Kernel Codebooks for Scene Categorization

Jan C. van Gemert, Jan-Mark Geusebroek,
Cor J. Veenman, and Arnold W.M. Smeulders

Intelligent Systems Lab Amsterdam (ISLA),
University of Amsterdam,
Kruislaan 403, 1098 SJ, Amsterdam,
The Netherlands
J.C.vanGemert@gmail.com
{J.M.Geusebroek,C.J.Veenman, ArnoldSmeulders}@uva.nl

Abstract. This paper introduces a method for scene categorization by
modeling ambiguity in the popular codebook approach. The codebook
approach describes an image as a bag of discrete visual codewords, where
the frequency distributions of these words are used for image categoriza-
tion. There are two drawbacks to the traditional codebook model: code-
word uncertainty and codeword plausibility. Both of these drawbacks
stem from the hard assignment of visual features to a single codeword.
We show that allowing a degree of ambiguity in assigning codewords
improves categorization performance for three state-of-the-art datasets.

1 Introduction

This paper investigates automatic scene categorization, which focuses on the
task of assigning images to predefined categories. For example, an image may
be categorized as a beach, office or street scene. Applications of automatic scene
categorization may be found in content-based retrieval, object recognition, and
image understanding.

One particular successful scene categorization method is the codebook ap-
proach. The codebook approach is inspired by a word-document representation
as used in text retrieval, first applied on images in texture recognition [1]. The
codebook approach allows classification by describing an image as a bag of fea-
tures, where image features, typically SIFT [2], are represented by discrete visual
prototypes. These prototypes are defined beforehand in a given vocabulary. A
vocabulary is commonly obtained by following one of two approaches: an an-
notation approach or a data-driven approach. The annotation approach obtains
a vocabulary by assigning meaningful labels to image patches [3-5], for exam-
ple sky, water, or vegetation. In contrast, a data-driven approach applies vector
quantization on the features using k-means [6-11] or radius-based clustering [12].
Once a vocabulary is obtained, this vocabulary is employed by the codebook ap-
proach to label each feature in an image with its best representing codeword.
The frequency of these codewords in an image form a histogram which is subse-
quently used in a scene categorization task.

2 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

Fig. 1. An example showing the problems of codeword ambiguity in the codebook
model. The small dots represent image features, the labeled red circles are codewords
found by unsupervised clustering. The triangle represents a data sample that is well
suited to the codebook approach. The difficulty with codeword uncertainty is shown
by the square, and the problem of codeword plausibility is illustrated by the diamond.

One drawback of the codebook approach is the hard assignment of codewords
in the vocabulary to image feature vectors. This may be appropriate for text but
not for sensory data with large variety in appearance. The hard assignment gives
rise to two issues: codeword uncertainty and codeword plausibility. Codeword
uncertainty refers to the problem of selecting the correct codeword out of two
or more relevant candidates. The codebook approach merely selects the best
representing codeword, ignoring the relevance of other candidates. The second
drawback, codeword plausibility denotes the problem of selecting a codeword
without a suitable candidate in the vocabulary. The codebook approach assigns
the best fitting codeword, regardless the fact that this codeword is not a proper
representative. Figure 1 illustrates both these problems. Accordingly, the hard
assignment of codewords to image features overlooks codeword uncertainty, and
may label image features by non-representative codewords.

We propose an uncertainty modeling method for the codebook approach. In
effect, we apply techniques from kernel density estimation to allow a degree of
ambiguity in assigning codewords to image features. We argue that retaining am-
biguity between features is a more suitable representation than hard assignment
of a codeword to an image feature. By using kernel density estimation, the un-
certainty between codewords and image features is lifted beyond the vocabulary
and becomes part of the codebook model.

This paper is organized as follows. The next section gives an overview of the
related literature on codebook-based scene categorization. Section 3 introduces
four types of ambiguity in the codebook model. We show the performance of our
method on three datasets in Sect. 4. Finally, Sect. 5 concludes the paper.

