuous
values to discrete values. The current approach (Chen, Che-
ung, and Wang 2018; Lu, Liong, and Zhou 2017; Su et al.
2018) is to apply a sign function, where all negative values
are set to −1 and all positive values are set to +1. We argue
that the sign function is not information efficient. For exam-
ple, we set the continuous features of one dimension for 4
images to be [0.2, 0.8, 1.5, 3]. Passing them through the sign
function will binarize them all to same value +1 and thus
the bit has no discriminative information for these 4 images.
In this paper we focus on this loss of information and learn
to discretize based on maximum bit capacity over images.
Obtaining gradients for binary codes. A major challenge
of learning hash codes with deep nets is that the desired dis-
crete hash output codes have no continuous derivatives and
cannot be directly optimized by gradient descent. By the
continuous relaxation (Cao et al. 2018; Jiang and Li 2017;
Liu et al. 2016; Zhao et al. 2015), a continuous space is
optimized instead and the continuous values are quantized
to binary codes. Such methods are approximations as they
do not optimize the binary codes directly. The continuation
based hashing methods (Cao et al. 2017; Lai et al. 2015a)
gradually approximate the non-smooth sign function with
sigmoid or tanh, but unfortunately comes with the drawback
that such relaxation inevitably becomes more non-smooth
during training which slows down convergence, making it
difficult to optimize. To overcome these problems, a recent
simple and efficient method called greedy hash (Su et al.

2018), uses the sign function in the forward pass to directly
optimize binary codes. The optimization is done with the
straight-through estimator (Bengio, Léonard, and Courville
2013) which after quantization computes gradients by sim-
ply ignoring the quantization function during training. This
optimization is simple and works well in practice. Yet, it ig-
nores bit information capacity and thus may lead to redun-
dant codes. In this work we use the same straight-through es-
timator to obtain gradients for binary codes while focusing
on maximizing bit information capacity to obtain compact
and discriminative hash codes.
Information theory in hashing. Many popular unsuper-
vised feature learning methods (Belghazi et al. 2018; Chen
et al. 2016; Jolliffe 2002) are based on information the-
ory to find good features. In hash learning, some meth-
ods (Erin Liong et al. 2015; Liu et al. 2014; Shen et al. 2018;
Weiss, Torralba, and Fergus 2008; Xu et al. 2013) proposed
to add an additional term in the loss function to encour-
age each bit to have a 50% chance of being one or zero,
to maximize bit entropy. It is, however, difficult to balance
the added loss term with other terms in the loss, which
requires careful hyper-parameter tuning of how much to
weight each term in the loss. Instead of adding an addi-
tional loss term and an additional hyper-parameter, we de-
sign a new network layer without any additional param-
eters to explicitly force continuous image features to ap-
proximate the optimal half-half bit distribution. Some non-
deep learning approaches (Jegou, Douze, and Schmid 2008;
Zhang et al. 2010) directly threshold the learned feature
vectors at their median point, which have shown excellent
performance. Yet, it is a suboptimal solution under deep
learning scenario since the median point should be dynami-
cally adapted to random sample statistic computed over each
minibatch. We are inspired by their works, and aim to gener-
alize such ideas to an end-to-end deep learnable setting. We
cast it into an optimal transport problem and directly quan-
tize the continuous features into half-half distributed binary
codes by minimizing the Wasserstein distance between the
continuous distribution and a prior half-half distribution.

3 Approach
This paper we maximize the hash channel capacity to design
a parameter-free bi-half coding layer. We will first introduce
some notations. Let X = {xi}Ni=1 denote N training im-
ages. The images are encoded to K compact binary codes
B ∈ {1,−1}N×K , which also denotes the output of our
hash coding layer. U ∈ RN×K would be expressed as the
continuous feature representations in the last layer of a stan-
dard neural network, e.g., an encoder, which serves as the
input to our hash coding layer.

