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This work considers the task of object proposal scoring by integrating the consistency between state-
of-the-art object proposal algorithms. It represents a novel way of thinking about proposals, as it starts
with the assumption that consistent proposals are most likely centered on objects in the image. We pose
the box-consistency problem as a large-scale regression task. The approach starts from existing popular
object proposal algorithms and assigns scores to these proposals based on the consistency within and be-
tween algorithms. Rather than generating new proposals, we focus on the consistency of state-of-the-art
ones and score them on the assumption that mutually agreeing proposals usually indicate the location
of objects. This work performs large-scale regression by starting from the strong Gaussian Process model,
renowned for its power as a regressor. We extend the model in a natural manner to make effective use of
the large number of training samples. We achieve this through metric learning for reshaping the kernel
space, while maintaining the kernel-matrix size fixed. We validated the new Gaussian Process models
on a standard regression dataset — Airfoil Self-Noise — to prove the generality of the method. Further-
more, we test the suitability of the proposed approach for the undertaken box scoring task on Pascal-
VO0C2007. We conclude that box scoring is possible by employing overlap statistics in a new Gaussian
Process model, fine tuned to handle large amounts of data.
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1. Introduction

In this work we focus on the task of object proposal scoring by
integrating the consistency of proposals among multiple state-of-
the-art algorithms. We formulate the box-consistency problem as
a large-scale regression task, as there are over 2000 proposals per
image within only one algorithm. Furthermore, assigning scores to
boxes is inherently a regression task. Thus, we choose as a starting
point for our approach the strong Gaussian Process model (Bottou,
2007; Hensman et al., 2013; Quifionero-Candela and Rasmussen,
2005; Snelson and Ghahramani, 2005). In this work, we extend
the standard Gaussian Process regression model to make effective
use of the large number of training samples by employing metric
learning. We achieve this by looking at the consistency between
the proposals of different state-of-the-art algorithms.

Object proposal methods can be considered to have reached
a satisfactory level when inspecting the recall of state-of-the-art
methods (Alexe et al., 2010; Cheng et al., 2014; Krdhenbiihl and
Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al.,
2013; Zitnick and Dollar, 2014). However, the high recall comes at
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the cost of a large number of boxes — between 1000 and 3000
boxes per image. This work aims at precisely this: re-scoring exist-
ing proposals of different algorithms such that we can more easily
find the good ones.

Another gain following from the ability to assign goodness
scores to boxes is self-assessment — providing a goodness score to
each bounding box. This allows for the selection of a limited num-
ber of boxes to be used at a subsequent step for object detection.
Well-known methods such as selective search (Uijlings et al., 2013)
and prim (Manen et al., 2013), despite their good performance, lack
the ability of self-assessment by design. This work provides a man-
ner of assigning goodness scores to any proposal box.

There is a common denominator between well-known object
detection methods (Alexe et al., 2010; Cheng et al., 2014; Krdhen-
biihl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Ui-
jlings et al., 2013; Zitnick and Dollar, 2014) — they use as a start-
ing point different assumptions yet they attain comparable per-
formance. Therefore, there is gain in jointly employing them. In
this work, we hypothesize that the consistency in proposals be-
tween different methods is revealing as to the true location of
objects in an image. This idea is underlined in Fig. 1. The figure
depicts a box proposed by the edge-boxes algorithm (Zitnick and
Dollar, 2014), and its closest neighbors in a set of 6 other object


http://dx.doi.org/10.1016/j.cviu.2016.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.05.002&domain=pdf
mailto:s.l.pintea@uva.nl
http://dx.doi.org/10.1016/j.cviu.2016.05.002

96 S.L. Pintea et al./ Computer Vision and Image Understanding 150 (2016) 95-108

(b) Consistent.

(a) Inconsistent.

Fig. 1. Proposals characterized by consistency in overlap with other proposals, tend
to be centered on objects.

proposal algorithms (Alexe et al., 2010; Cheng et al., 2014; Krdhen-
biihl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Ui-
jlings et al., 2013). In this work, rather than extracting appear-
ance features from the pixels enclosed in the bounding boxes, we
build our features upon the consistency in overlap between the
neighboring boxes within the same proposal algorithm as well as
the other considered proposal algorithms. To our knowledge we
are the first to consider box scoring from box-overlap information.
Moreover, this method can be applied to any object proposal algo-
rithm, as it is not restricted to only the seven algorithms discussed
here.

We cast the box-consistency as a large-scale regression prob-
lem, given that the scores associated with boxes are continuous
variables to be learned. The box scoring function is nonlinear in
the feature space, since a satisfactory filtering of boxes is hard to
achieve. Gaussian Processes are strong nonlinear — kernel-based —
regressors characterized by a high descriptive power (Bottou, 2007;
Hensman et al., 2013; Quifionero-Candela and Rasmussen, 2005;
Snelson and Ghahramani, 2005). The proper kernel characteristics,
describing the similarities between samples, are estimated directly
from the data. Moreover, they are non-parametric and have com-
parable computational costs with their discriminative counterpart,
the SVR (Support Vector Regressors). Similar to SVR, Gaussian Pro-
cesses are kernel methods, thus, require the estimation of a kernel
matrix, squared in the size of training data. Given that we have
numerous training samples — proposals in the training set, we in-
troduce an adaption of the Gaussian Process for large-scale prob-
lems. This allows us to retain the descriptive power of the Gaus-
sian Process, while limiting the kernel-matrix size to a fixed small
set of centroids. We subsequently employ additional samples to
learn the kernel distances in a metric learning formulation through
loss optimization. Thus, we reshape the kernel space such that the
model better describes the target space distribution. This theoret-
ical extension is not restricted to box scoring, and it can be ap-
plied to regression problems with a prohibitively large number of
samples. Therefore, we additionally test the new Gaussian Process
models on a standard machine learning dataset. This demonstrates
the generality of our theoretical contribution.

To summarize this work: (i) we theoretically extend the Gaus-
sian Process model for large-scale regression. We do so by retain-
ing a fixed kernel-matrix size. To compensate for the lost infor-
mation we employ metric learning for reshaping the kernel space
to better fit the training targets. (ii) We introduce a novel view of
box proposal scoring by learning it from the consistency between
the box proposals of different algorithms. (iii) We validate the new
Gaussian Process models on a standard machine learning regres-
sion data-set — the Airfoil Self-Noise Data-set of NASA. This proves

the generality of the model. Finally, we test the suitability of the
proposed approach in the context of box regression, on the Pascal-
VOC2007 data-set.

2. Related work
2.1. Object proposal methods

In the literature, generating object proposals has been a main
focus. Methods such as objectness (Alexe et al., 2010) and core
(Rahtu et al., 2011), rely on the fact that objects are salient. On
the other hand, methods such as prim (Manen et al., 2013), and
selective search (Uijlings et al., 2013), consider a hierarchical ap-
proach to object proposals, based on the assumption that object
parts are internally coherent in terms of color, texture or loca-
tion in the image. They generate proposals by starting from an
over-segmented image and iteratively merging similar segments.
Finally, the most recent methods — bing (Cheng et al., 2014),
geodesic (Krdahenbiihl and Koltun, 2014) and edge-boxes (Zitnick and
Dollar, 2014) — ascertain that objects are visible through strong
boundaries. In this work, rather than generating object propos-
als by introducing a new paradigm, we start from existing pop-
ular proposal methods and learn the goodness of boxes. We re-
late the idea of box goodness to the consistency in proposals be-
tween different methods. Our underlying assumption is that none
of the above paradigms wins exclusively in the end, but rather, all
bare reliable truth about object locations. Thus, there is gain to be
achieved by combining them.