Kernel Codebooks for Scene Categorization 3

2 Related Work

The traditional codebook approach [1,13] treats an image as a collection of local
features where each feature is represented by a codeword from the codebook
vocabulary. One extension of the traditional codebook approach aims to cap-
ture co-occurrences between codewords in the image collection. Typically, this
co-occurrence is captured with a generative probabilistic model [14, 15]. To this
end, Fei-Fei and Perona [7] introduce a Bayesian hierarchical model for scene
categorization. Their goal is a generative model that best represents the distri-
bution of codewords in each scene category. They improve on Latent Dirichlet
Allocation (LDA) [15] by introducing a category variable for classification. The
proposed algorithm is tested on a dataset of 13 natural scene categories where it
outperforms the traditional codebook approach by nearly 30%. The work by Fei-
Fei and Perona is extended by Quelhas et al. [11], who investigate the influence
of training data size. Moreover, Bosch et al. [6] show that probabilistic latent
semantic analysis (pLSA) improves on LDA. The contributions on codeword
ambiguity in this paper are easily extended with co-occurrence modeling.

Besides co-occurrence modeling, other improvements on the codebook ap-
proach focus on the vocabulary. A semantic vocabulary inspired by Oliva and
Torralba [16] is presented by Vogel and Schiele [5]. The authors construct a vo-
cabulary by labeling image patches with a semantic label, for example sky, water
or vegetation. The effectiveness of this semantic codebook vocabulary is shown
in a scene categorization task. Moreover, a similar approach [4] provides the ba-
sis for the successful results on TRECVID news video by Snoek et al. [17], who
draw inspiration from Naphade and Huang [18]. Furthermore, Winn et al. [19]
concentrate on a universal codebook vocabulary, whereas Perronnin et al. [10]
focus on class-specific vocabularies. In contrast to annotating a vocabulary, Jurie
and Triggs [12] compare clustering techniques to obtain a data-driven vocabu-
lary. Specifically, they show that radius-based clustering outperforms the popular
k-means clustering algorithm, and we will make use of this observation below.

Since the codebook approach treats an image as a histogram of visual words,
the spatial structure between words is lost. Spatial structure is incorporated by
Lazebnik et al. [8] who extend the work of Grauman and Darrell [20] with a
spatial pyramid matching scheme. Furthermore research on incorporating spa-
tial information in the codebook model focuses on regions of interest [21], object
segmentation [22], and shape masks [23]. To demonstrate the modularity of our
work, we incorporate spatial pyramid matching because of the excellent perfor-
mance reported by Lazebnik et al. [8].

3 Visual Word Ambiguity by Kernel Codebooks

Given a vocabulary of codewords, the traditional codebook approach describes
an image by a distribution over codewords. For each word w in the vocabulary
V' the traditional codebook model estimates the distribution of codewords in an

4 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

image by

CB(w) = — > vev (1)

1 1 ifw=arg miH(D(U, 7‘1'));
‘=1 (0 otherwise,

where n is the number of regions in an image, r; is image region 4, and D(w,r;)
is the distance between a codeword w and region r;. Basically, an image is
represented by a histogram of word frequencies that describes the probability
density over codewords.

A robust alternative to histograms for estimating a probability density func-
tion is kernel density estimation [24]. Kernel density estimation uses a kernel
function to smooth the local neighborhood of data samples. A one-dimensional
estimator with kernel K and smoothing parameter o is given by

f@) = 23 Koo = X)), 2

where n is the total number of samples and X; is the value of sample 1.

Kernel density estimation requires a kernel with a given shape and size. The
kernel size determines the amount of smoothing between data samples whereas
the shape of the kernel is related to the distance function [14]. In this paper
we use the SIFT descriptor that draws on the Euclidian distance as its distance
function [2]. The Euclidian distance assumes a Gaussian distribution of the SIFT
features, with identity as the covariance. Hence, the Euclidian distance is paired
with a Gaussian-shaped kernel

1 122

eXP(—Qp) : (3)

Ko () 2o
The Gaussian kernel assumes that the variation between a data sample and a
codeword may be described by a normal distribution. This normal distribution
requires a scale parameter ¢ which determines the size of the kernel. The kernel
size needs to be tuned to the appropriate degree of smoothing between data sam-
ples. This smoothing determines the degree of similarity between data samples,
and is dependent on the dataset, the feature length, and the range of the feature
values. These dependencies change for various datasets. Therefore, in the exper-
iments we will tune the kernel size by cross-validation. In summary, the size of
the kernel depends on the data and the image descriptor whereas the shape of
the kernel follows directly from the distance function.