3.1 Maximizing hash channel capacity
We see the transition from a continuous variable U to a bi-
nary code variableB as a lossy communication channel. Per
channel, the maximum transmitted information from contin-
uous variable U to binary variable B, known as channel ca-
pacity (Cover and Thomas 2012; Shannon 1948), is:

C = max
p(u)

I(U ;B), (1)



where the maximum is taken over all possible input distribu-
tions p(u) and I(U ;B) denotes mutual information between
variable U and binary variable B. We aim to maximize the
channel capacity. To maximize channel capacity C we first
rewrite the mutual information term I(U ;B) in Eq. (1) in
terms of entropy:

I(U ;B) = H(B)−H(B|U), (2)
where H(B) and H(B|U) denote entropy and conditional
entropy respectively. Thus, maximizing channel capacity C
in Eq. (1) is equivalent to maximizing the entropy H(B) of
B and minimizing the conditional entropyH(B|U).

The entropyH(B) in Eq. (2) should be maximized. Since
B is a discrete binary variable, its entropy is maximized
when it is half-half distributed:

p(B = +1) = p(B = −1) =
1

2
. (3)

The conditional entropy H(B|U) in Eq. (2) should be
minimized. Give a certain continuous value u, the trans-
mission probability pu(pos) is defined as how probable a
+1 binary output value is and the transmission probability
pu(neg) is defined as how probable the binary value −1 is.
These are probabilities and thus are non-negative and sum to
one as pu(pos) + pu(neg) = 1 and 0 ≤ pu(pos), pu(neg) ≤
1. Then the conditional entropy is computed as:

H(B|U) =

∫
u∈U

p(u)H(B|U = u)du

=−
∫
u∈U

p(u)
(
pu(pos) log pu(pos)

+ pu(neg) log pu(neg)
)
du,

(4)

which is between 0 and 1, and Eq. (4) is thus minimized for
setting the H(B|U = u) to 0, i.e.: −

∫
u∈U p(u)0 du = 0.

This minimum is obtained when either pu(pos) = 1 or
pu(neg) = 1, which means that there is no stochasticity for
a certain continuous value u, and its binary value is deter-
ministically transmitted.

In the following, we maximize the entropy of binary vari-
ables by encouraging the continuous feature distribution
p(u) to align with the ideal half-half distributed distribution
p(b) in Eq. (3). To minimize Eq. (4), we first start with a
non-deterministic transmission probability during training,
but since we train to align p(u) with the half-half distribu-
tion of +1 and −1, this allows us at test time to simply use
the sign function as a deterministic function for quantization
to guarantee minimizing Eq. (4).

3.2 Bi-half layer for quantization
To align the continuous feature distribution with the ideal
prior half-half distributed distribution from Eq. (3) we use
Optimal Transport (OT) (Villani 2003). Optimal Transport
aims to find a minimal cost plan for moving one unit of mass
from one location x to one other location y between two
probability distributions Pr and Pg . When Pr and Pg are
only accessible through discrete samples, the corresponding
optimal transport cost can be defined as:

π0 = min
π∈Π(Pr,Pg)

〈π,D〉F , (5)

where Π(Pr,Pg) is the space of joint probability measures
with marginals Pr and Pg , and π is the general probabilis-
tic coupling that indicates how much mass is transported to
push distribution Pr towards distribution Pg . The 〈., .〉F de-
notes the Frobenius dot product, and D ≥ 0 is the cost func-
tion matrix whose element D(i, j) = d(x,y) denotes the
non-negative cost to move a probability mass from location
x to location y. When the cost is defined as a distance, OT is
referred to as a Wasserstein distance. Specifically, if d(x,y)
is the squared Euclidean distance, it is the Earth mover’s dis-
tance, which is also known as the 1-Wasserstein distance.
We optimize the 1-Wasserstein distance because it is flexi-
ble and easy to bound.

With a randomly sampled mini-batch of M samples, the
corresponding empirical distributions of the continuous vari-
able U and binary variable B, Pu and Pb, can be written as:

Pu =

M∑
i=1

piδui
, Pb =

2∑
j=1

qjδbj , (6)

where δx is the Dirac function at location x. The pi and
qj are the probability mass associated to the correspond-
ing location ui and bj , where the total mass is one, i.e.:∑M
i=1 pi = 1 and

∑2
j=1 qj = 1. Particularly, a binary vari-

able only has two locations b1 and b2, with the correspond-
ing mass q1 and q2.