2.2. Deep net proposals

Convolutional Neural Networks (CNN) have been recently used
with success for object detection starting from already existing ob-
ject proposals (Girshick, 2015), (Girshick et al., 2014), (Ren et al.,
2015), or for proposing class-agnostic bounding boxes (Erhan et al.,
2014), (Karianakis et al., 2015). (Girshick et al., 2014), brings
forth the well known RCNN (Regions with CNN features) model
which uses Selective Search (Uijlings et al., 2013), object pro-
posals in a CNN for object detection. Girshick (2015), improves
the RCNN method of Girshick et al. (2014), in terms of training
and test speed, as well as detection accuracy and it coins the
new method “Fast RCNN”. Ren et al. (2015), introduces a fully-
convolutional network that predicts object bounding boxes. The
network can be trained to share features with the “Fast RCNN”
(Girshick, 2015), and thus, be used for object detection. Instead of
considering the feasible locations and sizes of objects in the im-
age (Zhao et al., 2014), in Erhan et al. (2014), a neural network
based on saliency features is proposed for generating class inde-
pendent bounding boxes together with an object likelihood score.
Karianakis et al. (2015), advises the use of CNNs for generating ob-
ject proposals by advancing a boosting approach based on the hi-
erarchical CNN features which gives competitive performance on
the object detection task. The recent work of Chavali et al. (2015),
points out shortcomings in the current object proposal evaluation
protocols and offers a fully annotated data-set for evaluation as
well as performing diagnostics on existing proposal methods. It is
of interest to take into account these findings, however we do not
aim at diagnosing popular object proposals, but rather at testing if
consistency in proposals discloses the true location of objects. In
contrast to methods generating new object proposals — based on
hand-crafted features, integrating prior knowledge about the task
at hand or, learned in a CNN framework — we aim at combing the
information given by a set of largely used object proposal algo-
rithms such that we can estimate the goodness of a given proposal
box.
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2.3. Combining methods

To learn the goodness of bounding boxes, we start from a set
of existing proposal methods. We consider the overlap between
the boxes as the only required training information. This can be
seen somewhat similar to the idea of combining existing meth-
ods which was studied in Karaoglu et al. (2014); Xu et al. (2014).
Karaoglu et al. (2014), combines object detectors by using the de-
tection scores together with the maximum overlap with other de-
tections. Xu et al. (2014), merges pedestrian detectors by employ-
ing the scores associated with each detection and clustering the
detections. Here we do not have scores associated with each box.
Therefore, we need a method that allows us to both assign scores
to boxes and also integrate the information of all proposal meth-
ods. Rather than merging existing proposals in a straight-forward
fashion, we learn box goodness based on consistency. We correlate
the consistency in the proposals of different methods to the good-
ness of a certain box. We do so in a Gaussian Process regression
framework.

2.4. Box overlap as features

Vezhnevets and Ferrari (2015), defines three overlap statistics
that describe the relative position of two object proposal bound-
ing boxes. These overlap statistics indicate roughly the positioning
of two boxes: their relative overlap, and whether the first box is
included in the second or vice-versa. Unlike Vezhnevets and Fer-
rari (2015), where the statistics are used as targets for regression,
here we employ these three statistics in the feature definition of
our proposals. Furthermore, we do not make use of any additional
appearance features based on the pixel values enclosed by the
bounding boxes. We want to challenge the idea of box scoring from
overlap information only.

In Vezhnevets and Ferrari (2015), the use of Gaussian Processes
is also advanced, albeit with a different goal in mind — object de-
tection. The authors of Vezhnevets and Ferrari (2015), learn from
appearance features extracted from the pixels enclosed by the
bounding boxes to predicted overlap statistics with other boxes.
These overlap statistics are subsequently used together with ap-
pearance features in an Exemplar-SVM for detection. Dissimilar to
Vezhnevets and Ferrari (2015), here we employ these three overlap
statistics to describe the boxes, with the goal of learning the qual-
ity of box proposals in the large-scale Gaussian Process regression
framework.

2.5. Gaussian process versus other regressors

The problem of box scoring is inherently a regression prob-
lem as the goodness scores are continuous variables. Given that
the task of estimating box goodness is not straight-forwardly
solved and we have numerous training samples, we use a non-
linear regressor. We propose the use of Gaussian Processes
(Rasmussen, 2006), as they are renowned for their strength as
non-linear regressors. Neal (2012) shows that when the number
of hidden units tends to infinity, the distribution of functions gen-
erated by a neural network converges to a Gaussian Process. More-
over, RVM (Relevance Vector Machines), which are another choice
of non-linear regressors, can be seen as a special case of Gaussian
Processes. In the RVM case the covariance function is degenerate
(Bishop, 2006; Rasmussen, 2006). When comparing the SVR (Sup-
port Vector Regression)/SVM (Support Vector Machine) with the
Gaussian Process regressor/the Gaussian Process classifier, they can
be shown to optimize very similar quantities (Rasmussen, 2006).
However, they are not equivalent as the former is a discrimina-
tive model while the Gaussian Process is generative. This also en-
tails that the Gaussian Process can associate a certainty estimate

with every prediction. Moreover, the Gaussian Process model can
learn the kernel characteristics automatically from the data. This
provides more flexibility to the model.

Similar to Vivarelli and Williams (1999), we also propose the
use of a full covariance matrix in the kernel function of the Gaus-
sian Process. But unlike this work, rather than using eigen analysis,
we propose to learn this covariance through metric learning. This
step helps to better model the target distribution by employing ad-
ditional available training data.

2.6. Large scale Gaussian Processes

Gaussian Processes focusing on the local information in the
data samples have been proposed in Bo and Sminchisescu (2012),
26), Snelson and Ghahramani (2007), U039">Urtasun and Dar-
rell (2008), proposes a local mixture of Gaussian Processes where
the hyperparameters of each component are learned in an online
fashion. The Gaussian Process models proposed in this paper are
based on a restricted set of training sample which represent clus-
ter centers describing the data in a certain area of the feature
space. Despite these samples locally describing the feature space,
the Gaussian Process model we propose is a global one rather than
a local one. The gain of our method, with respect to the local re-
gression methods, is having one unified model rather than a set of
models trained on different parts of the data.

Previous work has also focused on sparse methods for restrain-
ing the kernel matrix size in the Gaussian Process. Methods such
as Cao et al. (2013), Csat6 and Opper (2002), Hensman et al. (2013),
Lawrence et al. (2003), Quifionero-Candela and Rasmussen (2005),
Ranganathan et al. (2011), Snelson and Ghahramani (2005),
Titsias (2009) propose global approximations in order to achieve
efficiency. Csaté and Opper (2002), proposes an online algorithm
in which the relevant training samples are selected in a sequen-
tial manner. Quifionero-Candela and Rasmussen (2005), presents
a literature survey where existing sparse Gaussian Process meth-
ods are presented in a unified manner by changing the definition
of the prior, thus emphasizing similarities between existing meth-
ods. Snelson and Ghahramani (2005), learns a small set of pseudo-
inputs together with the model hyperparameters through gradient
optimization. This method can be seen as a Bayesian regression
model where the noise is input dependent. Lawrence et al. (2003),
builds on active learning and forward selection to find a sparse
set of training samples which is advantageous both in terms of
speed and storage requirements. Titsias (2009) introduces a vari-
ational inference method that finds the inducing variables by min-
imizing the KL divergence between the variational distribution and
the exact posterior distribution. Hensman et al. (2013), proposes
a stochastic variational inference approach that relies on a set of
global variables which factorize into observations and latent vari-
ables. Cao et al. (2013), jointly optimizes the selection of the induc-
ing points — which provide the Gaussian Process regression with
sparsity — and finds the optimal Gaussian Process hyperparame-
ters. Ranganathan et al. (2011), proposes an online sparse Gaussian
Process regression method that uses Cholesky updates for sparse
kernel matrices. Similarly, the models proposed in the paper are
also sparse in the sense that rather than using the complete train-
ing data, we rely on a fixed set of cluster centers in the data space.
Dissimilar to existing methods, we follow an approach based on
metric learning through loss minimization for hyperparameter op-
timization. This is more common for discriminative methods — i.e.
SVM, SVR .

2.7. Metric learning

In order to efficiently employ the large amount of training data
while keeping the kernel-matrix size fixed, we use metric learning.



