HALLUCINATION IN OBJECT DETECTION — A STUDY IN VISUAL PART VERIFICATION

Osman Semih Kayhan*

Bart Vredebregt®

Jan C. van Gemert*s

*Computer Vision Lab, Delft University of Technology and ®Aiir Innovations

ABSTRACT

We show that object detectors can hallucinate and detect
missing objects; potentially even accurately localized at their
expected, but non-existing, position. This is particularly prob-
lematic for applications that rely on visual part verification:
detecting if an object part is present or absent. We show how
popular object detectors hallucinate objects in a visual part
verification task and introduce the first visual part verifica-
tion dataset: DelftBikes!, which has 10,000 bike photographs,
with 22 densely annotated parts per image, where some parts
may be missing. We explicitly annotated an extra object state
label for each part to reflect if a part is missing or intact. We
propose to evaluate visual part verification by relying on re-
call and compare popular object detectors on DelftBikes.

Index Terms— Visual part verification, object detection

1. INTRODUCTION

Automatically localizing and detecting an object in an image
is one of the most important applications of computer vision.
It is therefore paramount to be aware that deep object detec-
tors can hallucinate non-existent objects, and they may even
detect those missing objects at their expected location in the
image, see Fig. 1. Detecting non-existing objects is particu-
larly detrimental to applications of automatic visual part ver-
ification or visual verification: determining the presence or
absence of an object. Examples of visual verification include
infrastructure verification in map making, missing instrument
detection after surgery, part inspections in machine manufac-
turing etc. This paper shows how popular deep detectors hal-
lucinate objects in a case study on a novel, specifically created
visual object part verification dataset: DelftBikes.

Visual verification as automatic visual inspection is typi-
cally used for manufacturing systems with applications such
as checking pharmaceutical blister package [1], components
on PCBs [2, 3], solder joint [4], parts of railway tracks [5],
rail bolts [0], aeronautic components [7, &], objects [9], and
parts under motion [10]. In this paper, we do not focus on a
particular application. Instead, we evaluate generic deep ob-
ject detectors which potentially can be used in several visual
inspection applications.

"https://github.com/oskyhn/DelftBikes

Faster RCNN

Fig. 1.
RCNN [
and RetinaNet detect the front wheel and YOLOvV3 predicts
the saddle with a high IoU score. Deep object detectors may
detect non-existent objects at their expected locations.

Hallucination examples on DelftBikes for Faster
], RetinaNet [12] and YOLOv3 [13]. Faster RCNN

There are important differences between visual verifica-
tion and object detection. An object detector should not de-
tect the same object multiple times. For visual verification,
however, the goal is to determine if an object is present or
absent, and thus having an existing object detected multiple
times is not a problem, as long as the object is detected at
least once. This makes recall more important than precision.
Moreover, there are differences in how much costs a mistake
has. The cost for an existing object that is not detected (false
negative) is that a human needs to check the detection. The
cost for a missing object that is falsely hallucinated as being
present (false positive) is that this object is a wrongly judged
as intact and thus may cause accidents in road infrastructure,
or may cause incomplete objects to be sent to a customer. The
costs for hallucinating missing objects is higher than missing
an existing object. These aspects motivate us to not use the
evaluation measure of object detection. Object detectors are
typically evaluated with mean Average Precision (mAP) and
because detections of non-existent objects at lower confidence
levels does not significantly impact mAP, the problem of ob-
ject hallucination has largely been ignored. Here, we propose
to evaluate visual verification not with precision but with a
cost-weighted variant of recall.

https://github.com/oskyhn/DelftBikes

Fig. 2. Example images of our DelftBikes visual verification dataset. Each image has a single bike with 22 bounding box
annotated parts. The similar pose, orientation and position can be misleading for context-sensitive detectors as often one or two
parts are missing (the saddle in (a), the wheels in (e) etc.).

