
LAB: Learnable Activation Binarizer for Binary Neural Networks

Sieger Falkena1,2, Hadi Jamali-Rad1,2, Jan van Gemert1
1 TU Delft, Delft, The Netherlands

2 Shell Global Solutions International B.V., Amsterdam, The Netherlands
sieger.falkena@shell.com, h.jamalirad@tudelft.nl, j.c.vangemert@tudelft.nl

Abstract
Binary Neural Networks (BNNs) are receiving an up-

surge of attention for bringing power-hungry deep learning
towards edge devices. The traditional wisdom in this space
is to employ sign(.) for binarizing feature maps. We
argue and illustrate that sign(.) is a uniqueness bottle-
neck, limiting information propagation throughout the net-
work. To alleviate this, we propose to dispense sign(.),
replacing it with a learnable activation binarizer (LAB),
allowing the network to learn a fine-grained binarization
kernel per layer - as opposed to global thresholding. LAB
is a novel universal module that can seamlessly be inte-
grated into existing architectures. To confirm this, we plug it
into four seminal BNNs and show a considerable accuracy
boost at the cost of tolerable increase in delay and com-
plexity. Finally, we build an end-to-end BNN (coined as
LAB-BNN) around LAB, and demonstrate that it achieves
competitive performance on par with the state-of-the-art
on ImageNet. Our code can be found in our repository:
https://github.com/sfalkena/LAB 1.

1. Introduction
Convolutional Neural Networks (CNNs) dominate the

current state-of-the-art computer vision tasks. With evolv-
ing research, models gained increasingly higher accuracy,
but in parallel they have grown in size and complexity. This
imposes a significant burden for deploying deep learning
models on resource-constrained edge devices. Recent stud-
ies explore model compression techniques to reduce model
size and latency, such as pruning [25], quantization [36],
knowledge distillation [13], neural architecture search [10]
and low rank approximation [38]. The most extreme form
of quantization is realized by binarization, resulting in bi-
nary weights and activations {−1,+1}. Networks utiliz-
ing this are known as Binary Neural Networks (BNNs) and
promise a bright future for energy-efficient deep learning.
By quantizing weights and activations aggressively, one can
theoretically achieve a memory reduction of 32× and a
computational speedup of 58× on typical CPUs [31].

1This paper is accepted to appear in the proceedings of WACV 2023

The current consensus in literature is to use sign(.)
as a mapping from the full-precision to binary values. How-
ever, this imposes three widely-known issues: (i) the repre-
sentational power of sign(.) with respect to the float-
ing point counterpart decreases from 232 to only 2 informa-
tion levels [26]; (ii) the derivative of sign(.) is a Dirac
Delta returning a zero gradient almost everywhere [7]; (iii)
sign(.) spatially uses the same threshold everywhere,
which we further refer to as the global threshold. In this
work, we identify and debate about a fourth problem (iv)
which we refer to as uniqueness bottleneck. Approaching
the problem from both qualitative and quantitative angles,
we demonstrate that using sign(.) further limits the rep-
resentational capacity of the network. Interestingly, several
studies state that sign(.) is a sub-optimal binarization
operation and that it is not straightforward to find a new bi-
narization function [6, 34]. This is exactly why we embark
on this challenge in this paper.

Multiple remedies have been proposed to cope with the
aforementioned issues of sign(.), including the intro-
duction of scaling factors [31], gradient approximation [29]
and pre-binarization distribution shaping [18]. Amongst
these directions, we believe that the pre-binarization re-
shaping shows the most potential to alleviate the informa-
tion bottleneck of BNNs. However, in contrast to the ex-
isting studies, we argue that shaping the pre-binarization
distribution is a means an the end, and not the end in it-
self. To address the issues enumerated, we design a learn-
able activation binarization function (LAB) to automate the
mapping from the full-precision feature maps to the binary
counterparts, so that the representational capacity of the net-
work (compared to full-precision) is least impacted. This is
shown schematically in Fig. 1 (and elaborated in Section 3),
where application of a global sign(.) threshold on the
diverse spectrum of values in the discrete feature maps re-
sults in similar looking outputs (acting like a diversity bot-
tleneck), whereas LAB can potentially avoid such loss of
information and reveal important features for later layers.

ar
X

iv
:2

21
0.

13
85

8v
1

 [
cs

.L
G

]
 2

5
O

ct
 2

02
2

https://github.com/sfalkena/LAB

Figure 1: All channels before and after the binarization step for the first binary convolution after model training. In contrast
to sign(.), binarization using LAB does not map some of the discrete output feature maps into similar binary feature maps,
but learns to distinguish important features during binarization, improving the information propagation capacity of the BNN.

Our contributions can be summarized as follows:

• To the best of our knowledge, for the first time, we
identify the uniqueness bottleneck imposed by the
sign(.). We demonstrate that sign(.) limits the
representational capacity of binary feature maps.