98 S.L. Pintea et al./Computer Vision and Image Understanding 150 (2016) 95-108

(1) Proposals of 7 algorithms

Train input images

Training sampling

N

Training sampling

Proposals of 7 algorithms
over test images

ages 5,

(2) Overlap-based features

(3) Train Gaussian Process models

-'t GP-Cluster

Predicted box goodness

T

» npitx
K-means
GP-Metric_ > ol
Additional . X
samples Metric learning for

kernel distances

A

Predict on the box features

Test input images

Fig. 2. Method overview. In the first step we generate box proposals for each image using the seven considered proposal algorithms (Alexe et al., 2010; Cheng et al., 2014;
Krahenbiihl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al., 2013; Zitnick and Dollar, 2014). In the training phase, we sample the proposals of each
algorithm based on their distribution with respect to the overlap with the ground truth. Subsequently, in the second step, we compute overlap statistics for each retained
box with boxes from all proposal algorithms. Both during training and test, these overlap statistics with neighboring boxes describe our features. During training, a subset of
these box features are used to obtain cluster centers from K-means. In the third step we propose 2 models: GP-Cluster — a Gaussian Process model trained on the K-means
cluster centers only, and GP-Metric — a Gaussian Process trained on the same K-means cluster centers, but for which additional training samples (boxes with associated
features) are used to adjust the kernel distances through metric learning. The targets of the regressors are the overlap scores with the ground truth boxes.

Metric learning has been previously the focus of works such as
Huang and Sun (2013); Kostinger et al. (2012); Titsias and Lazaro-
Gredilla (2013); Weinberger and Saul (2009); Xing et al. (2002);
Ying and Li (2012). Ying and Li (2012), proposes a metric learn-
ing approach based on eigenvalue optimization, connecting these
two trends together. Xing et al. (2002), analyzes the use of metric
learning for improving clustering and proposes learning similarity
measures in a convex optimization formulation. Somewhat simi-
lar, we also combine clustering with metric learning, but clustering
is not the end goal. We do so in order to effectively employ the
training data in the Gaussian Process and to add more descriptive-
ness to the model. Titsias and Lazaro-Gredilla (2013), advances a
variational Gaussian Process method which shifts the kernel into a
space where the hyperparameters are neutralized to value one. Un-
like in our work, the goal of Titsias and Lazaro-Gredilla (2013), is
to achieve a model where the hyperparameters are integrated out.
Here, we adapt the kernel shape such that it incorporates informa-
tion from the discarded training samples. Huang and Sun (2013),
proposes kernel regression with sparse metric learning that im-
poses a regularization over the projection matrix to be learned.
Similar to Huang and Sun (2013), we also use metric learning
to allow the model to better map the target distribution. In this
work, we perform the metric learning through loss optimization
in the SGD (Stochastic Gradient Descent). We, additionally, employ
in the SGD the cone projection step described in Weinberger and
Saul (2009), together with their update of the learning rate.

3. Box goodness through regression
3.1. Method overview

This work proposes learning box goodness in a Gaussian Pro-
cess regression framework based on the consistency in proposals
of seven different object proposal algorithms (Alexe et al., 2010;
Cheng et al.,, 2014; Krdhenbiihl and Koltun, 2014; Manen et al.,
2013; Rahtu et al., 2011; Uijlings et al., 2013; Zitnick and Dollar,
2014). Fig. 2 depicts the main steps entailed by our method.

The first step generates proposal boxes by applying all seven al-
gorithms. Given the large number of proposals generated by each
algorithm — ~ 2000 per image — during training, we sample boxes

from each proposal method. The sampling is based on the distri-
bution of the overlap of the training boxes with the ground truth
boxes. This is meant to retain a set of diverse boxes for training,
ranging from bad to good.

In the second step, features are defined for the retained train-
ing boxes. These features measure the consistency in overlap with
other boxes from the same proposal algorithm as well as other al-
gorithms. The feature definition is used both for training and test
boxes. Additionally, during training we cluster these features into
a predefined set of clusters (in our experiments, we use 500 clus-
ter centers) using K-means. This aims at both reducing the kernel-
matrix size of the Gaussian Process and making the regressor more
robust.

Finally, we introduce two models: the GP-Cluster — Gaussian
Process trained on the K-means cluster centers only, and GP-Metric
— Gaussian Process regressor trained on the same K-means clus-
ter centers but employing metric learning on additional training
samples. The targets of the Gaussian Process regressor are repre-
sented by the maximum overlap with a ground truth box, as this
indicates the goodness of a box. During test time, we extract over-
lap features for all proposal boxes of all seven algorithms and as-
sign a quality score to each proposal by performing inference in
the trained Gaussian Process models. Metric learning is used to re-
shape the kernel such that the model better describes the target
space. The proposed methods not only provide a box scoring solu-
tion based on consistency between different proposal algorithms,
but also allow for self-assessment. This is specifically advantageous
for methods that do not have a way in which to incorporate box
scores, such as Manen et al. (2013); Uijlings et al. (2013) — this
will be addressed in experiment Exp 2.3. Furthermore, the consid-
ered Gaussian Process extension by employing metric learning is
a general addition to the model that is not restricted to only the
box scoring problem. This model can be applied whenever dealing
with a large number of training samples — as shown in experiment
Exp 1.

3.2. Combining proposals

Our underlying assumption for the box scoring problem is that
the consistency between object proposals is useful in deciding



S.L. Pintea et al./Computer Vision and Image Understanding 150 (2016) 95-108

Table 1

99

Evaluation of the seven considered object proposal algorithms, run by us on Pascal-VOC2007
— consistent with the literature (Alexe et al., 2010; Cheng et al., 2014; Hosang et al., 2014;
Krdhenbiihl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al., 2013;
Zitnick and Dollar, 2014). Edge-boxes achieves the best recall, while at the same time, gener-

ating the largest number of proposals per image.

Method # Proposals/Image  # True Boxes Recall
Core Rahtu et al. (2011) 1000 9348 0.776
Objectness Alexe et al. (2010) 1000 10,660 0.886
Prim Manen et al. (2013) 2494 11,418 0.949
SSE Uijlings et al. (2013) 2008 11,516 0.957
Bing Cheng et al. (2014) 1924 11,470 0.953
Edge-Boxes Zitnick and Dollar (2014) 3479 11,860 0.985
Geodesic Krahenbiihl and Koltun (2014) 653 11,059 0.919
Ground truth — 12,032 —

Combined 10,758 12,005 0.998

the goodness of boxes. The recent paper of Hosang et al. (2014),
considers twelve state-of-the-art object proposal methods. Out of
these we have selected six methods based on their being relatively
fast at prediction time — less than 3 s per image. Moreover, we
have additionally considered a newer method, geodesic object pro-
posals (Krahenbiihl and Koltun, 2014), which provides good perfor-
mance in practice.

Table 1 lists the average number of boxes generated by each
one of the considered algorithms together with their recall, evalu-
ated by us on the Pascal-VOC2007 data-set. We choose the Pascal-
VOC2007 data-set as it is a popular data-set for testing object pro-
posals. In addition, we are interested in the overlap between dif-
ferent proposals, so the actual choice of the data-set has limited
influence on the experimental outcome. The numbers indicate that
the boxes proposed by the edge-boxes are the most accurate —
achieving the highest recall. However, the total number of pro-
posed boxes is relatively high. When considering all the proposals
of all algorithms, the recall is very close to one. Thus, there is gain
in trying to re-rank boxes of different algorithms based on their
goodness.

In this work, we consider the boxes of these seven algorithms,
as just merging all proposals from all algorithms achieves 0.998
recall. This almost solves the problem, were it not for this recall
being reached at the cost of obtaining an impractically large set of
boxes. We aim to perform box regression for finding an ordering
of these proposals such that we can attain a good performance at
a smaller number of boxes.