Object hallucination by deep detectors can be causes by
sensitivity to the absolute position in the image [14, 15] while
also affected by scene context [16, 17, 18, 19, 20]. Here, we
focus on the visual verification task, its evaluation measure, a
novel dataset, and a comparison of popular existing detectors.
Investigating context is future work.

Existing object detection datasets such as PASCAL
VOC [21], MS-COCOI[22], Imagenet-det [23], and Open
Image [24] have no annotated object parts. Pascal-Parts [25]
and GoCaRD [26] include part labels, yet lack information
if a part is missing and where, as is required to evaluate
visual verification. Thus, we collected a novel visual verifi-
cation dataset: DelftBikes where we explicitly annotate all
part locations and part states as missing, intact, damaged, or
occluded.

We have the following contributions:

1. We demonstrate hallucination in object detection for 3
popular object detectors.

2. A dataset of 10k images with 22 densely annotated
parts specifically collected and labeled for visual verification.

3. An evaluation criteria for visual verification.

2. DELFTBIKES VISUAL VERIFICATION DATASET

DelftBikes (See Fig. 2) has 10,000 bike images annotated
with bounding box locations of 22 different parts where each
part is in one of four possible states:

intact: The part is clearly evident and does not indicate any
sign of damage. All the images in Fig. 2 have an intact steer.
damaged: The part is broken or has some missing parts.
In Fig. 2-g, the front part of the saddle is damaged.

absent: The part is entirely missing and is not occluded.
Fig. 2-e has missing front and back wheels.

occluded: The part is partially occluded because of an exter-
nal object or completely invisible. The saddle in Fig. 2-b is
covered with a plastic bag.

The distribution of part states is approximately similar for
training and testing set, see Fig. 3. The part state distribu-
tion shows 60.5% intact, 19.5% absent, 14% occluded, and
6% damaged. The front pedal, dress guard, chain and back
light have respectively the highest number of intact, absent,
occluded and damaged part states. Note that even if a part is
absent or occluded, we still annotate its most likely bounding
box location. DelftBikes contains positional and contextual
biases. In Fig. 4 where we plot an ellipse for each part in the
dataset in terms of their mean position, height and width. It is
possible to recognize the shape of a bike, which indicates that
there are strong part-to-part position and contextual relations.
Its those biases that learning systems may falsely exploit and
cause detector hallucinations.

B Training
B Testing

State Ratio (%)

=
o

intact damaged occluded absent
Object States

0

Fig. 3. The distribution of part states for train and test sets
in DelftBikes. The ratio of part states are roughly similar for
train and test sets. The intact parts have the highest ratio by
around 60%. Approximately 20% of parts in the dataset are
absent. The damaged and occluded parts constitute 20%.

Average part locations

back handle
break

.
front break
front handle

saddle
front light
back reflector
lock
dynamo | dress guard back light

back mudguard
front mud d
ront mESSE back wheel

| _gearcase
front wheel back pedal

chain, .
front pedal Kickstand

Fig. 4. Averaging position and size for all 22 parts in Delft-
Bikes resembles a bicycle, illustrating the prior in absolute
position and the contextual part relations.

3. EXPERIMENTS ON DELFTBIKES

The dataset is randomly split in 8k for training and 2k for test-
ing. We use a COCO pretrained models of Faster RCNN [11]
and RetinaNet [12]. Both networks have a Resnet-50 [27]
backbone architecture with FPN. The networks are finetuned
with DelftBikes for 10 epochs using SGD with a initial learn-
ing rate of 0.005. The YOLOv3 [13] architecture is trained
from scratch for 200 epochs using SGD with an initial learn-
ing rate of 0.01. Other hyperparameters are set to their de-
faults. We group the four part states in two categories for
visual verification: (i) missing parts consist of absent and oc-
cluded states and (ii) present parts include intact and damaged
states. During training, only parts with present states are used.