For the ideal prior half-half distribution in Eq. (3), the
probability mass q1 at location b1 is equal to the probabil-
ity mass q2 at location b2 that is q1 = q2 = 1

2 . The hash
coding strategy is to find the optimal transport coupling π0

by minimizing the 1-Wasserstein distance W1(Pu, Pb):

π0 = min
π∈Π(Pu,Pb)

∑
i

∑
j

πij(ui − bj)2, (7)

where Π(Pu, Pb) is the set of all joint probability distribu-
tions πij , i.e. all probabilistic couplings, with marginals Pu
and Pb, respectively.

By optimizing Eq. (7), we find an optimal transport plan
π0 ∈ Π(Pu, Pb) for one hash bit to quantize the encoded
features into half-half distributed binary codes. For a single
hash bit in M samples, with a continuous feature vector u ∈
RM , we first simply sort the elements of u over all mini-
batch images, and then assign the top half elements of sorted
u to +1 and assign the remaining elements to −1, that is:

b = π0 (u) =

{
+1, top half of sorted u

−1, otherwise
. (8)

We implement above equation as a new simple hash cod-
ing layer, dubbed bi-half layer shown in Fig.2, to quantize
the continuous feature into half-half distributed binary code
for each hash channel. The proposed bi-half layer can be
easily embedded into current deep architectures to automat-
ically generate higher quality binary codes. During training,
the transmission stochasticity introduced by random small
batches as shown in Eq. (4) can also improve the model gen-
eralization capability as the same effect of denoising.
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Figure 2: The proposed bi-half layer. M is the mini-batch
size and K is the feature dimensions. A bi-half layer (mid-
dle part in white and blue) is used to quantize continu-
ous features in U into binary codes in B via minimizing
W1(Pu, Pb) in Eq.(7). The assignment strategy is the opti-
mal probabilistic coupling π0. For each bit, i.e.per column of
U, we first rank its elements and then the top half elements
is assigned to +1 and the remaining half elements to −1.
In contrast, the commonly used sign function directly dur-
ing training assigns the continuous features to their nearest
binary codes which minimizes the Euclidean distance. The
blue boxes indicate where our method differs from the sign
function as the code in that position should flip.

Optimization. The discrete binary codes B have no con-
tinuous derivatives and cannot be directly optimized by
gradient descent. Fortunately, some recent works on bi-
narized neural networks (BNNs) have explored to use a
proxy derivative approximated by straight through estimator
(STE) (Bengio, Léonard, and Courville 2013) to avoid the
vanishing gradients. We use the same straight-through esti-
mator to obtain the gradients. Specifically, we expect U and
B have the same update states in backward pass to match
the forward goal.

Given time-step t, the current states are denoted as Ut

and Bt. In time-step t + 1, we force their update states to
be same that Ut+1 = Bt+1. Considering the simplest SGD
algorithm, we have Ut+1 = Ut−lr∗ ∂L∂Ut

and Bt+1 = Bt−
lr ∗ ∂L

∂Bt
with learning rate lr and loss function L where L

can be any loss function you need to use, e.g. reconstruction
loss, cross entropy loss and so on, then the gradient of Ut is
computed as ∂L

∂Ut
= ∂L

∂Bt
+ γ(Ut − Bt) with γ = 1

lr . The
forward pass and backward pass are concluded as:

Forward: B = π0 (U),

Backward:
∂L
∂U

=
∂L
∂B

+ γ(U−B).
(9)

In forward pass, the continuous feature is optimally quan-
tized to half-half distributed binary codes. In backward pass,
the proposed proxy derivative can automatically encourage
the continuous feature distribution to align with the ideal
half-half distributed distribution.