3.3. Box description and selection

Each one of the seven discussed algorithms provides a set of
approximately 2000 boxes per image. We first need to select a
subset of these boxes, as it is unfeasible to use all boxes in the
kernel computation. For the selected boxes we devise a set of fea-
tures that describe them in terms of the overlap with other boxes.
These features are subsequently clustered. The cluster centers rep-
resent the actual training samples to be used for computing the
training/test kernel distances.

Training Box Sampling. The training set is represented by pro-
posed boxes and there are on average 2000 boxes proposed per
image, thus ~ 7 x 2000 training samples per image. This gener-
ates a prohibitively large kernel matrix. A first step towards mak-
ing effective use of the training data is to sample the bounding
boxes based on their IOU (Intersection Over Union) score with the
ground truth boxes. The scores are also used as targets during re-
gression training. We retain only the training boxes that have an
IOU score greater than zero — boxes that intersect at least one
ground truth box. The QWS (Quasi-random Weighted Sampling)
(Kalal et al., 2008) implies adding the 10U scores of all boxes in

one algorithm and one image, on a unit line. The line is divided
into N equally sized segments and we sample one unique box from
each such segment. In the experimental part, we sample 100 boxes
per box-proposal algorithm out of 500 random training images us-
ing QWS.

Features. Given the input boxes of all algorithms, we define
their features in terms of the overlap with neighboring boxes. We
aim to employ the consistency between proposals as features for
learning box-goodness. We achieve this by making use of the three
statistics proposed in Vezhnevets and Ferrari (2015), depicted in
Eq. 1. For each considered box we estimate its closest five neigh-
bors in all the seve algorithms and compute these three statistics
with the corresponding neighbors.

<box1 Nbox, box; Nbox, box; N boxz>

box; U box,’ box; box; (1)
where box; represents the current box to be described, and box,
represents one of its closest five neighbors. These statistics are con-
catenated into a feature vector of 105 dimensions, describing each
box — 5 neighbors x 7 algorithms x 3 statistics. For ensuring sta-
bility of the features, the neighbors are ordered in descending or-
der of their proximity to the current box being described. The re-
gression targets are the maximum over the IOU scores with the
ground truth boxes.

Clustering. The number of used training samples determines
the kernel-matrix size in the Gaussian Process. This restricts us to
using a very small fraction out of the available samples. In order
to both limit the kernel-matrix size as well as make the regres-
sor more robust, we cluster the box features corresponding to the
sampled boxes. The clustering is performed using K-means. For box
scoring we use 500 cluster centers, yet we also show in the exper-
imental section the performance with respect to varying number
of clusters.

4. Large scale Gaussian Process regression

We aim to assign goodness scores to proposals based on the
maximum over the IOU scores with the ground truth boxes. As
this is a regression problem, non-linear in the feature space, we
adopt the Gaussian Process model. This is renowned for its power
as a non-linear regressor, while having similar computational costs
with its discriminative counterpart, the SVR (Rasmussen, 2006). In
the next subsections we briefly revisit the standard Gaussian Pro-
cess model. We subsequently, indicate the changes, entailed by the
large-scale nature of the data, that we introduce in model.

4.1. Standard Gaussian Process regression model

For the estimation of the Gaussian Process kernel matrix we
use the squared exponential kernel, as this is the standard choice
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(Rasmussen, 2006). The training procedure involves the computa-
tion of the inverse of the kernel matrix. The test-time prediction
together with the standardly used squared exponential kernel are
given by Egs. (2)-(3):

¥ =k X" (ki (X, X) +021) "y, )
Xi —X; |2
k(i X;) = exp (H'2P1“> (3)

where X is the matrix of training samples, k;(, -) is the kernel
function depending on [ — the length-scale hyperparameter of the
Gaussian Process, y is the vector of training targets and y* is the
prediction on the current test sample, x* is the input test sample,
and o2 is the noise hyperparameter, while I denotes the identity
matrix.

Gaussian Processes are non-parametric models, as seen in
Eq. (2) - there are no weights to be estimated from the data. The
length-scale, I, and the noise, o2, represent the hyperparameters of
the model. They do not directly describe the model, they only af-
fect the kernel distances. The hyperparameters are estimated from
the data during training and help shape the kernel. This is achieved
by adjusting the kernel distances to more suitably describe the
similarities between samples.

4.2. Augmenting Gaussian Processes with metric learning

The clustering of samples solves the problem of too large
kernel-matrix sizes. However, this discards valuable information as
it only retains the few cluster centers and disregards the rest of
the samples. Therefore, we may ignore the variation in the tar-
get space given by the disregarded samples. In the kernel-based
methods, the choice of the kernel defines the distance metric be-
tween the samples. By employing metric learning we make effec-
tive use of the additional samples present in the training data and
use them to reshape the kernel space. This enables the Gaussian
Process to better learn the target space variations. By doing so, we
keep the kernel-matrix size fixed while adjusting the kernel dis-
tances on additional training samples.

Covariance-based Kernels. We aim to add back into the model
the information lost by training on the cluster centers only. To do
so, similarly to Vivarelli and Williams (1999), we add more descrip-
tiveness into the representation by expanding the kernel definition
to incorporate a covariance matrix. We change the length-scale pa-
rameter of the Gaussian Process - Eq. 3 - to be a covariance matrix
as depicted in Eq. (4):

ks (X;, Xj) = exp (—%(xi — X)X (X; — xj)T>. (4)
This makes the kernel more flexible. It allows us to learn from
the data not only the correct scale — as in the case of the scalar
lengthscale, | — but also the correct shape. We subsequently, per-
form metric learning to determine the covariance, X, from new
sets of training examples.

Metric Learning Optimization. We learn the added co-
variance matrix through metric learning, unlike Vivarelli and
Williams (1999). This enables us to find a kernel function that fa-
cilitates the model to better describe the target distribution. In or-
der to learn X from the data, we assume the squared loss: £ =
> (yn — ¥%)?. Consequently, we evaluate the gradient of the loss
function over the Gaussian Process model with respect to X. This
gradient is used in an SGD (Stochastic Gradient Descent) optimiza-
tion to iteratively update the covariance over batches of samples.
We estimate the gradient formulation as in Eqs. (5)-(9) — detailed

derivations provided in Appendix A.

ac  [ac acl” . Toc
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or train clusters | clusters ) )
9 =22 On-yn| 30| X KMk
n i ]
Yiks (Xi. Xn) + ;M| + 20X, (6)
1 T

M;; = —E(Xj — X)) (Xj — Xk (X, X;), (7)
K™ = (ks (X,X) + 0271, (8)
o = (ks(X.X) + 02D y. 9)

Given that X is symmetric, we use the derivation for symmet-
ric matrices — Eq. (5). After each gradient step we reinforce that
Y has to be a symmetric and semi-positive definite matrix. This
is done by performing a cone projection step as described in
Weinberger and Saul (2009). Algorithm 1 provides the steps for
estimating X. Given that the optimization in terms of ¥ may have
local optima (Rasmussen, 2006), we restart the SGD at different
length-scale ranges. We do so by initializing X with a diagonal ma-
trix where the elements on the diagonal are ,lz The same ranges
are used in the standard Gaussian Process for estimating the op-
timal length-scale parameter — [*. This parameter optimization is
done in the standard model through cross-validation over a held-
out training set. After each SGD step we evaluate the reached X on
the held-out training set. As suggested in Sutskever et al. (2013),
we use the momentum parameter to make the gradient updates
more smooth between iterations. We start by initializing the learn-
ing rate as € = 0.05 of the ratio between the Frobenius norm of the
initial X setting and the first gradient step. We subsequently up-
date the learning rate as suggested in Weinberger and Saul (2009).
Following Bottou (2012), we add to the loss optimization a regular-
ization term based on the norm of X. This helps us in dealing with
overfitting. Moreover, also as a way of avoiding overfitting, in the
experimental part we use the Huber loss rather than the squared

Algorithm 1: Metric learning SGD for kernel distances.
: Get training samples using QWS and cluster them.

—_

2: Initialize starting lengthscale, I, and noise, o.

