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Abstract. This paper adds depth to motion magnification. With the
rise of cheap RGB+D cameras depth information is readily available. We
make use of depth to make motion magnification robust to occlusion and
large motions. Current approaches require a manual drawn pixel mask
over all frames in the area of interest which is cumbersome and error-
prone. By including depth, we avoid manual annotation and magnify
motions at similar depth levels while ignoring occlusions at distant depth
pixels. To achieve this, we propose an extension to the bilateral filter for
non-Gaussian filters which allows us to treat pixels at very different depth
layers as missing values. As our experiments will show, these missing
values should be ignored, and not inferred with inpainting. We show
results for a medical application (tremors) where we improve current
baselines for motion magnification and motion measurements.
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1 Introduction

Magnifying tiny motions in video [3,4] opened up a wealth of applications. Exam-
ples include: reconstructing speech exclusively from small visual vibrations [5],
detecting a heart-beat either from blood flow [4] or from tiny head motions [6],
magnifying muscle tremors [7], segmenting blood vessels [8] or estimating mate-
rial properties by the way it moves [9]. In this paper we propose to only magnify
motion at selected depth ranges, which makes motion magnification robust to
occlusions and large motions at other depths. Robustness is especially impor-
tant to open up new applications in the medical domain such as tremor assess-
ment [10–12], where the interaction between doctor and patient should not be
disturbed, and prerequisites for video processing should not limit the poses and
exercises dictated by the medical protocol.

Currently though, magnifying tiny motions requires that there are no occlu-
sions or large motions [1, 3, 4]. A recent solution proposes to manually indicate
the large motions by drawing a binary pixel mask on the frames of interest [2].
While a mask indicates which pixels should be used, it does not solve how to
ignore the motion filter responses on the edge of the mask. Motion filters have a
certain spatial extent and they ‘leak’ across the mask border. Moreover, manually
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(a) Frame from sequence 1 (b) Frame from sequence 2

(c) original (d) magnified [1] (e) CVPR’15 [2] (f) ours

Fig. 1: Comparison of our and baseline magnification approaches when magni-
fying small motions in the background (here, body) behind moving occluders
(here, trembling hands). (a),(b) For two sequences, the input image, depth map,
and depth-dependent magnification matte of one frame (black/white is zero/full
magnification). (c)-(f) Space-time slices for the red lines in input images. Our
approach suppresses unwanted magnification artifacts from the foreground in
the magnified background. See supplementary material for videos.

drawing such a mask on a moving target is challenging and time-consuming. We
instead exploit depth to automatically define the mask. Furthermore, we prevent
the ‘leaking’ by ignoring motion responses from very different depths whereas
filter responses from close-by depth layers are weighted.

Several techniques are available for weighting filter responses [13–16]. These
techniques allow weighted Gaussian smoothing or interpolation, for example,
on intensity differences resulting in edge-preserving smoothing. However, high-
quality motion magnification [1] depends on the complex steerable pyramid [17,
18] which consists of non-Gaussian filters for which standard weighting of filter
responses [13,14,16] cannot be used. To illustrate, consider a Gaussian derivative
filter. Since it integrates to zero, it will give no response on a constant valued
input image. Intuitively, the response should not change if some parts of the
input are ignored, but reducing some filter weights to zero would now actually
yield non-zero output. In other words, the Gaussian derivative cannot be treated
as a weighted input aggregate. In this paper we therefore develop filter weighting
of non-Gaussian filters, which can ignore input by treating it as missing values.

When images have missing values, there are several advanced inpainting tech-
niques [19–23] available to estimate what is lost. It is not clear, however, how
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inpainting can be used to infer missing values between multiple depth layers.
We propose a different goal. We do not want to recover what is lost: we want to
ignore what is there.

In the following sections we first discuss related work, then how to ignore
filter responses from different depth layers, and how this allows depth-aware
motion magnification. We experimentally compare against inpainting and show
example applications in the medical domain on hand tremors.