4 Experiments
Datasets. • Flickr25k (Huiskes and Lew 2008) contains 25k
images categorized into 24 classes. Each image is annotated
with at least one label. Following (Yang et al. 2019), 2,000
random images are queries and from the remaining images
5,000 random images are training set.
• Nus-wide (Chua et al. 2009) has around 270k images

with 81 classes. To fairly compare with other methods, we
consider two versions. Nus-wide(I), following (Shen et al.
2018), uses the 21 most frequent classes for evaluation. Per
class, 100 random images form the query set and the remain-
ing images form the retrieval database and training set. Nus-
wide(II), following (Yang et al. 2019), uses the 10 most
popular classes where 5,000 random images form the test
set, and the remaining images are the retrieval set. From
the retrieval set, 10,500 images are randomly selected as the
training set.
• Cifar-10 (Krizhevsky and Hinton 2009) consists of 60k

color images categorized into 10 classes. In the literature
there are also two experimental settings. In Cifar-10(I), fol-
lowing (Su et al. 2018), 1k images per class (10k images in
total) form the test query set, and the remaining 50k images
are used for training. For Cifar-10(II), following (Yang et al.
2019), randomly selects 1,000 images per class as queries
and 500 as training images, and the retrieval set has all im-
ages except for the query set.
•Mscoco (Lin et al. 2014b) is a dataset for multiple tasks.

We use the pruned set as (Cao et al. 2017) with 12,2218 im-
ages from 80 categories. We randomly select 5,000 images
as queries with the rest used as database, from which 10,000
images are chosen for training.
• Mnist (LeCun et al. 1998) contains 70k gray-scale

28 × 28 images of hand written digits from “0” to “9”
across 10 classes. 1,000 images per class are randomly se-
lected as queries and the remaining images as training set
and database.
• Ucf-101 (Soomro, Zamir, and Shah 2012) contains

13,320 action instances from 101 human action classes. All
the videos are downloaded from YouTube. The average du-
ration per video is about 7 seconds.
• Hmdb-51 (Kuehne et al. 2011) includes 6,766 videos

from 51 human action categories. The average duration of
each video is about 3 seconds. For both Ucf-101 and Hmdb-
51 datasets, we use the provided split 1, where per class 30%
of the videos are used for testing and the rest 70% for train-
ing and retrieval.
Implementation details. Our code is available online2.
• Image setup. For Mnist image dataset, we train an Au-
toEncoder from scratch. The details will be described in the
corresponding subsection. For other image datasets, an Ima-
geNet pre-trained VGG-16 (Simonyan and Zisserman 2015)
is used as our backbone where following (Su et al. 2018;
Shen et al. 2018; Yang et al. 2019) an additional fc layer
is used for dimensionality reduction. Our bi-half layer is ap-
pended to generate the binary codes. During training, we use
Stochastic Gradient Descent(SGD) as the optimizer with a
momentum of 0.9 and a weight decay of 5 × 10−4 and a

2https://github.com/liyunqianggyn/Deep-Unsupervised-Image-Hashing
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Figure 3: Train an AutoEncoder from scratch on Mnist dataset. The top row (a, b, c) visualizes the continuous feature distribu-
tions before binarization over different methods by training the network with 3 hash bits. (d) shows the corresponding retrieval
results. We compare bi-half layer with sign layer and sign+reg. In specific, sign+reg uses an additional entropy regularization
term to optimize entropy, while it is hard to balance the added term. (e) shows the reconstruction loss curves for sign layer and
bi-half layer. Generating informative binary codes in latent space can help to do reconstruction.

batch size of 32. In all experiments, the initial learning rate
is set as 0.0001 and we divide the learning rate by 10 when
the loss stop decreasing. The hyper-parameters γ is tuned by
cross-validation on training set and set as γ = 3× 1

N ·K .
• Video setup. Two 3D CNNs pre-trained on kinetics (Kay

et al. 2017), ResNet-34 (Hara, Kataoka, and Satoh 2017) and
ResNet-101 (Hara, Kataoka, and Satoh 2018), are used as
backbones where we append bi-half layer to replace the last
fc layer. Following the setting of (Hara, Kataoka, and Satoh
2018), we use SGD as optimizer with a momentum of 0.9
and a weight decay of 0.001. The learning rate starts from
0.1, and is divided by 10 after the validation loss saturates.
Evaluation metrics. We adopt semantic similarity (by la-
bels) as evaluation ground truth, which is widely used in
the unsupervised hashing literature, for instance, AGH (Liu
et al. 2011), SADH (Shen et al. 2018) and DeepBit (Lin
et al. 2016). Specifically, for multi-label datasets Flickr25k,
Nus-wide and Mscoco, the true neighbors are defined based
on whether two images share at least one common label.
We measure the performance of compared methods based
on the standard evaluation metrics: Mean Average Precision
(mAP), Precision-Recall curves (PR) and TopN-precision
curves with top N returned samples. In our experiments, N
is set to 5,000.