3: Assume the kernel of eq. 4.

4: Initialize X; « llzl, Vi < @, t < 0.

5. while | £; — L1 |> 60 do

6: Sample a new set of training samples using QWS.

7. VL <~ g—)‘g‘[ as in eq. (5)-(9) over new samples.

8: if (t == 0) then

9: Initialize n < eFFr:)‘l’fzgé:), where Frob(-) is the Frobenius
norm.

10:  end if

11:  Update Vi g < uVr —nV Lt

12:  Update X1 < Xt + Veyq.

130 Xpyp < Pr(Zegq),
where Pr(-) is the cone projection of X.

14:  Compute the loss over the newly sampled set:
L1 < XaOn—y)2+ A2z,

15: end while

16: Output X estimated through metric learning.
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RMSE: 76.91 px

76.44 px 76.53 px

79.73 px 55.81 px
79.62 px 61.92 px 53.89 px

GP-Metric full.

Input. GP-Cluster.

GP-Metric diag.

Fig. 3. Losses in predicting pixel intensities from pixel location on 3 images: a cir-
cle, an ellipse and a rotate ellipse. We use the center point — depicted in red — as
the only cluster center to compute the kernel on. We randomly sample 100 pixels
for evaluating the hyperparameter, X. The second column depicts the loss of the
standard Gaussian Process on one cluster. The third column shows the loss for the
metric learning-based Gaussian Process with a diagonal covariance matrix, X. The
last column corresponds to the metric learning-based Gaussian Process with a full
matrix, X.

Table 2

Runtime estimates when using 500 cluster centers in the three proposed
Gaussian Process models as well as the standard Gaussian Process where
1500 samples are randomly picked from the data. The times are esti-
mated as average time for predicting goodness scores for one box as well
as for all boxes (14,000 per image) in one image of Pascal VOC-2007
Dataset. The newly designed Gaussian Process models are more time-
efficient when compared with the standard Gaussian Process model.

GP Std. GP models
Cluster Metric-diag.  Metric-full
# Samples ~ 1500 500 500 500
Millisec./Box ~ 8.847 ms. 1124 ms. 1177 ms. 1.181 ms.
Sec./Image 132.76 s 16.87 s 17.66 s 17.73 s

loss. By doing so, we bound the contribution to the gradient for
the samples that are far away from the corresponding target.
Metric Learning-based Gaussian Process Illustration. We have
argued that by expanding the kernel definition to incorporate the
covariance matrix, X, we allow the Gaussian Process to be more
descriptive. This helps in more effectively learning the shape of the
target distribution. Fig. 3 depicts precisely this idea. Here, we use
as input three gray-scale images, displayed on the first column in
Fig. 3. We want to learn to predict the pixel intensity values from
pixel locations in the image. Thus, our targets are represented by
pixel intensities while our input features are the pixel locations.
For all models we use only one training sample in the kernel com-
putation, depicted in red. Hence, our training kernels have sizes 1
x 1. The two GP-Metric models use 100 additional pixel samples to
learn the covariance, X. However, they still use the same 1 sam-
ple for computing the training and test kernels. We consider two
cases of the metric learning-based Gaussian Process: GP-Metric diag
— the metric learning-based Gaussian Process in which the covari-
ance matrix, X, is assumed to be diagonal for time efficiency, and
GP-Metric full — the metric learning-based Gaussian Process using
a full covaraince matrix, X. The first one is able to learn the correct
shape of the target distribution. Nonetheless, due to the restriction
imposed on the X, to be diagonal, it cannot learn the appropriate
rotation. The later learns both the shape and the appropriate orien-
tation from additional samples. We depict the losses between the

input image and the predictions for the three considered models.
Low values (darker) correspond to small losses, while high values
(brighter) represent larger prediction losses. We also plot the RMSE
(Root Mean Squared Error) achieved by each method on each task.
Fig. 3 indicates that the GP-Cluster can only learn the appropriate
scale. However it cannot learn the shape and the orientation of the
samples in the target space. The diagonal model learns the ellipse
but fails to learn the rotated ellipse. Finally, the full model can pre-
dict the rotated ellipse from 1 cluster only, by reshaping the kernel
space through metric learning. This illustration shows the gain of
employing metric learning for reshaping the kernel space while re-
stricting the kernel-matrix size.

5. Complexity analysis

The train-time computational complexity of a standard Gaus-
sian Process is O (N3 + N2D). Here N represents the total number of
training samples and D represents the data dimensions. The train-
time complexity of the Gaussian Process trained on cluster cen-
ters is O(K3 + K2D). K represents the number of considered clus-
ters and it is taken to be considerably smaller than the complete
number of training samples, N. For the proposed metric learn-
ing based extension of the Gaussian Process method, the train-
time complexity, as derived from Algorithm 1, is O(T (K3 + K2D +
KMD(1 +KD))). Here T is the number of iterations and M is the
mini-batch size in the SGD. For a reasonable parameter setting, we
readily obtain train-time computational gains when compared to
the standard Gaussian Process. If we set K to 500 clusters, T to
100 iterations, M to 100 samples in the mini-batch and assume
100-dimensional data, gains are achieved for training data sizes, N,
larger than 7000 samples for the model based on diagonal covari-
ance, and 30,000 samples using the full covariance.

At test time, the gain is even more notable, as for one test sam-
ple the standard Gaussian Process has an O(ND) complexity. While
in our case, for either of the two Gaussian Process models pro-
posed, the test-time complexity is O(KD), with K taken to be con-
siderably smaller than N. This is specifically desirable as it provides
substantially faster test-time predictions.

Table 2 displays real runtime estimated when predicting on a
single image in the Pascal VOC-2007 dataset. These estimates are
obtained when using 500 cluster centers. We also show time es-
timates when using 1500 samples rather than 500 cluster centers.
The proposed method based on only clustering is able to perform
inference considerably faster than the standard Gaussian Process
model while being more accurate. The subsequent two models —
Meric-diag and Metric-full — based on metric learning with diago-
nal and full covariances, respectively, are less than 1 s slower per
image than the clustering based model while further boosting the
accuracy.

6. Experimental evaluation

The proposed Gaussian Process models are not restricted to the
problem of box regression and can be applied to any task with nu-
merous training samples. To demonstrate the generality of the pro-
posed extensions, we validate the Gaussian Process model choices
and the model formulation in Exp 1. This is done on an indepen-
dent machine learning regression dataset — the Airfoil Self-Noise
Dataset of NASA Lichman (2013). In Exp 2 we evaluate the perfor-
mance of the advanced Gaussian Process models on the box scor-
ing problem. Exp 2.1 analyzes the features used. The choice of us-
ing the Gaussian Process regressors versus linear and non-linear
SVR (Support Vector Regression), as well as the large-scale Gaus-
sian Process model of Bo and Sminchisescu (2012), is validated in
Exp 2.2. Exp 2.3 supports the ability of performing self-assessment
for individual object proposal algorithms. Exp 2.4 evaluates the
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Table 3

RMSE on the Self-Noise Dataset of NASA Lichman (2013), for a baseline
Least Squares (LS) regressor on all training samples, standard Gaussian
Process on all samples, GP-Cluster — Gaussian Process trained on 300
clusters centers, GP-Metric diag/full — the metric-learning kernel version
of Eq. 4 on 300 clusters. (We show in bold where the methods are better
than the baselines and underline the best method.)

GP Least GP models

Std. Squares Cluster M. diag M. full
#Samples 1503 1503 300 300 300
RMSE 329dB. 488dB. 3.63dB. 318dB. 2.86dB.

Gaussian Process models on the task of scoring object proposals
based on box consistency. The consistency between proposals is in-
tegrated in the definition of the features as a manner of combining
the multiple object proposal algorithms considered. We compare
the results of our method of combining proposals of all seven algo-
rithms with the interleaved baseline — where at each position the
best box is picked out of the seven algorithms based on the pro-
vided ranking, if any. And we additionally compare with the best
performing method in terms of the goodness of proposed boxes
(Table 1) — edge-boxes (Zitnick and Dollar, 2014).