2 Related work

Motion can be magnified by explicitly tracking feature points with optical flow [24].
The motion is magnified by re-scaling the moving points and adding them back
to the video. Optical flow is estimated locally between pairs of frames which is
noisy. This noise affects the motion magnification since local motion is repre-
sented by a single unique feature point. In contrast to feature point tracking,
Eulerian video magnification [4] estimates motion frequency over longer time pe-
riods which is more stable. Thus, the method is well-suited for amplifying tiny
imperceptible motions. Impressive improvements [1] on the stability of linear
motion magnification [4] are made by relying on complex steerable pyramid fil-
ters [17,18]. A significant speedup without perceptual decrease in quality can be
obtained by approximating the complex pyramid with the Riesz pyramid [25].
While extremely successful for clean video sequences, all these methods assume
that there are no occlusions or large motions present. Our method is specifically
designed to deal with such cases.

With some help by the user, occlusion or large motions can be manually
indicated. Examples of user input on video processing include de-animation [26],
blending between face performances [27], video segmentation [28], and video
stabilization [29]. For motion magnification a manual drawn mask can specify
which pixels to magnify and which pixels to ignore [2]. In this paper we extend
this line of reasoning, replacing the manual drawn mask by a weighted mask
obtained from depth to ignore filter responses outside a target depth range.

Incorporating weighted responses in a filter is done with the bilateral fil-
ter [16]. It applies Gaussian blurring to an image, but locally adapts the Gaus-
sian weights to suppress contributions of neighbourhood pixels with very differ-
ent intensity levels. The fast bilateral filter [15] offers a significant speedup by
approximation. This is achieved by transforming the 2D input image into a 3D
sparse matrix, where the 3rd z-dimension is given by a pixel’s intensity level.
The speedup comes from allowing standard 3D convolutions to obtain intensity-
weighted responses. In this paper we begin with the fast bilateral filter [15] due
to its speed. However, where the bilateral filter only allows weighted Gaussian
smoothing or interpolation we require non-Gaussian filters: the complex steer-
able pyramid [17, 18] as used in high-quality motion magnification [1]. Instead
of weighting values, we adapt the bilateral filter so it can handle missing values.

Inferring missing values in images by inpainting typically exploits texture
synthesis and pixel consistency [19,30]. Strong step edges can be retained [21] and
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image statistics through patch-exemplars can give a good prior on what values to
infer [23]. Inpainting can be done efficiently [20], making it in principle suitable
for video processing. While inpainting could be used to fill in missing values for
very different depth layers, it is not clear how to use inpainting to combine closer
depth layers. In contrast to inpainting we do not wish to infer what should be
present at all depth layers. Our goal is to remove all filter influences from pixels
at different depth layers.

3 Approach

This section starts with the bilateral filter formulation [16], followed by our non-
Gaussian extension. We then apply the developed technique to complex steerable
pyramids and use these for occlusion-aware Eulerian motion magnification [1,2,
31] and measurement [32]. We note that other image processing tasks could also
benefit from the non-Gaussian bilateral filter (see supplementary material for
examples), and for instance use intensity, optical flow, or color instead of depth
to filter micro-textures, stationaries, surfaces.

3.1 Bilateral filter

The bilateral filter [16] can be used for depth-aware smoothing. Given input
image I and corresponding depth image E, the bilateral filter computes output
image O. By defining y ∈ N(x) as the local a neighbourhood of 2D image
locations x = (u, v), and using O(x) as a shorthand for O(u, v), the bilateral
filter can be written as a weighted average

O(x) =
1

W (x)

∑
y∈N(x)

w(|x− y|, E(x)− E(y)) I(y) (1)

w(ds, dE) = G(ds;σs)×G(dE ;σr) (2)

where W (x) =
∑
y∈N(x) w(|x−y|, E(x)−E(y)) is the weight normalization term

at x, and G(x;σ) = exp
(
− x

2σ2

)
is the Gaussian kernel. The positive weights

w(dI , dE) approach zero as the spatial distance ds or the depth distance dE
increases. There are two smoothing parameters, the spatial standard deviation
σs, which controls the amount of spatial blurring as is in a normal Gaussian
image filter, and the depth standard deviation σr, which controls how strong
pixels on different depth layers are weighted.