4.1 Training an AutoEncoder from scratch
Our bi-half layer can embedded into current deep archi-
tectures to learn binary codes from scratch. We train an
AutoEncoder with a deep encoder and decoder on Mnist
datasets where encoder and decoder consist of two fc lay-
ers. We append our bi-half layer after encoder to generate
binary code. The reconstruction loss is used as cost func-
tion. We compare to using the sign layer and to adding
an additional entropy regularization term in the loss. For
this baseline, as in (Shen et al. 2018; Erin Liong et al. 2015),
we use Bᵀ1 as regularization term balanced with the BCE
reconstruction loss through a hyper-parameter α.

In the top row of Fig. 3 we train the network with 3 bits
and visualize the distributions of the continuous feature U
over 5,000 images. We observe that the features learned by
sign layer are seriously tangled with each other. With bina-
rization, most images will be scattered to same binary ver-
tex and thus some bits have no discriminative information.
By adding an entropy regularization term, the feature tangle-
ment can be mitigated, but it is suboptimal solution which
requires careful hyper-parameter tuning. The proposed bi-
half layer can learn evenly distributed features.

Fig. 3 (d) shows the retrieval performance where the left
two subfigures show the effect of hyper-parameters γ in
Eq. (9) and α of term Bᵀ1. with code length 32 and the right
one presents the mAP over different code lengths. Tuning
the parameters can effectively improve the performance. For
Sign+Reg method, it is a suboptimal solution in optimizing
information entropy in comparison with bi-half layer, which
can be further demonstrated in the right subfigure of Fig. 3
(d). The reconstruction loss for sign layer and bi-half layer
is shown in Fig. 3 (e). We observe that generating informa-
tive binary codes in latent space can effectively minimize the
reconstruction loss.

4.2 Empirical analysis
For the pre-trained models, we follow the unsupervised set-
ting in (Su et al. 2018) and use ||cos(a1,a2)−cos(b1,b2)||22
as cost function to minimize the difference on the cosine dis-
tance relationships, where a means the continuous feature
extracted from the last layer of a pre-trained network of one
sample while b means the corresponding binary code.
How are the continuous features distributed? In Fig. 5 we
train the network on Cifar-10(I) with 4 bits and visualize the
histogram distributions of each dimension in the continuous
encoded feature U over all images. The sign layer (Cao et al.
2017; Su et al. 2018) does not match an ideal half-half dis-
tribution whereas our bi-half method does a better approxi-
mation.
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Figure 4: Empirical analysis on Cifar-10 and Flickr25k datasets. (a) Our bi-half layer can generate informative hash bits and
outperforms other coding methods; (b) the alternative median based method performs worse than bi-half layer.

Method Cifar-10(I) Nus-wide(I)
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DeepBit 19.40 24.90 27.70 39.22 40.32 42.06
SAH 41.80 45.60 47.40 – – –
SADH – – – 60.14 57.99 56.33
HashGAN 44.70 46.30 48.10 – – –
GreedyHash? 44.80 47.20 50.10 55.49 57.47 60.93
Ours 56.10 57.60 59.50 65.12 66.31 67.26

Table 1: mAP@1000 results on Cifar-10(I) and mAP@All
results on Nus-wide(I). The ? denotes that we run the exper-
iments with the released code by the authors.