In the codebook model, the histogram estimator of the codewords may be
replaced by a kernel density estimator. Moreover, a suitable kernel (like the Gaus-
sian kernel) allows kernel density estimation to become part of the codewords,
instead of the data samples. Specifically, when the used kernel is symmetric,
Ky(x — X;) = K,(X; —), it trivially follows that there is no effective distinc-
tion between placing the kernel on the data sample or placing the kernel on a
codeword. That is, if the centre of the kernel coincides with the codeword po-
sition, the kernel value at the data sample represents the same probability as

Kernel Codebooks for Scene Categorization 5

Table 1. The relationship between various forms of codeword ambiguity and their
properties.

Best Candidate Multiple Candidates
Constant Weight Traditional Codebook Codeword Uncertainty
Kernel Weighted Codeword Plausibility Kernel Codebook

if the centre of the kernel coincides with the data sample. Hence, a symmetric
kernel allows transferring the kernel from the data samples to the codewords,
yielding a kernel codebook,

KCB(w ZK (w,73)), (4)

where n is the number of regions in an image, r; is image region ¢, D(w, r;) is the
distance between a codeword w and region r;, and ¢ is the smoothing parameter
of kernel K.

In essence, a kernel codebook smoothes the hard mapping of features in an
image region to the codeword vocabulary. This smoothing models two types of
ambiguity between codewords: codeword uncertainty and codeword plausibility.
Codeword uncertainty indicates that one image region may distribute probability
mass to more than one codeword. Conversely, codeword plausibility signifies
that an image feature may not be close enough to warrant representation by
any relevant codeword in the vocabulary. Each of these two types of codeword
ambiguity may be modeled individually. Codeword uncertainty,

13 Ko (D (w,r;
UNC(w) = lzlzwf({ (((Uj)7)7°i))7 7

distributes a constant amount of probability mass to all relevant codewords,
where relevancy is determined by the ratio of the kernel values for all codewords
v in the vocabulary V. Thus, codeword uncertainty retains the ability to select
multiple candidates, however does not take the plausibility of a codeword into
account. In contrast, Codeword plausibility,

PLA(w) = % Z": { Ky, (D(w,r;)) ifw= arger‘r/lin(D(v,n)); ©

-1 L0 otherwise,

selects for an image region r; the best fitting codeword w and gives that word
an amount of mass corresponding to the kernel value of that codeword. Hence,
codeword plausibility will give a higher weight to more relevant data samples,
however cannot select multiple codeword candidates. The relation between code-
word plausibility, codeword uncertainty, the kernel codebook model, and the
traditional codebook model is indicated in Table 1.

An example of the weight distributions of the types of codeword ambigu-
ity with a Gaussian kernel is shown in Fig. 2(a). Furthermore, in Fig. 2(b) we

6 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

0.5 0.5
0.4 A9] 0.4 A O [}
0.3 0.3
0.2 0.2
0.1 0.1
0 — 0 P
abcdefghi|j abcdefgh.i]|
Traditional Codebook Visual Word Uncertainty
oil & IS m
0.3 0.3
0.2 0.2
0.1 0.1
0 —= 0 r—
abcdefghi|j abcdefghi]|j
n i _ Visual Word Plausibility Kernel Codebook
(a) (b)

Fig. 2. (a) An example of the weight distribution of a kernel codebook with a Gaussian
kernel, where the data and the codewords are taken from Fig. 1. (b) Various codeword
distributions, according to Table 1, corresponding to different types of codeword am-
biguity. These distributions are based on the kernels shown in Fig. 2(a), where the
square, diamond and triangle represent the image features.

show an example of various codeword distributions corresponding to different
types of codeword ambiguity. Note the weight difference in codewords for the
data samples represented by the diamond and the square. Where the diamond
contributes full weight in the traditional codebook, it barely adds any weight
in the kernel codebook and codeword plausibility model. This may be advan-
tageous, since it incorporates the implausibility of outliers. Furthermore, in the
traditional codebook, the square adds weight to one single codeword, whereas the
kernel codebook and codeword uncertainty adds weight to the two relevant code-
words. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords.
Hence, the kernel codebook approach can be used to introduce various forms of
ambiguity in the tradition codebook model. We will experimentally investigate
the effects of all forms of codeword ambiguity in Sect. 4.