Detection. We first evaluate traditional object detection
using AP. For object detection, the missing parts are not used
during training nor testing. In Fig. 5, we show results for an
IoU of 0.5:0.95 for the 3 detectors. For most of the classes,
Faster RCNN and RetinaNet obtain approximately a similar
result and YOLOV3 is a bit behind. Front wheel and back
wheel are large and well detected. The small parts like bell
and dynamo have under 12% AP score because they are small
parts and often not present. The other parts are below 50%
AP, where half of the parts have less than 20% AP, which
makes DelftBikes already a challenging and thus interesting
object detection dataset.

Recall of missing parts. Here, we analyze the halluci-
nation failure of the detectors by evaluating how many non-
existing parts they detect in an image. We calculate the IoU
score for each detected missing part on the test set. We thresh-
old these false detections in terms of their IoU scores to eval-
uate if the missing parts are still approximately localized. We
define the recall score which is the ratio between the number

Class-Specific Results (loU @0.5:0.95)

back wheel Methods L d
front whee| =~ @ Faster RCNN °o®
@ RetinaNet
front mudguard @ voLo °o®
back mudguard o0
saddle 80
gear case ®
chain [)
steer e
kickstand o @
dress guard o ®
lock ®e
a back handle [X]
©
o front pedal o®

dynamo [X J
back light e
front light [
front handle o®
back reflector []
back hand break @@
front hand break @®
back pedal @
bell ®@
AP (1)
AP50 'Y

00 01 02 03 04 05 06 07 08 09
Results

Fig. 5. Object detection results on DelftBikes. Results per
category and overall performance. Notice that half of the de-
tections are below 20% AP score. In most of the cases, Faster
RCNN and RetinaNet perform similarly and YOLOV3 is be-
hind them.

of detected missing part at a given IoU threshold and the to-
tal number of missing parts.We show recall for varying IoU
threshold for each method in Fig. 6. For a reasonable IoU
of 0.5, RetinaNet and YOLOV3 detect approximately 20%
of missing parts and Faster RCNN 14%. Without looking
at position, (IoU=0), RetinaNet and YOLOv3 detect as much
as almost 80% of missing parts. Interestingly, Faster RCNN,
with similar mAP object detection score as RetinaNet, detects
only 32% of missing parts. For Faster RCNN, the most hal-
lucinated part with 14% is gear case. For YOLOV3, a miss-
ing dynamo is most detected and RetinaNet hallucinates most
about the dress guard.

Evaluating visual verification. For visual verification,
we want high recall of present parts and low recall of missing
parts where detecting the same object multiple times does not
matter. Besides, wrongly detected missing parts (false posi-
tives) cost more than not detected present parts (false nega-
tives). Thus, our F),, evaluation score is based on recall and
inspired by the Fig score [28] so we can weight detection mis-

Accumulated Recall of missing parts

1.0
= §- Faster RCNN
- @ RetinaNet
0871 .4 YOLOV3 2
’.
_0.61 ~.,6'
f_U A
=
0.41 R 4
o* _‘
t" . "‘ - ‘. '
0.21 “’ “I““
:z‘\"" 4
[‘,

09 08 0.7 06 05 04 03 0.2 0.1 0.0
loU thresholds

Fig. 6. Recall of missing parts on DelftBikes for varying In-
tersection over Union (IoU). We annotated likely position of
missing parts, and the recall of such missing parts should be
as low as possible. All methods wrongly detect missing parts
at approximately their expected location, as in Fig. 1.

takes differently as

(1+B%)R"(1 - RY)

Fvv =
32(1— RM) + RP

ey

RP is the present recall and RM the missing recall calculated
at a certain IoU threshold. The 3 parameter allows to weight
the detection mistakes, where we set the 3 parameter to 0.1
so that detections of missing parts are 10x more costly than
not detected present parts.