• To address this bottleneck, we introduce a novel learn-
able activation binarization: LAB. We show that LAB
is a universal module that can readily be plugged into
any existing BNN architecture, and improve its per-
formance. Our experimentation on four seminal BNN
baselines corroborates this claim.

• We build an end-to-end network around LAB (coined
as LAB-BNN) and demonstrate that it offers compet-
itive accuracy (64.2% Top-1 validation accuracy) on
par with the state-of-the-art in this space on ImageNet.

2. Related Work
Current BNNs binarize the full precision weights and ac-

tivations by applying sign(.) on them:

xb = sign (xr) =

{
+1, if xr > 0
−1, if xr ≤ 0

, (1)

where xb and xr denote the binary and real (full preci-
sion) values, respectively. Naively applying these quan-
tizations to a CNN yields low accuracy and to close the
gap between BNN implementations and their real-valued
counterparts, several research directions have arisen: min-
imization of quantization error [7, 31], loss function im-
provement [9, 16, 24], gradient approximation [21, 24, 29],
different network architecture designs [5, 8, 17, 24, 26, 41],
training strategies [1, 23, 27, 33] and binary inference en-
gines [3, 12, 37, 39]. Apart from these main directions, a
few studies investigate new methodologies for binarizing
weights and activations, which will be elucidated next.

Weight binarization. A novel approach for weight bi-
narization is presented in [14] where both full precision and
binary weights are employed as noisy supervisors for learn-
ing a mapping towards the final binary weights. As this
mapping is learnable, it can exploit the relationships be-
tween weights. SiMaN [20] and RBNN [21] both propose
a new binarization method based on so-called angle align-
ment between the full-precision and binary weights.

Activation binarization. One way to approach activa-
tion binarization is through classic computer vision tech-
niques, such as dithering. This technique can binarize
an image in a way that shifts quantization error towards
higher frequencies. As the human visual system is more
receptive to lower frequencies, the binarized image is per-
ceived as having a low quantization error, and thus, carry-
ing more information. A realization of this idea is called
DitherNN but it only reports mild improvement [2]. Most
activation binarization approaches focus on shaping the pre-
binarization distribution, from which a higher entropy can
be achieved after binarization [29]. For instance, an extra
regularization term is proposed in [9] to explicitly shape
the pre-binarization distribution so that it counteracts de-
generation, saturation, and gradient mismatch problems. It
is argued in [18] that BNNs benefit from an unbalanced
pre-binarization distribution. ReActNet [24] argues that
BNNs benefit from learning a similar activation distribution
as their full-precision counterparts. On a related note, Si-
BNN [34] approaches the activation binarization problem
from a somewhat different angle and introduces sparsity in
the activation binarization process. Even though these stud-
ies show promising performance results for BNNs, we ar-
gue that changing the pre-binarization distribution is still
a form of adaptive global thresholding, and thus a sub-
optimal approach. Therefore, the output feature map does
not fully reflect on, and adapt to the local information of the
input feature map.

3. Problem Formulation
In this section, we reflect on the limitation a sign(.)

binarization function inflicts on a BNN. We examine the
capability of the network to cope with the single threshold
value of sign(.), which we refer to as global threshold-
ing - given that its value is the same for all spatial dimen-
sions. In practice, as the input feature map to sign(.)
is the output of a previous (convolutional) layer, the kernel
of that convolution will learn to push or pull parts of the
output feature map above or beneath the global threshold
value, resulting in the fact that the output feature map will
be closely centered around the threshold value. The batch
normalization layer can further guide this process by effec-
tively shifting the threshold value. Although this combina-
tion is essential for the current learning process of BNNs,
we argue that there still is a limitation in its efficacy.

Fig. 2 explains what we perceive as the bottleneck in
information propagation of BNNs. Here, A denotes the
discrete input feature map to the binary convolution. As-
sume W’s represent the set of all unique weight kernels
one can imagine. Given a kernel size k, the number of
input channels C, and a single output channel per kernel,
the total number of unique Wi’s, ∀i ∈ [n] will then be
n = 2k

2×C . The output feature maps D1 to Dn are discrete
finite-alphabet tensors. Note that n in this case is smaller
than the theoretical maximum number of unique activations
N = (k2 × C)H×W , given a specific input A. Impacted
by the activation design of the previous layers, proper de-
sign of A could potentially minimize the gap between n
and N . Applying sign(.) on D1 to Dn maps them to
their binary counterparts B1 to Bn. In theory, it is possible
to have n unique binary feature maps Bi’s, ∀i ∈ [n], even
though in practice, we show the fact that if we give W the
freedom to take any value, the set of possible tokens of the
output feature map is limited for the sign(.). Low di-
versity means that multiple distinct values of W will lead to
an identical binary output, which will hinder the optimiza-
tion of the model. We dub the aforementioned issue as the
uniqueness bottleneck. We argue that due to this bottleneck,
the network does not utilize its full potential and the repre-
sentational capacity of the network is going to be impacted.