3.2 Bilateral filter for non-Gaussian kernels

Consider some non-Gaussian kernel F with negative values, for instance F is
an oriented band-pass filter used in a steerable pyramid [18], or a Gaussian
derivative. As with the Gaussian bilateral filter, we would like to apply F to
an input image I, but obtain filter responses representative of the local spatial
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neighbourhood with nearby depth values. While the bilateral filter with Gaussian
kernel can be seen as a weighted average, we cannot simply replace the kernel by
F . For instance, the integral of a Gaussian derivative kernel is zero, and would
yield a division by zero in normalization. Also, one cannot ignore part of the
input by reducing corresponding weights to zero, since this introduces unwanted
edge responses as if the input itself partly has zero values; our experiments in
Section 4.1 will illustrate this point.

Instead, we propose to reduce the influence of regions in distant depth layers
by smoothly incorporating the spatial image structure at the local depth layer.
Using ξ = E(z) to denote the depth at the output location z, the non-Gaussian
bilateral filter with output Q is written as

Q(z) =
∑

x∈N(z)

F (|x− z|)O+(x,E(z)) (3)

O+(x, ξ) =
1

W+(x, ξ)

∑
y∈N(z)

w(|x− y|, ξ − E(y))I(y) (4)

with w(ds, dE) again some weight function (which we will define in a moment),
and W+(x, ξ) =

∑
y∈N(z) w(|x− y|, ξ−E(y)). Here the + suffix indicates that a

function operates on 3D space by extending the spatial domain with additional
depth information from E. Throughout this paper we shall use the + suffix
notation more frequently, and refer to it as an extended representation. Note
that Q(x) is not just a convolution with F after applying a bilateral filter, since
O+(x, ξ) is not only a function of x. But, our formulation does have the regular
bilateral filter, Eq. (1), as special case when F (x) = 1 iff x = 0 and 0 otherwise.

We reformulate our filter to a 3D representation similar to the fast bilat-
eral filter [15]. This has two benefits: One, as with the standard bilateral filter,
explicit evaluation of Equation (3) is inefficient, since filter coefficients need to
be reweighted at each spatial location. The 3D representation instead offers a
trade off between quality and speed [15]. Two, this 3D representation explicitly
keeps filter responses at different depths separated, which will be exploited in
our applications to perform depth-aware temporal filtering.

First, an extra dimension r is introduced, representing possible depth values
for E(y) in the domain of all depth values R. We rewrite Equation (4) as

W+(x, ξ)O+(x, ξ) =
∑
r∈R

∑
y∈N

w(|x− y|, ξ − r)δ(r, E(y)) I(y) (5)

where δ(r, E(y)) = 1 iff r = E(y) and 0 otherwise. Next, the term δ(r, E(y))
and the 2D input image are used to define equivalent extended representations
(indicated by the + suffix) I+ for input, and V + to weight the input,

V +(y, r) = δ(r, E(y)) (6)

I+(y, r) = I(y) (7)

δ(r, E(y))I(y) = V +(y, r)I+(y, r). (8)
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We see that I+(y, r) indeed has 3D coordinates (y, r) = (uy, vy, r), and simi-
larly, V +(y, r) constitutes a 3D binary mask indicating which part of the space
contains valid input. We write out the terms of (5) as

W+(x, ξ)O+(x, ξ) =
∑
r∈R

∑
y∈N(z)

w(|x− y|, ξ − r) V +(y, r)I+(y, r), (9)

W+(x, ξ) =
∑
r∈R

∑
y∈N(z)

w(|x− y|, ξ − r) V +(y, r). (10)

Now we can recognize the nested summation as a 3D convolution over the ex-
tended representations using the weight function w as a 3D kernel, which is the
first step in our non-Gaussian filtering method,

W+O+ = w ⊗ V +I+ step 1: 3D Gauss convolution (11)

W+ = w ⊗ V +. (12)