The ambiguity between codewords will likely be influenced by the number
of words in the vocabulary. When the vocabulary is small, essentially different
image parts will be represented by the same vocabulary element. On the other
hand, a large vocabulary allows more expressive power, which will likely benefit
the hard assignment of the traditional codebook. Therefore, we speculate that
codeword ambiguity will benefit smaller vocabularies more than larger vocabu-
laries. We will experimentally investigate the vocabulary size in Sect 4.

Since codewords are image descriptors in a high-dimensional feature space,
we envision a relation between codeword ambiguity and feature dimensionality.
With a high-dimensional image descriptor, codeword ambiguity will probably be-
come more significant. If we consider a codeword as a high-dimensional sphere
in feature space, then most feature points in this sphere will lay on a thin shell
near the surface. Hence, in a high-dimensional space, most feature points will
be close to the boundary between codewords and thus introduces ambiguity be-
tween codewords. See Bishop’s textbook on pattern recognition and machine
learning [14, Chapter 1, pages 33-38] for a thorough explanation and illustra-

Kernel Codebooks for Scene Categorization 7

tion of the curse of dimensionality. Consequently, increasing the dimensionality
of the image descriptor may increase the level of codeword ambiguity. Therefore,
our improvement over the traditional codebook model should become more pro-
nounced in a high-dimensional feature space. We will experimentally investigate
the effects of the dimensionality of the image descriptor in the next section.

4 Experiments

We experimentally compare codeword ambiguity modeling against the tradi-
tional codebook approach for three large and varied datasets: fifteen natural
scene categories from Lazebnik et al. [8], Caltech-101 by Fei-Fei and Perona [25],
Caltech-256 by Griffin et al. [26]. We start our experiments with an in-depth
analysis of our methods on the set of fifteen natural scene categories, after which
we transpose these findings to the experiments on the two Caltech sets. For our
experimental setup we closely follow Lazebnik et al. [8]. We follow this work
since it has shown excellent performance on these datasets.

4.1 Experimental Setup

To obtain reliable results, we repeat the experimental process 10 times. Thus, we
select 10 random subsets from the data to create 10 pairs of train and test data.
For each of these pairs we create a codeword vocabulary on the train set. This
codeword vocabulary is used by both the codebook and the codeword ambiguity
approaches to describe the train and the test set. For classification, we use a
SVM with a histogram intersection kernel. Specifically, we use libSVM [27], and
use the built in one-versus-one approach for multi-class classification. We use
10-fold cross-validation on the train set to tune parameters of the SVM and the
size of the codebook kernel. The classification rate we report is the average of
the per-class recognition rates which in turn are averaged over the 10 random
test sets.

For image features we again follow Lazebnik et al. [8], and use a SIFT de-
scriptors sampled on a regular grid. A grid has been shown to outperform interest
point detectors in image classification [7,12,9]. Hence, we compute all SIFT de-
scriptors on 16x16 pixel patches, computed over a dense grid sampled every 8
pixels.

We create a codeword vocabulary by radius-based clustering. Radius-based
clustering ensures an even distribution of codewords over feature space and has
been shown to outperform the popular k-means algorithm [12]. Our radius-based
clustering algorithm is similar to the clustering algorithm of Jurie and Triggs [12].
However, whereas they use mean-shift with a Gaussian kernel to find the densest-
point, we select the densest point by maximizing the number of data samples
within its radius 7.

8 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

bedroom (FP) coast (0T) forest (OT)
i - £ g w ‘m
¥
highway (0T) industrial (L) inside c1ty (OT)

kitchen (FP)

FET
‘\‘
_&rxt

living room (FP) mountain (OT)

ﬂ A E i z

open country (OT)

store (L)

—— - m E

street (OT) suburb (FP) tall building (OT)

Fig. 3. Example images from the Scene-15 dataset. Each category is labeled with the
annotator, where (OT) denotes Oliva and Torralba [16], (FP) is Fei-Fei and Perona [7],
and (L) refers to Lazebnik et al. [8].