6.1. Exp 1: Analysis of model choices

This experiment tests our model choices on an independent
machine learning dataset — the Airfoil Self-Noise Dataset of NASA
Lichman (2013). The dataset comprises 1503 data samples. The fea-
tures represent five different statistics of airfoils such as size, fre-
quency and speed and outputs are sound pressure levels, in deci-
bels. We shuffle the data keeping half for training and the other
half for testing. For this experiment we use all training samples,
thus no QWS sampling is applied. We report the performance with
respect to varying numbers of clusters. This experiment is designed
to support the generality of the proposed Gaussian Process adap-
tion. The model variations advanced in this paper are not restricted
only to the problem of box regression. They can be applied to nu-
merous problems where the number of training samples is pro-
hibitively large.

Table 3 depicts the results on this dataset obtained by the Least
Squares (LS) regressor as a baseline. We show as well the Gaus-
sian Process trained on the full training data as the upper bound.
We compare the clustering Gaussian Process, with the two variants
of metric-learning Gaussian Process — with diagonal ¥ and full X.
Fig. 4 shows how the performance varies with respect to the num-
ber of clusters. The results indicate that, indeed, incorporating the
target variance by reshaping the kernel space is beneficial. This is
true, as the metric-learning models improve over the Gaussian Pro-
cess model using the same number of clusters. Moreover, they at-
tain similar performance to the standard Gaussian Process model
using the complete training set, yet the proposed models use only
300 samples — cluster centers.

6.2. Exp 2: Gaussian Process models for box scoring

In this experiment we evaluate the performance of the devel-
oped Gaussian Process model variations on Pascal-vVOC2007 for the
task of box scoring. The purpose of this experiment is to verify
the suitability of the approaches brought forth by this work, in
the context of estimating box goodness. In the introduced mod-
els we use the QWS box-sampling to retain a number of 100 boxes
per box-proposal algorithm from 500 randomly selected training
images. We subsequently cluster the statistics used as features
— Eq. 1 — into 500 clusters. This setting represents our starting
model — GP-Cluster. The GP-Metric uses the same cluster centers

o

— Least Squares
—— Standard GP
—*— GP-clusters
GP-metric full
—— GP-metric diag

RMSE
N
T
f
|

2 . . . . .
0 50 100 150 200 250 300
#clusters

Fig. 4. Plots of the changes in RMSE with respect to varying numbers of clusters for
the 2 baselines trained on all training samples — Least Squares (LS) and standard
Gaussian Process, and the three Gaussian Process variants we have proposed: GP-
Cluster, GP-Metric diag and GP-Metric full.

as training data, yet it learns the appropriate kernel distances from
100 additional boxes per iteration in the SGD mini-batches, sam-
pled using QWS. For the box-scoring task we only use the metric-
learning Gaussian Process model with an associated diagonal X as
this is more efficient. Given that we rank the boxes of all seven al-
gorithms, we perform an additional NMS (non maximum suppres-
sion) at 0.7 overlap threshold over the scores to remove near du-
plicates generated by different algorithms. We also apply this step
for all methods we compare against.

6.2.1. Exp 2.1: Box feature analysis

In order to describe the consistency in box prediction, we esti-
mate the overlap between boxes of all 7 considered algorithms. For
each box we retain the closest neighbors in all seven algorithms
and use the three overlap scores of Eq. 1 to define the features.
In this experiment we test the effect of the number of neighbors
considered in the feature computation on the overall performance.

We plot the change in recall as well as the change in the
AUC scores when we vary the number of neighbors from 1 to
10. Fig. 5 depicts these scores at a 0.5 overlap threshold with the
ground truth. We additionally plot the performance when the av-
erage over five neighbors is considered per algorithm — giving rise
to a 7 D feature vector. The scores when considering five neigh-
bors is depicted separately, as this is taken to be our default set-
ting in the subsequent experiments. It can be observed the AUC
scores vary 2% when considering different numbers of neighbors
in the feature computation, while the recall varies 3%. The set-
ting considering five neighbors attains an average performance and
at the same time it retains the feature dimensions within reason-
able bounds — using ten neighbors rather than five does not bring
substantial gain, yet it increases the feature dimensions twofold,
fact which affects the kernel matrix computation, and thus the
runtimes.

6.2.2. Exp 2.2: Gaussian Process models vs. other regressors

The goal of this experiment is to test the performance of the
proposed Gaussian Process models — based on sample selection,
clustering and metric learning — when compared to other regres-
sors trained either on the same cluster centers or on randomly se-
lected samples. We inspect, therefore, a linear regressor, the linear-
SVR , as well as the non-linear counterpart of it. In the non-
linear SVR we choose the RBF kernel as this is closely related to
the squared exponential kernel used in the Gaussian Process for-
mulation. We train the SVR models on ~ 1500 random samples.
We additionally compare our models with two Gaussian process
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Fig. 5. Recall and AUC scores at 0.5 overlap threshold, with respect to the number of neighbors considered in the feature computation. We plot separately the case when
5 neighbors are used in the feature computation, as this is the standard setting in our experiments. Overall, the considered number of neighbors seems to have limited
influence on the performance of the method, as the ranges have limited variance both in terms of AUC scores as well as recall.

Table 4

Box regression results on the Pascal-VOC2007 dataset for different regression baselines and different training selection methods. We report recall
and AUC at top 500 and 1K boxes with 0.5 overlap. (We show in bold where the proposed Gaussian Process model extensions outperform the
baselines and underline the best method.). The new Gaussian Process models proposed in this paper are more suitable for performing the box
scoring task while using a smaller set of samples to define the kernel matrix.

Linear SVR RBF-SVR GP baselines Proposed GP models
Standard  Cluster  Standard  Cluster  Standard  Large scale Bo and Sminchisescu (2012)  Cluster  Metric-diag.
#Samples ~ 1500 500 ~ 1500 500 ~ 1500 ~ 1500 500 500
Recall @ 1K 87.09% 88.86%  90.30% 92.51%  89.48% 93.62% 94.12%  94.73%
Recall @ 500  78.71% 81.80%  83.60% 86.15% 81.03% 88.62% 89.25%  89.52%
AUC @ 1K 69.97% 72.45%  71.91% 74.38%  71.99% 73.76% 7447%  74.80%
AUC @ 500 63.81% 66.80%  66.80% 69.52%  65.00% 69.66% 7041%  71.03%

baseline: the standard Gaussian Process on ~ 1500 randomly se-
lected samples — GP-Standard — instead of on the 500 cluster cen-
ters, as well as the large scale Gaussian Process method of Bo and
Sminchisescu (2012), also trained on ~ 1500 randomly selected
samples. The strength of Bo and Sminchisescu (2012), is in the
ability to retain all training samples, and still perform the opti-
mization, therefore for this method we use 3 x more data than
for our proposed methods. The first Gaussian Process baseline vali-
dates the proposed way of defining training features based on sam-
pling and clustering, while the second Gaussian Process baseline
evaluates the performance of our method as a large scale Gaus-
sian Process regression method. We additionally evaluate the per-
formance of the SVR regressors when trained on samples selected
as proposed in this paper: QWS sampling and K-means clustering.
We do so in order to test the choice of the non-linear regressor,
independent of the sample-selection.

Table 4 depicts the achieved recall and AUC at top 500 boxes
and 1K boxes. As seen from the results, the proposed sampling and
clustering is highly effective. Regardless of the choice of the regres-
sor, this achieves an improvement in the recall of 2% to 3%. More-
over, for the Gaussian Process case, the improvement achieved by
clustering is more substantial: 5% and 8%. What is even more ad-
vantageous in our box selection method is the fact that these gains
are achieved while training on a third of the data. When compared
to the standard case, we use only 500 cluster centers instead of
1500 random samples. This is an important gain as, at test time,
the Gaussian Process prediction has a complexity O(ND) (where N
is training data and D are data dimensions). So with the proposed
training data selection in the Gaussian Process model, we gain a 3

x computational speedup at test time and an additional 5% to 8%
recall improvement. Furthermore, when performing the data selec-
tion as proposed in this paper by applying QWS and clustering, the
Gaussian Process regressor proves to be the most appropriate for
the box-scoring task. Table 4 shows that both recommended Gaus-
sian Process models — the GP-Cluster and the GP-Metric — outper-
form the linear and non-linear SVR regressors.