If we would use the bilateral filter weight function (2), the 3D convolution
will expand the local 3D neighbourhood of a target image location into regions
with different depth values. Thereby, increasing depth distances result in less
contribution in the convolved result. However, this kernel also blurs the original
image values, inadvertently removing details from the input before the filter F
is applied in Equation (3), even at regions with uniform depth that should not
be affected. Therefore, we consider a weighting function

w(dI , dE) =

{
α iff dI = 0 and dE = 0,
G(dI ;σs)×G(dE ;σr) otherwise,

(13)

such that as α→∞, the weight of the local image value I+(y, r) dominates all
other weights in (9) and (10) when y = x, r = ξ, and when V +(y, r) = 1. In
other words, the 3D convolution will not blur the actual input values, and not
affect the filter response F in uniform depth regions. But the Gaussian weighting
is still used in include valid input from the neighbourhood when V +(y, r) = 0,
i.e. at regions with missing values in the extended representation. In practice
we do not explicitly evaluate (13), but instead produce the result of α → ∞
by applying the normal kernel first to a temporary result Θ+, and then placing
back the original values to obtain the intended result. The remaining steps to
apply our filter method are therefore,

Θ+ = W+O+/W+ step 2: element-wise division (14)

O+ = V +I+ + (1− V +)Θ+ step 3: restore valid original data (15)

Q+ = F ⊗O+ step 4: apply F at all depth layers (16)

Q(x) = Q+(x,E(x)) step 5: back-project to 2D (17)

The final step, (17), back-projects the extended space to the original 2D image
space, which completes the evaluation of Equation (3). Following [15], discretiz-
ing the depth dimensions r into D depth layers results in a fast approximation,
and convolutions on the depth layers can be processed in parallel. Additionally,
we downsample the image instead of expanding the spatial Gaussian kernel [15].
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3.3 Depth-aware video magnification

For phase-based motion magnification [1], the non-Gaussian complex steerable
pyramid is used. The principle behind this approach is that small temporal
changes in the spatial offset of edges translates to small temporal changes in
the phases of the complex filter responses in the pyramid. Likewise, augmenting
temporal phase variations results in magnifying periodic movements in the video.
With a magnification factor M , phases φt of the pyramid components pt at time
t are augmented with respect to the temporally low-pass filtered phases φ̄ to
obtain magnified pyramid phase φ̂t = (1 +M) · (φt − φ̄) + φ̄.

To exploit the depth information in the complex steerable pyramid, we ap-
ply the non-Gaussian bilateral filtering from Section 3.2. Figure 2 illustrates the
steps to construct a bilateral steerable pyramid from an input grey scale and
depth image pair (I, E). First, an extended representation is created following
Equations (11)-(15). This representation is then used in the pyramid construc-
tion by applying the low-pass and complex band-pass filters of [18] to each of
the depth layers, i.e. Equation (16). The result is an extended complex steerable
pyramid. The bottom row of Figure 2 illustrates that when the extended pyramid
is back-projected using the depth map E (Equation (17)), the resulting pyramid
coefficients are depth-aware: filter responses of fore- and background edges are
separated as seen by the discontinuities. In the standard pyramid, strong filter
responses from the foreground (depicting two hands) ‘leak’ into the background,
especially at higher pyramid levels where the filters have larger spatial extent.

Figure 3, depicts our proposed magnification pipeline. The phase augmen-
tation principle is applied to components in all depth layers of the extended
pyramid. However, we adapt the factor per layer with a depth-dependent func-
tion, resulting in a spatially varying magnification matte M(x) = Mmax ×
exp

(
−(E(x)− µd)/(2σ2

d)
)
, parametrized by (µd, σd,Mmax). In the last process-

ing step, the magnified pyramids are back-projected to 2D frames, and the matte
is used to smoothly blend the magnified results of the discrete depth layers.

The recently proposed method by [2] also considers magnification of subtle
motions that occur in videos with large movements, utilizing an opacity matte to
blend selected regions of a magnified frame into the original unmagnified frame.
For our comparison, we adapted their method to our setting which entails that
(a) instead of using a tool to manually select a binary foreground region, the
opacity matte M is used, (b) we do not perform initial video stabilization as
the camera viewpoint is already static, (c) the motion of matte M itself is not
magnified as we do not wish to magnify the motion of the occluding object, but
rather that of the occluded region. Figure 3 also shows the difference between
both approaches. The baseline introduces the depth information at the last step
only. Our approach uses depth from the start to obtain and operate on a depth-
aware representation. Section 4.2 shall empirically compare both approaches.