4.2 Experiment 1: In-depth Analysis on the Scene-15 Dataset

The first dataset we consider is the Scene-15 dataset, which is compiled by several
researchers [7,8,16]. The Scene-15 dataset consists of 4485 images spread over
15 categories. The fifteen scene categories contain 200 to 400 images each and
range from natural scenes like mountains and forests to man-made environments
like kitchens and offices. In Fig. 3 we show examples of the scene dataset. We
use an identical experimental setup as Lazebnik et al. [8], and select 100 random
images per category as a train set and the remaining images as the test set.
We start the experiments with an in-depth analysis of the types of code-
word ambiguity, vocabulary size and feature dimensionality. To evaluate feature
dimensionality we project the 128 length SIFT descriptor to a lower dimension-
ality. This dimension reduction is achieved with principal component analysis,
which reduces dimensionality by projecting the data on a reduced-dimensional
basis while retaining the highest variance in the data. We compute a reduced
basis on each complete training set, after which we project the train set and
corresponding test set on this basis. We reduce the feature length from 128 di-
mensions to 12 and 60 dimensions. However, because of space constraints we
omit the results for the 60-dimensional features since they show the same trend
as the other dimensions. In evaluating vocabulary size, we tune the radius in the
radius-based clustering algorithm to construct eight differently sized vocabular-
ies. The vocabulary sizes we consider are {25, 50,100, 200,400, 800, 1600, 3200}.
The results for all types of codeword ambiguity evaluated for various vocabulary
sizes and the two feature dimensionalities (12 and 128) are given in Fig. 4.

Kernel Codebooks for Scene Categorization 9

Vocabulary Size and Visual Word Ambiguity Vocabulary Size and Visual Word Ambiguity
0.75 R 0.75 * [] '
@ ¢ b i
3 i@ ¢ o ¢
'310.70 *é ¢ E\4).70 ¢ + }
g ¢4 1t 2 ot
& 7 3 L]
< 0.65 + ¢ £0.65 | *
o o
b i $
% 0.60 } E 0.60 *
(_"3 m mHard Assignment § * m mHard Assignment
© ® @ Codeword Uncertainty © ¢ @ @ Codeword Uncertainty
059 + i A ACodeword Plausibility 0.55 A ACodeword Plausibility
¢ ¢ Kernel Codebook ¢ ¢ Kernel Codebook

25 50 100 200 400 800 1600 3200 25 50 100 200 400 800 1600 3200

Nr. Visual Words Nr. Visual Words
Dimensionality: 12 Dimensionality: 128

Fig. 4. Classification performance of various types of codeword ambiguity for the Scene-
15 dataset over various vocabulary sizes and feature dimensions.

We start the analysis of the results in Fig. 4 with the various types of code-
word ambiguity. The results show that codeword uncertainty outperforms all
other types of ambiguity for all dimensions and all vocabulary sizes. This perfor-
mance gain is not always significant, however. Nevertheless, for 128 dimensions
and a vocabulary size of 200 it can be seen that codeword uncertainty already
outperforms hard assignment with a 400-word vocabulary, and this trend holds
for larger vocabulary size pairs. On the other end of the performance scale there is
codeword plausibility, which always yields the worst results. A kernel codebook
outperforms hard assignment for smaller vocabulary sizes, however for larger
vocabularies hard assignment performs equally well. These differences between
codeword ambiguity types become more pronounced when using a smaller vocab-
ulary, whereas using a larger vocabulary evens out the results between ambiguity
types. Additionally, the highest performance gain for codeword ambiguity is in a
higher-dimensional feature space. When taking overall performance into account,
the results indicate that a higher dimensional descriptor yields the best results.
Moreover, increasing the vocabulary size asymptotically improves performance.

To gain insight in the performance variation between the various types of
codeword ambiguity we show the overlap percentage between the predicted class
labels for all paired method in Fig. 5. The first thing that is striking in Fig. 5,
is the high class label overlap between hard assignment and codeword plausi-
bility. This high overlap may be explained by noting that codeword plausibility
resembles hard assignment when the kernel size is sufficiently large. Inspecting
the kernel sizes as found with cross-validation reveals that the kernel size for
codeword plausibility is indeed large. The kernel size for codeword plausibility is
typically 200, whereas the other types of codeword ambiguity range around 100.
Furthermore, this label overlap between hard assignment and codeword plausi-
bility is highest with a small number of dimensions. This may be due to the fact
that a higher dimensional space leaves more room for implausible features than
a lower dimensional space. On the other end of the spectrum we find the kernel