As we argued that the task of box-scoring is highly non-linear,
it is to be expected that the linear SVR is outperformed by the
other regressors. The RBF-SVR and the Gaussian Process rely on the
same non-linear kernel. The only difference is that in the Gaussian
Process, the kernel distances are reshaped during training to better
fit the data. This provides more descriptive power to the Gaussian
Process model and explains the obtained performance gain, for the
box-scoring task, when compared with its discriminative counter-
part — the RBF-SVR.

When comparing the proposed models with the large scale
baseline of Bo and Sminchisescu (2012), we observe that the pro-
posed methods are slightly more accurate while using a smaller
number of training samples and, thus, a smaller training/test ker-
nel matrix. The fact that our proposed Gaussian Process meth-
ods outperform the results of Bo and Sminchisescu (2012), on this
data, validates our models as large scale regression models. We,
further, conclude that both developed Gaussian Process methods
are able to discover the underlying structure present in the data.
Our metric-learning based Gaussian Process model performs on
par with our proposed clustering-based method. This drives us to
the conclusion that the target variance is not substantially present
in the data. Therefore, the more simple model, employing a scalar
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Table 5

Evaluation of the ability to perform self-assessment within the proposed GP regression method.
We depict the scores at top 1K boxes when using the provided scores (if any) versus the ranking
obtained my applying the box-goodness learning based on GP regression with metric learning.
We show in bold where our ranking method exceeds the original scores.

Recall @ 500 AUC @ 500
Method Provided  GP-Metric ~ Provided = GP-Metric
Core Rahtu et al. (2011) 70.76% 76.37% 59.06% 62.40%
Objectness Alexe et al. (2010) 84.14% 86.90% 59.78% 61.32%
Prim Manen et al. (2013) 82.38% 87.14% 66.41% 69.06%
SSE Uijlings et al. (2013) 85.53% 88.09% 66.37% 70.36%
Bing Cheng et al. (2014) 87.49% 90.07% 59.19% 61.48%
Edge-Boxes Zitnick and Dollar (2014) 85.89% 90.82% 68.19% 70.82%
Geodesic Krahenbiihl and Koltun (2014)  88.84% 89.61% 70.28% 71.34%
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Fig. 6. Recall and AUC scores with respect to the number of boxes, at 0.5 overlap threshold with the ground truth. We evaluate on Pascal-VOC2007 the developed Gaussian
Process model based on metric learning, compared with the interleaved baseline — selecting the best box at each position, out of each of the seven algorithms, based on
their provided ordering and, the best method in terms of proposed good boxes (according to Table 1) — edge-boxes (Zitnick and Dollar, 2014).

lengthscale rather than a diagonal covariance, is sufficient for tack-
ling the box-scoring problem.

6.2.3. Exp 2.3: Object proposals self-assessment

One of the claimed gains of the proposed box-scoring method
is the ability of performing self-assessment for any object pro-
posal algorithms. In this experiment we test precisely this claim.
Thus we train on only boxes of a fixed reference algorithm. We
still sampled the boxes using the QWS method, followed by the K-
mean clustering. The only difference with the previous experiment
is that the boxes used for training come from the proposal algo-
rithm to be evaluated. The features are, however, defined as before
by looking at the consistency with the five closest neighbors in the
other proposal algorithms. Subsequently, at test time we only score
the boxes of the evaluated proposal method by looking at the con-
sistency with the other algorithms.

Table 5 displays the recall and AUC scores at 0.5 overlap thresh-
old on the top 500 boxes on Pascal-VOC2007. We compare the GP-
Metric — Gaussian Process trained through metric learning for esti-
mating the diagonal covariance matrix — with the scores obtained
when using the ranking provided by the proposal algorithms. If
no scores are provided, as in the case of prim and selective search,
we randomly shuffle the boxes and then evaluate the performance.
For all methods there is a substantial gain in performance — up
to 6% in recall and up to 4% in AUC — when employing the pro-
posed method. A considerable gain is obtained by performing self-
assessment on the edge-boxes method. This is due to this method

having more precise boxes present in the list of predicted boxes
(see Table 1). The introduced box-scoring method aims at giving
higher scores to those good boxes. For the geodesic object proposal
method the gain is not substantial when compared to the provided
ranking. The geodesic method produces a small number of propos-
als to start with, 653 on average per image, while in Table 5 we
evaluate the AUC and Recall at 500 boxes. Overall, we can observe
that the proposed method of box-scoring is effective in practice
and it is useful when scoring boxes of individual algorithms.

6.2.4. Exp 2.4: Combining object proposals

The ambition of this paper is in developing a method for scor-
ing object proposals based solely on the overlap information with
other boxes within the same algorithm as well as other algorithms.
For this we use two baselines to compare against: Interleaved —
selecting the best box from each algorithm greedily at each po-
sition, Best — the best performing algorithm in terms of good-
ness of proposed boxes, which as seen in Table 1 is the edge-boxes
(Zitnick and Dollar, 2014).

Fig. 6(a) displays the change in the AUC with the number of re-
tained boxes for the metric-learning based Gaussian Process vari-
ant proposed in this paper — GP-Metric — and the two base-
lines: Interleaved and Best. We can notice that the Gaussian Pro-
cess method outperforms the other two methods in terms of AUC
at already only 100 boxes retained. The tendency remains stable
as the number of boxes increases. The Gaussian Process model is
on average 2% more precise in the AUC scores than the Best. The
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Interleaved method is less precise than the Best for a smaller num-
ber of considered boxes. However, it gains in performance as the
number of boxes increases. This is to be expected as the best box
per algorithm is not necessarily the best box over all algorithms.
The Interleaved method is characterized by more diversity, yet the
proposed box-scoring model outperforms both these methods.

For the recall, we can observe a similar tendency — Fig. 6(b) —
the proposed Gaussian Process regression model being on average
more precise than the Best, regardless of the number of considered
boxes. Finally, we notice that at 1000 boxes the Interleaved method
slightly outperforms Best. We argue that this is due to the Inter-
leaved baseline being characterized by more diversity in the pro-
posals. And this brings a gain in the performance as the number
of boxes increases. Moreover, the proposed box-scoring regression
method outperforms both baselines in terms of recall. This is due
to the boxes being more precise — more likely to be centered on
true objects — as it is the case with the Best baseline, and more
diverse boxes, as it is the case with the Interleaved baseline.

7. Discussion and illustrative results

This work proposes a manner of assigning goodness scores to
boxes. We start with the idea that consistency in box proposals
— high overlap between proposals of different algorithms — is a
sufficient indication of box goodness. In Fig. 7 we show a few ex-
amples of top-10 ranked boxes for the two considered box-scoring
baselines, Interleaved and Best, and our GP-Metric method. In green
we display the ground truth boxes. In blue we indicate the boxes
out of the top-ten ranked ones that overlap more than 0.5 with a
ground truth box. In red we show the non-overlapping boxes. The
first row indicates a failure case for our method: no ground truth
box is present in the top-ten ranked boxes. This is due to the fact
that, for this case, the top-ten boxes tend to focus on object parts
rather than complete objects. On the second row we can observe
that our method manages to find, within the first ten proposals,
one out of the two people present. Also noteworthy is the fact that
it correctly finds the human faces as good proposals. Similarly, in
the example with the car, we notice that the highly ranked boxes
for our method contain parts of the car such as the license plate
and the wheels. The Interleaved baseline seems to have a prefer-
ence for large boxes in the top-ten ranked boxes, yet we can also
observe a few small ones. The Interleaved baseline takes greed-
ily the best box per algorithm at each position. Therefore, intu-
itively, it is characterized by more diversity in the proposals. The
Best (edge-boxes) baseline opts for medium-sized boxes that focus
more on the textured part of the image. Thus, it is more precise
as it tends to be more object-focused. The highly ranked boxes in
our case are more diverse, as both small boxes as well as large
boxes are present in the top ten. Additionally, they are also char-
acterized by more precision, since they rely on the consistency in
the proposals. Therefore, if more algorithms select a certain area
of the image as likely to contain an object, the box corresponding
to that area will be assigned a high score in our method. This ex-
plains why for the proposed GP-Metric method we observe also the
object parts being highly ranked.