3.4 Motion measurements with a bilateral pyramid

In addition to magnification, another use for complex steerable filters is to mea-
sure subtle periodic motions in the video. In [32], an image is first down scaled
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(a) initial data and weights (b) after spatial+depth conv. (c) normalized

(d) Bilateral steerable pyramid: first band at four pyramid levels

(e) Bilateral pyramid (back-projected) (f) Standard steerable pyramid

Fig. 2: Constructing a bilateral steerable pyramid on the frame from Figure 1a
with the steps in Section 3.2. (a) the input image and depth map are used
to construct a 3D image representation image I+ and input weight map V +

by discretizing the depth into multiple layers. (b) step 1: Both representations
are filtered in 3D (2D and the image coordinates + 1D depth coordinate). (c)
step 2,3: The filtered 3D image is normalized using the filtered weights, and
valid input is restored. (d) step 4: the steerable pyramid is constructed on each
discrete depth layer. Here, the result is shown at various levels in the pyramid
of a single orientation band. (e) step 5: The 3D representation can be back-
projected to a normal pyramid using depth map, resulting in an edge-aware
steerable pyramid. Note how the responses of edges in the nearby hand remain
within the foreground region, resulting in hard edges (e.g. see red arrows). (f)
In contrast, a normal steerable pyramid induces soft object edges which ‘leak‘
from the foreground into the surrounding background, especially at the higher
pyramid levels (e.g. see red arrows).
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Fig. 3: Video magnification pipelines. (Top) baseline approach from [2], which
composes a magnified and unmagnified version of each frame. The composition
is based on an opacity matte, based on the depth map. (Bottom) our approach
instead uses the depth map directly in the pyramid construction/deconstruction.

and filtered with B = 2 bands for the u and v direction, i.e. b ∈ {0◦, 90◦}.
Changes in phase can be translated to a local motion estimate (∆u,∆v), as

∆ut(u, v) = − ∂u

φ0
◦
t (u, v)

φ0
◦

t (u, v)

∂t
∆vt(u, v) = − ∂v

φ90
◦

t (u, v)

φ90
◦

t (u, v)

∂t
. (18)

In each equation, the first r.h.s. term is the inverse of a spatial derivative, and
the second term is a temporal derivative.

For a depth-aware version, we can use the bands of our bilateral complex
pyramid, using B = 2 bands, and select a particular layer l for scale. To ensure
that the spatial and temporal derivatives are depth-aware, we compute Equa-
tion (18) in the extended space φl,b+t (u, v, r) and obtain∆u+t (u, v, r), ∆v+t (u, v, r).
Only afterwards are these back-projected to 2D motion maps ∆ut and ∆vt.

4 Experiments

We first evaluate against inpainting techniques. Then, we introduce a novel
RGB+Depth dataset targeting tremor analysis, which is an important medi-
cal application [10, 12]. On this dataset we compare our depth-aware motion
magnification against the state-of-the-art [2], and we show the effect of bilateral
filtering on motion measurements in fore- and background.

4.1 Filtering near missing values

Consider that we wish to convolve filter F on image I for which we have a binary
mask M whose pixel values should be ignored. This situation corresponds to the
extreme case of the bilateral filter where foreground and background are far apart
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such that all weights are either 0 or 1. Our approach of Section 3.2 weighs in
neighborhood values in ignored regions before applying F . Here we compare our
approach to image inpainting techniques that intent to reconstruct the regions.

Let g be a filling technique that replaces the values in the masked region,
Ig,M = g(I,M). The filled image can then be filtered with convolutional filter
F , resulting in IFg,M = Ig,M ⊗ F . Ideally the masked pixels are ignored and do
not have a response at R, i.e. at the region of pixels just outside M but where
the filter still covers masked out pixels. As error measure, we therefore report
the L1 norm over the pixels in R. Let L1(g, I,M, F ) be the norm for a particular
technique g on image I and mask M after applying filter F , then error(g) is the
total norm over all tested images, masks and filters, i.e.