10 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

Label Agreement Label Agreement
100) % (‘% § ¢ ° 100)
90 % } + 90
= 4= ¢
S i IS I ‘}i ¢ A
aQ mE a ¥ b
£ 80 { L go| } 8
5 14 { f 5 i
> > &
e} * } e} i
@ 70 ® mHard N Kernel @ 70 } | ® mHard N Kernel
2 ¥ o o Hard n Plausibility 2 { * o eHard n Plausibility
- A aHard n Uncertainty - A aHard n Uncertainty
60 v vKernel N Plausibility 60 v vKernel N Plausibility
0 ¢ Kernel n Uncertainty | 0 ¢ Kernel n Uncertainty
o Plau5|b|I|ty N Uncertalnty o Plau5|b|I|ty N Uncertalnty
50755 50 100 200 400 800 1600 3200 50758 50 100 200 400 800 1600 3200
Nr. Visual Words Nr. Visual Words
Dimensionality: 12 Dimensionality: 128

Fig. 5. Comparing the overlap of the class labels as predicted by various types of
codeword ambiguity for the Scene-15 dataset.

Scene-15 Scene-15 per category
forest =
0.76 AR o suburb| —_
- tallbuilding| ==
mountain| ==
0.74 coast| _
street| —
highway =———i

e
storefEEEEE=———————
opencountry SRR,
officeEmmmmmmmaTT—
bedroomfFE—st
kitchenFmeees—
livingroompmE==—0y | = Hard Assignment

Classification Rate (%)
¢ °
3

= -a Hard Assignment
o.-e Only Uncertainty

0.68 +— Only Plausibility

¢+ Kernel Codebook industrialFEuess =] Codeword Uncertainty
0) 1 2 0.4 05 0.6 0.7 0.8 0.9
Spatial Pyramid Level Classification Rate (%)

Fig. 6. Comparing the performance on the Scene-15 dataset of various types of code-
word ambiguity using the spatial pyramid (left), and per category (right).

codebook and hard assignment pair, which share the least number of class la-
bels. This low label overlap may be expected, since these two types represent the
extremes of the types of codeword ambiguity. Further differences of label overlap
can be seen between the low- and the high-dimensional feature space. In a high-
dimensional feature space there tends to be less correlation between class labels.
This reduced label overlap in a high-dimensional space may be explained by the
increased effectiveness of codeword ambiguity in a high-dimensional space. A
further trend in label overlap is the increased overlap for an increasing vocabu-
lary size. Increasing the vocabulary size yields an increased performance, which
requires more labels to be predicted correctly. We attribute the increase in label
overlap for all methods to those images that can be predicted correctly by using
a larger vocabulary. This link between increased performance and increased class
label overlap also explains that the class label overlap is generally high between
all types of codeword ambiguity.

Kernel Codebooks for Scene Categorization 11

Binocular (50 / 60) lobster (23 / 33) Bonsai (37 / 47) Platypus (27 / 47)

Leopards (87 / 78) wildcat (20 / 13) waterlilly (48 / 43) Flammgo head (60 / 56

Fig. 7. Examples of the Caltech-101 set. Top: the top 4 classes where our method
improves most, Bottom: the 4 classes where our method decreases performance. The
numbers in brackets indicate the classification rate (hard / uncertainty).

revolver (27 / 35) desk- globe (33 / 41) cereal-box (20 / 29) photocopler (33 / 44)

likrHi

.ugorilla (18 / 15) goose (7 / 4) cannon (10 / 6) hummingbird (17 / 14)

‘(a

Fig. 8. Examples of the Caltech-256 set. Top: the top 4 classes where our method
improves most, Bottom: the 4 classes where our method decreases performance most.
The numbers in brackets indicate the classification rate (hard / uncertainty).