From the seven considered proposal algorithms, two of them
do not provide scores — prim (Manen et al., 2013), selective search
(Uijlings et al., 2013). As seen from Exp 2.3:0bject Proposals Self-
Assessment, the proposed regression models can be used as a man-
ner of performing self-assessment for methods that do not provide
a way to do so. For the algorithms that provide associated scores
to boxes, however, a possible approach to integrating existing box
scores in the learning of box goodness is transforming these scores
into probabilities and using them as priors. Alternatively, as in
Karaoglu et al. (2014), the scores can be included as part of the
feature in the feature vector or as in Xu et al. (2014), where the

individual scores are combined using theory of belief functions.
Noteworthy is that in Karaoglu et al. (2014) and Xu et al. (2014),
the goal is combining detection scores, thus these scores are class
specific. In our case the scores do not correspond to class confi-
dences but rather, presumed box-goodness scores. This fact makes
the scores more unreliable in our case. Therefore, given that not all
the algorithms provide scores and moreover that these scores are
unreliable, in this work we choose not to make use of this infor-
mation.

The selection of the seven box-proposal algorithms is a design
choice based on their popularity as well as their characteristics
— speed, performance. Ideally, the considered box proposal algo-
rithms should be orthogonal to each other, employing complemen-
tary information. The question that arises is: how many different
definitions of what makes a good object proposal we know? The
literature offers three main ones: (i) an object is enclosed by a
strong edge (Cheng et al.,, 2014; Krdhenbiihl and Koltun, 2014; Zit-
nick and Dollar, 2014); (ii) an object is salient (Alexe et al., 2010;
Rahtu et al., 2011); (iii) an object is composed of similar parts
(Manen et al., 2013; Uijlings et al., 2013). However, using correlated
proposal methods is also beneficial as it adds to the robustness of
the system. Although certain methods start from the same prin-
ciple, they implement it differently and their combination gives
more stable predictions.

Noteworthy, in our approach the precise choice of the object
proposal algorithms is not essential. The use of the seven selected
methods is a design choice and any of them can be removed, re-
placed with another, or box-proposal methods can be added with-
out the need to change the mathematical definition of the regres-
sion model or its applicability.

8. Conclusions

This paper starts with the assumption that the consistency be-
tween the proposed boxes of different state-of-the art algorithms,
is revealing as to how good a certain box is. The considered ob-
ject proposal algorithms rely on different cues, which makes their
naive combination able to achieve a recall close to one. We de-
velop an addition over the standard Gaussian Process model by
learning the kernel shape in a metric learning framework through
loss optimization. The optimization enables us to keep the kernel-
matrix size fixed, while using as much as possible of the informa-
tion provided by the additional samples. We find that on the prob-
lem of box regression, both the simpler GP-Cluster approach and
the metric-learning Gaussian Process models, capture the correla-
tions in the data. Experiment Exp 2.1 evaluates the influence of
the number of neighbors considered in the feature definition. Ad-
ditionally, we experimentally prove the suitability of the cluster-
ing and metric-learning Gaussian Process models, when compared
with other regressors on the box scoring problem — Exp 2.2. We
show the ability of performing self-assessment for individual ob-
ject proposal methods in Exp 2.3. We prove experimentally — Exp
2.4 — that features capturing the overlap are sufficiently descrip-
tive for evaluating box goodness. Exp 1 shows the effectiveness of
the metric-learning Gaussian Process models on an independent
regression problem as well as the suitability of the methods as
general purpose large scale models.

The idea of considering only the overlap between boxes for
scoring existing proposals can be extended to other similar prob-
lems such as: pedestrian detection (Dollar et al., 2012), where mul-
tiple detector predictions are available, or in the context of object
tracking (Smeulders et al., 2014). Furthermore, the three proposed
variations of the Gaussian Process model are suitable for a mul-
titude of problems where the number of training samples is pro-
hibitively large.
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(a) Interleaved. (b) Best (edge-boxes). (c) GP-Metric.

Fig. 7. lllustrative results of top ten boxes per image for the three considered methods: Interleaved — where the boxes of all seven algorithms are interleaved based on the
provided ranking, Best — the method acquiring the best recall, edge-boxes (Table 1), and GP-Metric — assigning scores to boxes based on the consistency in the overlap. We
show in green the ground truth boxes, in blue the boxes, out of the 10 ones retained, that have over 0.5 overlap with the ground truth and in red the ones that are not
meeting the 0.5 overlap criterion. The first row displays a failure case where the boats are missed, yet parts of them are selected. The Interleaved method has a preference
for large boxes being ranked higher in the list. Compared to the two baselines, the proposed approach gives rise to more diverse boxes in the top-ranked ones, as both small
and large boxes are present in the top 10. Moreover, our method focuses on both object parts — i.e., faces of people, wheels of the cars, as well as entire objects.
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the vector «, learned during training.

vy =ks(x". X) . (A1)

a = (ks(X,X) + 0% ly. (A.2)
1

ks (Xi, X;j) = exp(—i(x,- - X)X (X; — xj)T). (A3)

As presented in Section 3, rather than a scalar length-scale, we use
the covariance matrix, X, in the kernel function definition.

In order to determine the covariance matrix, X, we consider the
squared loss and we optimize this by computing the gradient with
respect to it and iteratively updating the parameters in an SGD op-
timization. Given that ¥ is symmetric, we use the derivative for-
mulation for symmetric matrices - Eq. (A.4).

T
aL 9L 9L . oL
73 = |:8)3] + |:82] —dlag[az}. (A4)
Y train v
53 =22 Un -V ZE 4+ AT, (A5)
n
v clusters S Sk (X X
% =y 8—)::kz(x,,,x,-) +ai%. (A.6)

The predictive distribution of the Gaussian Process, as see in
Eq. (A.1) has two components: the test-time kernel and the vector
o. We use the product rule and estimate the derivative for each
term separately.

The first term involves computing the gradient of «; with re-
spect to the covariance matrix. This is a function that depends
on the train-time targets, y;, and train-time kernel values, K;; =
ks (x;,x;), where x; and x; are cluster centers.

8a,~ clusters a(Kij + O'zlij)q '

7T = L oV
J
clusters IK i
= Z |:_(K1] +O’21i]’)71 82J2 (K]','-f-()’zlﬁ)]:|yi. (A7)
J

The gradient of the train kernel depends on the covariance ma-
trix X, as derived from Eq. (A.3).

81(], 8’(2()(1',)([’)

T = 9% (A8)
OK;  dexp(—3(x; —x)Z(X; —x))")

3T 7 : (A.9)
= —E(Xj —Xi)T(Xj —Xi)kE(Xj,Xi). (AlO)

The derivative of the kernel has the same formulation for test
and train. At test time the only difference is that rather than hav-
ing both samples represent cluster centers, one of them is the clus-
ter center while the second represents the input test sample, X,.
ks (X, X;)

X

Putting all partial derivatives back into the formulation of the
gradient of the loss function with respect to the covariance, X, we
obtain the complete derivation:

ar train clusters | clusters

7y = 2 Xn:(yn -yl D 2}: —K MK

i
Yiks (Xn, X;) + o;Mp;[ 4+ 20X,

= 2k ) (K~ Xk (X, X). (A1)

(A12)

1
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K" = (ks (X, X) + 027 (A14)
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