Visual verification results. Visual verification perfor-
mance is estimated by using the recall of present and missing
parts. We have two setups for visual verification calculation:
with and without localization. Visual verification with local-
ization: the present recall has an IoU threshold of 0.5, where
the missing recall is less relying on position and we set its
IoU threshold to 0.1. Visual verification without localization:
we set all IoU thresholds to 0. This, in addition, allows us
to evaluate a full-image multi-class multi-label classification
(MCML) approach. An Imagenet pretrained ResNet-50 ar-
chitecture is fine-tuned with BCE with logits loss and SGD
with an initial learning rate of 0.05 for 15 epochs. After every
5 epoch, the learning rate is reduced by a factor of 10. The
network obtains 91% of recall for present parts and 32% of
recall for missing parts.

Results are shown in Table 1. For the with localization
results, Faster RCNN outperforms RetinaNet and YOLO in
terms of lower recall of missing parts by 28% and a higher
F,,, score by 72%. RetinaNet and YOLOV3 detects more than
60% of missing parts and achieve only 38% and 36% of F,,
score respectively. In Fig. 5, the AP scores of Faster RCNN

Method T ™™ RF RM F
With localization

Faster RCNN 05 01 083 028 0.72
RetinaNet 05 01 090 0.62 0.38
YOLOV3 05 0.1 083 0.64 0.36
Without localization

Faster RCNN 0.0 0.0 092 032 0.68
RetinaNet 00 0.0 099 079 0.21
YOLOvV3 0.0 0.0 095 077 0.23
MCML 0.0 0.0 091 0.32 0.68

Table 1. Visual verification of Faster RCNN, RetinaNet,

YOLOV3 and MCML for different present (7'7') and missing
(T™) IoU thresholds on DelftBikes. (top) When (77,)
equals to (0.5,0.1): RetinaNet has highest recall for present
parts. Faster RCNN detects the fewest missing parts and
has best F,, score. (bottom) When localization is discarded:
MCML method outperforms RetinaNet and YOLOv3 and re-
sults similarly Faster RCNN in F,,, score.

and RetinaNet are quite similar, yet the F},, performance of
Faster RCNN is almost 2 times higher than RetinaNet. Reti-
naNet has 7% more intact recall score than YOLOv3, how-
ever, the difference for F,, is only 2%. For the without local-
ization results, when the present and missing IoU thresholds
are set to 0, all the methods obtain more than 90% present
recall. Interestingly, the MCML method, which only needs
full image class labels, outperforms RetinaNet and YOLOv3
detectors and performs similar to Faster RCNN.

4. DISCUSSION AND CONCLUSION

We show hallucinating object detectors: Detectors can detect
objects that are not in the image even with a high IoU score.
We show hallucination in the context of a visual part veri-
fication task. We introduce DelftBikes, a novel visual ver-
ification dataset, with object class, bounding box and state
labels. We evaluate visual verification by recall, where the
cost of falsely detected missing parts is more expensive than
a missing present part. For object detection, Faster RCNN
and RetinaNet has similar AP score, however, Faster RCNN
is the better for visual verification.

One limitation of our work is that the human annotations
for the non-existing parts are partly guesswork. Taking this
into account, this makes it even more surprising that detectors
predict with such a high IoU score.

5. REFERENCES

[1] R. G. Rosandich, “Automated visual inspection sys-
tems,” in Intelligent Visual Inspection. 1997. 1

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

[15]

Hugo C Garcia and J Rene Villalobos, “Automated

refinement of automated visual inspection algorithms,”
IEEE T-ASE, 2009. 1

Dusan Koniar, Libor Hargas, Anna Simonova, Miroslav
Hrianka, and Zuzana Loncova, “Virtual instrumentation
for visual inspection in mechatronic applications,” Pro-
cedia Engineering, 2014. 1

Tae-Hyeon Kim, Tai-Hoon Cho, Young Shik Moon, and
Sung Han Park, “Visual inspection system for the clas-
sification of solder joints,” Pattern Recognition, 1999.
1