To show the modularity of our approach and improve results we incorporate
the spatial pyramid by Lazebnik et al. [8]. The spatial pyramid divides an image
into a multi-level pyramid of increasingly fine subregions and computes a code-
book descriptor for each subregion. We use the 128 dimensional feature size since
this gives the best results. Moreover, we find a vocabulary of 200 codewords, since
this number is also used by Lazebnik et al. [8]. The results for the various forms
of codeword ambiguity for the first two levels of the spatial pyramid are shown
in Fig. 6. Note that the codeword uncertainty outperforms the hard assignment
of the traditional codebook for all levels in the pyramid. Moreover, codeword
uncertainty at pyramid level 1 already outperforms the traditional codebook
at pyramid level 2. For the Scene-15 dataset, codeword uncertainty gives the
highest improvement at level 0 of the spatial pyramid, which is identical to a
codebook model without any spatial structure. The classification results for level
0 of the pyramid, split out per category are shown in Fig. 6. Note that by using
codeword uncertainty the performance of all categories are similar or improve
upon a traditional codebook.

Due to small implementation differences, our re-implementation of the origi-
nal paper [8] performs slightly under their reported results. However, we use the
same re-implementation for all methods of codeword ambiguity. Thus we do not
bias any method by a slightly different implementation.

12 J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

Caltech-101 Caltech-256

)

o
N
o

o
o
=]

=3
N
i

o
N
N

o
n
=)

Classification Rate (%)
;
Classification Rate (%

=)
N
=1
e

=—a Hard Assignment
o--o Only Uncertainty

°
=
®

=—a Hard Assignment
0.45 o-e Only Uncertainty

2 0 2

1 1
Spatial Pyramid Level Spatial Pyramid Level

Fig. 9. Classification performance of Caltech-101 (left) and Caltech-256 (right).

4.3 Experiment 2 and 3: Caltech-101 and Caltech-256

Our second set of experiments are done on the Caltech-101 [25] and Caltech-
256 [26] datasets. The Caltech-101 dataset contains 8677 images, divided into
101 object categories, where the number of images in each category varies from
31 to 800 images. The Caltech-101 is a diverse dataset, however the obects are
all centered, and artificially rotated to a common position. In Fig. 7 we show
some example image of the Caltech-101 set. Some of the problems of Caltech-
101 are solved by the Caltech-256 dataset. The Caltech-256 dataset holds 29780
images in 256 categories where each category contains at least 80 images. The
Caltech-256 dataset is still focused on single objects. However, in contrast to the
Caltech-101 set, each image is not manually rotated to face one direction. We
report classification performance on both sets.

Our experimental results for both the Caltech-101 as Caltech-256 are gen-
erated by using 30 images per category for training. For testing, we used 50
images per category for the Caltech 101, and 25 images per category for the
Caltech-256. These number of train and test images are typically used for these
sets [26, 8]. We use 128 dimensions, and compare the traditional hard assign-
ment with codeword uncertainty since this has shown to give the best results
on the Scene-15 dataset. The classification results per spatial pyramid level are
shown in Fig. 9. For both sets, the codeword uncertainty method outperforms
the traditional codebook.

4.4 Summary of Experimental Results

The experiments on the Scene-15 dataset in figures 4 and 6 show that codeword
plausibility hurts performance. Codeword plausibility is dominated by those few
image features that are closest to a codeword. In essence, codeword plausibility
ignores the majority of the features, and leads us to conclude that it is better to
have an implausible codeword representing an image feature then no codeword at
all. Therefore, codeword uncertainty yields the best results, since it models am-
biguity between codewords, without taking codeword plausibility into account.

Kernel Codebooks for Scene Categorization 13

The results in Fig. 4 indicate that codeword ambiguity is more effective for
higher dimensional features than for lower dimensions. We attribute this to an
increased robustness to the curse of dimensionality. The curse prophesizes that
increasing the dimensionality will increase the fraction of feature vectors on
or near the boundary of codewords. Hence, increasing the dimensionality will
increase codeword uncertainty. Furthermore, Fig. 4, shows that a larger vocabu-
lary mostly benefits hard assignment, and asymptotically increases performance.
Thus, since our ambiguity modeling approach starts with a higher performance,
it stands to reason that our model will reach the maximum performance sooner.

Table 2. The relationship between the data set size and the relative performance of
codeword uncertainty over hard assignment for 200 codewords.