L1(g, I,M, F ) =
∑
x∈R
|IFg,M (x)| error(g) =

∑
I

∑
M

L1(g, I,M, F ). (19)

We evaluate on a public inpainting dataset [22], which contains 17 images of
640 × 480 pixels (all images are converted to grayscale), 4 image masks, and
also provides on each image-mask pair state-of-the-art inpainting results for
Bugeau [19], Herling [20], Total Variation (TV) [21] and Xu [23]. We also com-
pare against replacing the missing region with zeros, or the actual pixel values
(an ideal inpainting algorithm). First, we use the 7 filters used in the construc-
tion of the bilateral pyramid, and tested varying the spatial parameters σs, but
found that σs = 1 performed best on the steerable pyramids features. The re-
sults in Figure 4a show that our proposed approach results in lower errors than
the other inpainting techniques. As expected, the naive approach of replacing
the masked region with zeros results in strong responses near the mask border,
as shown by the error plots. One of the better results is obtained with TV [21],
which in fact produces quite bland areas. Indeed, even using an ideal inpainting
algorithm (i.e. actual) would introduce more unwarranted filter responses.

To test if these results generalize, we also use 64 filters from the trained VGG
convolutional neural network [33] (normalized by subtracting DC components
divided by norm). Figure 4b shows that similar results were obtained.

4.2 Depth-aware motion magnification and measurements

The next section describes our novel tremor dataset, and then the experiments on
motion magnification and motion measurement.1 Please see the accompanying
videos in the supplementary material.

RGB+D tremor dataset Tremors are manifestations of periodic movements
in the body, and assessing their properties (frequency, amplitude) is critical
for health monitoring [11, 12]. Since in practice only few accelerometers can
be placed on the body they are typically placed where the amplitude of the

1 The bilateral pyramid, depth-aware magnification code and dataset (RGB, Depth,
skeleton) can be found at https://github.com/jkooij/depthaware-momag

https://github.com/jkooij/depthaware-momag
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(b) 64 ConvNet filters [33] (lower is better)

(c) mask (d) fill with ours (e) fill with zeros (f) actual values

(g) Bugeau [19] (h) Herling [20] (i) TV [21] (j) Xu [23]

Fig. 4: (a)-(b) Errors for steerable pyramid and ConvNet features when filtering
around a masked region. Insets show visualizations of (some of) these filters (c)
one of the masks, black indicates missing values. (d)-(j) Output examples of
filling methods (includes inpainting results by [22]). Red shows the evaluation
region R of Eq. (19) where the filters will be affected by missing values.

tremor is most clearly visible, e.g. on the hand and arm. Video based measuring
and magnification could help discover more subtle occurrences, visualize where
tremors originate or how they move trough the body, and even make objective
tremor assessment possible without expensive hospital equipment.

We therefore collected a novel dataset with the Microsoft Kinect 2 to study
visual tremor assessment using (1) visualization, and (2) by measuring frequency.
The dataset contains 4 RGB+Depth sequences of subjects with a simulated
tremor in the hand, observed with their arms extended for several seconds. This
is a common task in tremor assessment, intended to induce a postural tremor
(i.e. a tremor which occurs due to subject trying to actively maintain a certain
pose) [11]. The subjects are movement scientists, experienced in working with
patients of the neurology department at the Leiden University Medical Center.
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Using [34], we recorded the high-res RGB video (1920 × 1090, encoded in
H.264, 4:2:0 YUV), low-res depth video (512 × 450, lossless H.264, 0 - 4 me-
ter distance mapped to 8-bit greyscale), and the Kinect 2’s estimated skeleton
data [35], all at 30 fps. Afterwards, the Kinect’s mapping API was used to
project the recorded depth frames to the RGB image space. The alignment of
the depth image with the colour images is not perfect, however: the video and
depth camera have slightly different viewpoints, the recording of the depth video
loses some quality due to the 8-bit greyscale conversion, and quick motions may
result in motion blur in the video that is not observed in the depth. For these
reasons, the depth data is pre-processed by first running a 2D median filter to
remove noise, and then a 2D max filter. This extends the occluding regions and
ensure that foreground in the video is also fully enclosed in the nearby regions
of the depth image. The supplementary material demonstrates how depth noise,
temporal misalignment, and pre-processing affect the magnification results.

Motion magnification behind moving occluder On the first three se-
quences, each 91 frames (= 3 seconds), we compare our depth-aware video mag-
nification to the the baseline approach from [2], as described in Section 3.3.
Instead of specifying specific frequencies to magnify [1], we use the mean phase
over the whole sequence as the low-pass φ̄ in order to magnify all periodic mo-
tion variations, and to avoid tuning temporal bandwidth parameters. The spatial
deviation parameter σs = 1, and depth deviation σr = 0.1 meter.