Esther Resendiz, John M Hart, and Narendra Ahuja,
“Automated visual inspection of railroad tracks,” IEEE
transactions on ITS, 2013. 1

F. Marino, A. Distante, P. L. Mazzeo, and E. Stella,
“A real-time visual inspection system for railway main-
tenance: automatic hexagonal-headed bolts detection,”

IEEE Transactions on Systems, Man, and Cybernetics,
2007. 1

H. Ben Abdallah, I. Jovancevié¢, J.-J. Orteu, and
L. Brethes, “Automatic inspection of aeronautical me-
chanical assemblies by matching the 3d cad model and
real 2d images,” Journal of Imaging, 2019. 1

Marco San Biagio, Carlos Beltran-Gonzalez, Salvatore
Giunta, Alessio Del Bue, and Vittorio Murino, “Auto-
matic inspection of aeronautic components,” Machine
Vision and Applications, 2017. 1

Albert-Jan Baerveldt, “A vision system for object
verification and localization based on local features,”
Robotics and Autonomous Systems, 2001. 1

SK Sim, Patrick SK Chua, ML Tay, and Yun Gao,
“Recognition of features of parts subjected to motion
using artmap incorporated in a flexible vibratory bowl
feeder system,” Al EDAM, 2006. 1

Shaoqging Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in NIPS, 2015. 1, 3

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar, “Focal loss for dense object detection,”
inICCV,2017. 1,3

Ali Farhadi and Joseph Redmon, “Yolov3: An incre-
mental improvement,” CVPR, 2018. 1, 3

Marco Manfredi and Yu Wang, “Shift equivariance in
object detection,” in ECCV workshop, 2020. 2

0.S. Kayhan and J.C. van Gemert, “On translation in-
variance in CNNs: Convolutional layers can exploit ab-
solute spatial location,” in CVPR, 2020. 2

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Ehud Barnea and Ohad Ben-Shahar, “Exploring the
bounds of the utility of context for object detection,” in
CVPR, 2019. 2

Spyros Gidaris and Nikos Komodakis, “Object de-
tection via a multi-region and semantic segmentation-
aware cnn model,” in ICCV, 2015. 2

Yong Liu, Ruiping Wang, Shiguang Shan, and Xilin
Chen, “Structure inference net: Object detection using
scene-level context and instance-level relationships,”
CVPR, 2018. 2

Yousong Zhu, Chaoyang Zhao, Jingiao Wang, Xu Zhao,
Yi Wu, and Hanqing Lu, “Couplenet: Coupling global
structure with local parts for object detection,” in ICCV,
2017. 2

Krishna K. Singh, Dhruv Mahajan, Kristen Grauman,
Yong Jae Lee, Matt Feiszli, and Deepti Ghadiyaram,
“Don’t judge an object by its context: Learning to over-
come contextual bias,” arXiv:2001.03152, 2020. 2

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL VOC2012,”. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and
C Lawrence Zitnick, “Microsoft coco: Common objects
in context,” in ECCV, 2014. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.,
“Imagenet large scale visual recognition challenge,”
1JCV, 2015. 2

Alina Kuznetsova, Hassan Rom, Neil Alldrin, J, Jasper
R. R. Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Tom Duerig,
and Vittorio Ferrari, “The open images dataset V4:
unified image classification, object detection, and vi-
sual relationship detection at scale,” CoRR, vol.
abs/1811.00982, 2018. 2

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja
Fidler, Raquel Urtasun, and Alan Yuille, “Detect what
you can: Detecting and representing objects using holis-
tic models and body parts,” in CVPR, 2014. 2

Lukas Stappen, Xinchen Du, et al., “Go-card — generic,
optical car part recognition and detection: Collection,
insights, and applications,” 2020. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR, 2016. 3

N. Chinchor, “Muc-4 evaluation metrics,” in MUCH4.
1992, Association for Computational Linguistics. 3