Data set Train set size Test set size |Performance Increase (%)
Scene-15 1500 2985 40+ 1.7%
Caltech-101 3030 5050 6.3+1.9%
Caltech-256 7680 6400 9.3+3.0%

The results over the Scene-15, Caltech-101, and Caltech-256 datasets are
summarized in Table 2. This table shows the relative improvement of codeword
uncertainty over hard assignment. As can be seen in this table, the relative per-
formance gain of ambiguity modeling increases as the number of scene categories
grows. A growing number of scene categories requires a higher expressive power
of the codebook model. Since the effects of ambiguity modeling increase with
a growing number of categories, we conclude that ambiguity modeling is more
expressive then the traditional codebook model. What is more, the results of all
experiments show that codeword uncertainty outperforms the traditional hard
assignment over all dimensions, all vocabulary sizes, and over all datasets.

5 Conclusion

This paper presented a fundamental improvement on the popular codebook
model for scene categorization. The traditional codebook model uses hard as-
signment to represent image features with codewords. We replaced this basic
property of the codebook approach by introducing uncertainty modeling, which
is appropriate as feature vectors are only capable of capturing part of the intrin-
sic variation in visual appearance. This uncertainty is achieved with techniques
based on kernel density estimation. We have demonstrated the viability of our
approach by improving results on recent codebook methods. These results are
shown on three state-of-the-art datasets, where our method consistently im-
proves over the traditional codebook model. What is more, we found that our
ambiguity modeling approach suffers less from the curse of dimensionality, reap-
ing higher benefits in a high-dimensional feature space. Furthermore, with an
increasing number of scene categories, the effectiveness of our method becomes

14

J.C. van Gemert, J-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders

more pronounced. Therefore, as future image features and datasets are likely
to increase in size, our ambiguity modeling method will have more and more
impact.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

Leung, T., Malik, J.: Representing and recognizing the visual appearance of ma-
terials using three-dimensional textons. IJCV 43 (2001) 29-44

. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60

(2004) 91-110

Boutell, M., Luo, J., Brown, C.: Factor-graphs for region-based whole-scene clas-
sification. In: CVPR-SLAM. (2006)

van Gemert, J., Geusebroek, J., Veenman, C., Snoek, C., Smeulders, A.: Robust
scene categorization by learning image statistics in context. In: CVPR-SLAM.
(2006)

Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image
retrieval. IJCV 72 (2007) 133-157

Bosch, A., Zisserman, A., Munoz, X.: Scene classification using a hybrid genera-
tive/discriminative approach. TPAMI 30 (2008) 712-727

Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene
categories. In: CVPR. (2005)

Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: CVPR. (2006) 2169-2178
Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image
classification. In: ECCV. (2006)

Perronnin, F., Dance, C., Csurka, G., Bressan, M.: Adapted vocabularies for
generic visual categorization. In: ECCV. (2006)

Quelhas, P., Monay, F., Odobez, J., Gatica-Perez, D., Tuytelaars, T., Gool, L.V.:
Modeling scenes with local descriptors and latent aspects. In: ICCV. (2005)
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV.
(2005) 604-610

Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: ICCV. Volume 2. (2003) 1470-1477

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3
(2003) 993-1022

Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. IJCV 42 (2001) 145-175

Snoek, C., Worring, M., van Gemert, J., Geusebroek, J., Smeulders, A.: The
challenge problem for automated detection of 101 semantic concepts in multimedia.
In: ACM Multimedia. (2006)

Naphade, M., Huang, T.: A probabilistic framework for semantic video indexing,
filtering, and retrieval. Transactions on Multimedia 3 (2001) 141-151

Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal
visual dictionary. In: ICCV. (2005) 1800-1807

Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification
with sets of image features. In: ICCV. (2005) 1458-1465

Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests
and ferns. In: ICCV. (2007)

22.

23.

24.

25.

26.

27.

Kernel Codebooks for Scene Categorization 15

Larlus, D., Jurie, F.: Category level object segmentation. In: International Con-
ference on Computer Vision Theory and Applications. (2007)

Marszalek, M., Schmid, C.: Accurate object localization with shape masks. In:
CVPR. (2007)

Silverman, B., Green, P.: Density Estimation for Statistics and Data Analysis.
Chapman and Hall, London (1986)

Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. In: WGMBYV. (2004)

Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical
Report UCB/CSD-04-1366, California Institute of Technology (2007)

Chang, C., Lin, C.: LIBSVM: a library for support vector machines. (2001)