Examples of the input image region, corresponding depth map, and the used
magnification matte (which in all cases has been set to magnify the body’s depth
range) can be seen in Figure 1a and 1b. The results of the various magnification
methods are visualized as space-time slices of Figure 1. Figure 5 shows additional
single frame comparisons. On the third sequence the clothing is very dark. Here
the intensity channel has been enhanced to more clearly show the details in the
body. The figure illustrates that compositing the magnified and original image,
as in the baseline [2], results in notable artifacts in both textured on non-textured
backgrounds. We conclude that the approach in [2], which is designed to magnify
foreground under heavy camera motion, does not properly magnify background
behind non-static occluders. Our approach instead suppresses the artifacts.

Motion frequency for overlapping body regions We applied the bilateral
motion measurement on the 4th and longer sequence (∼ 17 s.) to determine
the vertical motion in the hand (foreground) and chest region (background)
surrounding the hand. In each frame, the measured motion is averaged over a
body part mask automatically extracted using the Kinect 2’s built-in skeleton
estimate, resulting in a single temporal signal for each body region. The time
aligned groundtruth data of an accelerometer on the chest demonstrates that this
sequence contains two breathing cycles of about 8.5 s., see Figure 6a. When we
apply a low-pass filter to only keep frequencies in the 0-0.2 Hz range, we observe
that without the bilateral filter the measurements in the chest are virtually
the same as those in the hand, see dashed blue lines Figures 6b and 6c. With
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Fig. 5: Frames from motion magnification results on three sequences (top-to-
bottom Mmax = 10, 3, 5). The method of [2] blends the standard magnification
result [1] with the original frame using an opacity matte, but this does not
prevent unwanted artifacts of the foreground occurring the magnified background
(see red arrows), even though the (unmagnified) foreground is corrected. Our
approach using the bilateral filtered pyramid does avoids such artifacts.

bilateral filtering we obtain the same motion measurements in the foreground,
but discover two periodic cycles in the background (see red lines).

The corresponding video magnification results in Figure 6d again demon-
strate that the moving foreground ‘leaked’ into the background. Our bilateral
pyramid yields more robust phase-based measurements in such situations.

5 Conclusions

Our work exploits depth to make motion magnification robust against mov-
ing occluders. To construct depth-aware steerable pyramids, the bilateral filter
was adapted to non-Gaussian kernels, such that filter responses can ignore local
image values at distant depth layers. We proposed a simple and efficient fill-
ing technique that is less prone to introducing additional filter responses than
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(d) Depth, baseline, and our magnification results on sequence 4

Fig. 6: Measuring motion in chest behind moving hand on sequence 4. (a) Ac-
celerometer on chest shows that there are 2 respiration cycles, each taking 9
seconds. (b) Low-passed velocity measurements on the chest, obtained with stan-
dard pyramid [1] (blue), and our bilateral pyramid (red). Our method measures
two full up-down cycles of breathing, while the baseline shows the same motion
pattern as measured in the occluding hand (c). (d) This effect is also observed
when using these pyramids for motion magnification: the baseline (middle) con-
tains movement of the hand in the background, unlike our pyramids (right).

state-of-the-art image inpainting techniques. Depth-aware motion magnification
was demonstrated on a novel RGB+D dataset recorded with Microsoft Kinect
2 for tremor assessment, an important application in the medical domain. On
this dataset with small motions in the background behind large motions in the
foreground, we show improved qualitative motion magnification results with less
visual artifacts compared to a state-of-the-art magnification baseline, which only
exploits depth information as a final processing step. The bilateral pyramid also
resulted in improved phase-based motion measurements.

Future work includes extending the dataset with more subjects, extract more
measures used in medical practice, and investigate application to computation-
ally efficient Riesz pyramids [25]. Our aim is to develop the explored methods
into cheap and objective techniques to discover, monitor and classify tremors
and other movement disorders (e.g. dystonia’s) all over the body. Other uses of
the non-Gaussian bilateral filter are also considered.
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