How are individual hashing bits distributed? In the left
subfigure of Fig. 4 (a) we show the per-bit probability of
code +1 over all images for 16 bits. Cifar-10(I) dataset is
used to generate hash codes. The sign layer gives a non-
uniformly distribution, and even for some bits the probabil-
ity is completely zero or completely one: Those bits never
change their value in the entire dataset and can thus safely
be discarded. In contrast, our bi-half method approximates a
uniform distribution, making good use of full bit capacity.
Other hash coding strategies. The right subfigure of
Fig. 4 (a) shows the comparison between our bi-half cod-
ing method and three other hash coding strategies: contin-
uous relaxation layer (Cao et al. 2018; Liu et al. 2016)
(B → U), smoothed continuation layer (Cao et al. 2017;
Lai et al. 2015a) (B → tanh(βU)) and sign layer (Su et
al. 2018) (sign(U)), respectively. Both 32 and 64 bits are
used to generate hash codes on the Cifar-10(I) dataset. From
the results, we see that the sign layer method slightly out-
performs the other two coding methods which is consistent
with (Su et al. 2018). This may be because the sign layer
method can effectively keep the discrete constraint in com-
parison with other two methods. Our bi-half method outper-
forms other methods for both code sizes.
An alternative variant of bi-half layer. An alternative vari-
ant of the bi-half layer is to learn a translation term t added
to the sign function sign(u+ t) for each hash bit to get half-
half distributed binary codes. We estimate the median statis-
tic over mini-batches to implement this idea. Specifically,
we keep an exponential moving average (EMA) of median
points over each mini-batch which is used during inference.
We conduct the comparison on Flickr25k dataset in Fig. 4
(b). The left subfigure of Fig. 4 (b) shows how the EMA
estimation of median changes with the training epochs over
different batch sizes. We adopt the linear learning rate scal-
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Figure 5: Comparing the distribution of continuous feature
U for training 4 bits with a sign layer (left) versus our bi-half
layer (right) over all images in Cifar-10. The y-axis shows
each of the 4 bit dimensions; the x-axis shows the continu-
ous values in U; the z-axis presents how many images con-
tain such a continuous value (binned). In contrast to the sign
layer, our bi-half method approximates the ideal half-half
distribution.

ing rule (Goyal et al. 2017; Krizhevsky 2014) to adapt to
batch size. We note that smaller batch size makes the estima-
tion value unstable. The middle subfigure conducts a com-
parison between bi-half layer method and median translation
method over different batch sizes on using 16 bits. Increas-
ing batch size can significantly improve the performance for
median based method. Due to memory limitations, unfortu-
nately, it is difficult to use very large batch sizes. The left
subfigure of Fig. 4 (b) shows the comparison with greedy
hash (sign layer) and the median-based method with code
length 16, 32 and 64. As expected, adding median term in-
creases the sign layer baseline and bi-half layer significantly
outperforms median-based approach.
4.3 Comparison with state-of-the art
We compare our method with previous unsupervised hash-
ing methods, including seven shallow unsupervised hash-
ing methods, i.e. LSH (Datar and Indyk 2004), SH (Weiss,
Torralba, and Fergus 2008), PCAH, ITQ (Gong and Lazeb-
nik 2011), SGH (Jiang and Li 2015), and eight deep unsu-
pervised hashing methods, i.e. DeepBit (Lin et al. 2016),
SGH (Dai et al. 2017), SSDH (Yang et al. 2018), Dis-
tillHash (Yang et al. 2019), SAH (Do et al. 2017), Hash-
GAN (Ghasedi Dizaji et al. 2018), SADH (Shen et al. 2018),
and GreedyHash (Su et al. 2018). To have a fair comparison,
we adopt the deep features for all shallow architecture-based
baseline methods. For GreedyHash, we run the experiments
with the released code by the authors. For other methods, the
results are taken from the related literatures.
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Figure 6: Top N precision and precision-recall curves on Mscoco. The proposed bi-half layer performs best.

Method Flickr25k Nus-wide(II) Cifar-10(II)
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

LSH + VGG (Datar and Indyk 2004) 58.31 58.85 59.33 43.24 44.11 44.33 13.19 15.80 16.73
SH + VGG (Weiss, Torralba, and Fergus 2008) 59.19 59.23 60.16 44.58 45.37 49.26 16.05 15.83 15.09
ITQ + VGG (Gong and Lazebnik 2011) 61.92 63.18 63.46 52.83 53.23 53.19 19.42 20.86 21.51
DeepBit (Lin et al. 2016) 59.34 59.33 61.99 45.42 46.25 47.62 22.04 24.10 25.21
SGH (Dai et al. 2017) 61.62 62.83 62.53 49.36 48.29 48.65 17.95 18.27 18.89
SSDH (Yang et al. 2018) 66.21 67.33 67.32 62.31 62.94 63.21 25.68 25.60 25.87
DistillHash (Yang et al. 2019) 69.64 70.56 70.75 66.67 67.52 67.69 28.44 28.53 28.67
GreedyHash? (Su et al. 2018) 62.36 63.12 63.41 51.39 55.80 59.27 28.71 31.72 35.47
Ours 71.42 72.35 73.10 67.12 68.05 68.21 42.87 43.29 44.13

Table 2: mAP@All for various methods on three Flickr25k, Nus-wide(II) and Cifar-10(II) datasets. Our method with 16 bits
outperforms others that use 64 bits.

Table 1 shows the mAP@1000 results on Cifar-10(I) and
mAP@All results on Nus-wide(I) over three different hash
code sizes 16, 32 and 64. The compared greedy hash (Su
et al. 2018) method which directly uses the sign function as
hash coding layer outperforms everything except our method
for all code sizes. Greedy hash (Su et al. 2018) is effective
to solve the vanishing gradient problem and maintain the
discrete constraint in hash learning, but it cannot maximize
hash bit capacity. In contrast, our method does maximize
hash bit capacity and clearly outperforms all other methods
on this two datasets.

In Table 2, we present the mAP results on three datasets
Flickr25k, Nuswide(II), and Cifar-10(II), with hash code
length varying from 16 to 64. The experiments are con-
ducted with the same setting as in the compared methods.
We do best for all hash bits sizes for all three datasets.

In Fig. 6, we conduct experiments on more challenging
Mscoco dataset. The left two subfigures present the TopN-
precision curves with code lengths 16 and 32. Consistent
with mAP results, we can observe that our method performs
best. Both mAP and TopN-precision curves are Hamming
ranking based metrics where our method can achieve su-
perior performance. Moreover, we plot the precision-recall
curves for all methods with hash bit lengths of 16 and 32 in
the right two subfigures Fig. 6 to illustrate the hash lookup
results. From the results, we can again observe that our
method consistently achieves the best results among all ap-
proaches, which further demonstrates the superiority of our
proposed method.

Hashing is about compact storage and fast retrieval, thus
we analyze using fewer bits in Table 1, Table 2 and Fig. 6.
Only for Nus-wide(II) we perform on par while in all other
datasets our method using 16 bits clearly outperforms other
methods using 64 bits. This shows a 3 times reduction in
storage and speed while even improving accuracy.

Backbone Method
Ucf-101 Hmdb-51

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ResNet-34
GreedyHash? 45.49 57.24 64.77 30.32 37.55 40.53
Ours 50.83 60.30 65.89 34.21 38.67 41.74

ResNet-101
GreedyHash? 39.29 58.35 67.23 27.60 39.96 42.07
Ours 59.30 66.13 68.47 36.68 41.48 43.03

Table 3: mAP@100 results on two video datasets using ki-
netics pre-trained 3D ResNet-34 and 3D ResNet-101. The ?
denotes we run the experiments with the released code.

Video Retrieval Results: In Table 3, we present the
mAP@100 results for Ucf-101 and Hmdb-51 datasets with
code length 16, 32 and 64. For both datasets and both ResNet
models our bi-half method consistently outperforms the sign
layer method (Su et al. 2018) over all hash bit length, espe-
cially for short bits. In hashing, fewer bits is essential to save
storage and compute.

5 Conclusion
We propose a new parameter-free Bi-half Net for unsu-
pervised hashing learning by optimizing bit entropy. Our
Bi-half layer has no hyper-parameters and compares favor-
ably to minimizing bit entropy with an additional hyper-
parameter in the loss. The designed bi-half layer can be eas-
ily embedded into current deep architectures, such as Au-
toEncoders, to automatically generate higher quality binary
codes. The proposed proxy derivative in backward pass can
effectively encourage the continuous feature distribution to
align with the ideal half-half distributed distribution. One
limitation is that the independence between different bits is
not considered, which will be investigated in future work.
Experiments on 7 datasets show state of the art results. We
often outperform other hashing methods that use 64 bits
where we need only 16 bits.
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