To demonstrate that this hypothesis is valid, we design
a toy experiment that uses single-layer binary input feature
maps A (in this case with C = 1) extracted from the bi-
narized feature maps (using sign(.)) in a trained Bi-
RealNet-18 [26]. Kernel size k is set to 3, which makes
up for a total of 2k

2

= 512 unique kernels. Following the
steps sketched in Fig. 2, we take A as the starting point,
convolve it with every possible kernel Wi and binarize the
output activations Di’s with the sign(.) function. We
then count the number of unique binary feature maps Bi’s,
and average over all the channels (per different layers) of
20 different input images. We denote the ratio of counted

Table 1: η for 512 unique W’s after applying sign(.)
function in Bi-Real Net. Later layers show a lower ratio,
indicating higher presence of the uniqueness bottleneck.

Layer 1 2 3 4 5 6 7 8
η 0.964 0.994 0.996 0.998 0.998 0.986 0.991 0.994

Layer 9 10 11 12 13 14 15 16
η 0.994 0.927 0.943 0.951 0.959 0.747 0.781 0.803

unique feature maps (nc), and theoretical total number of
unique feature maps (nt) as the uniqueness ratio η = nc/nt.
The results are shown in Table 1. We can see that going
deeper with convolutions, leading to smaller feature maps
for layers 9 to 16, the uniqueness ratio decreases and the
bottleneck becomes more evident. In the next section, we
propose a learnable activation binarizer (LAB) as a remedy
for this bottleneck.

4. The Proposed Method: LAB
One possible approach towards addressing the bottle-

neck of sign(.) binarization is to find a mapping from
full-precision activation values to corresponding binary val-
ues, in such a way that the embedded spatial information
from the input feature map is preserved. To do so, we pro-
pose to forge a different path in contrast to the current wis-
dom of activation distribution shaping [9,18,24]. More con-
cretely, we propose a novel learnable activation binarizer
(LAB) to learn a binarization kernel per layer, as shown in
Fig. 3. The figure demonstrates LAB as a building block of
a standard BNN. Zooming into the LAB unit, as we need
to apply channel-wise binarization like sign(.), the in-
put is first reshaped for per-channel operations. To cap-
ture local spatial information per channel, a 3 × 3 depth-
wise convolution with a channel multiplier of 2 is applied.
The core idea behind this channel doubling is to construct a
miniature segmentation layer within the LAB unit to classify
the input as −1 or +1. This classification is done through
an ArgMax(.) across both channels, reducing the feature
map back to a single output channel which is finally re-
shaped back to its original size. As the ArgMax(.) is
non-differentiable, we apply the Soft-ArgMax(.) for
the backward pass [11]. Given that we are dealing with only
two classes, the Soft-ArgMax(.) in (2) simplifies to a
single entry of the SoftMax(.) with an extra tempera-
ture controlling parameter β which controls the “hardness”
of the ArgMax(.) approximation:

Soft-ArgMax(x) =

1∑
i=0

eβxi∑
j e

βxj
i =

eβx1∑
j e

βxj
. (2)

The new binarization approach is only used for binariza-
tion of the feature maps and not for the binary convolution
kernels, because the kernels do not contain enough spatial
information for LAB to capture.

Figure 2: The uniqueness bottleneck. Activation A is convolved with all unique kernels Wi’s. The finite-alphabet feature
maps D are binarized by the sign(.), which creates the bottleneck of multiple D’s mapping to the same binary feature
map B. The equations (at the bottom) indicate the theoretical maximum number of unique combinations of a tensor.

Figure 3: Overview of LAB and how it can be used similar
to sign(.). Tuples [{1, 2}, H,W,C] indicate the shape
of the tensors. The depthwise convolution together with
ArgMax(.) form the core of LAB. For differentiability
in the backward pass , the Soft-Argmax(.) is used.

LAB ensures that the issues (ii), (iii) and (iv), introduced
in section 1 are solved. The learnable depthwise kernel en-
sures that the binary value of a pixel is dependent its neigh-
bouring pixels. Because of this property, more diverse bi-
nary feature maps will be constructed, resulting in lifting of
the uniqueness bottleneck. We realize that the introduction
of a full-precision depthwise convolution adds additional
complexity to the network. However, we argue that the net-
work with LAB is still a BNN, as the main convolutions
are still binary; the depthwise convolution is an intermedi-
ate operation which is more often kept in full-precision in
existing literature [20, 21, 25, 27].

5. Experimental Evaluation
In this section, we first reflect on the experimental setup.

Next, we analyze the uniqueness bottleneck and how em-
ploying LAB can help alleviate the problem. We then show
that LAB is beyond a one-off remedy but more of a universal
module that can straightforwardly be plugged into existing
baselines. Finally, we propose an end-to-end model archi-
tecture (LAB-BNN) revolving around LAB offering compet-
itive performance against state-of-the-art.

5.1. Experimental Setup

To be able to compare against a variety of existing state-
of-the-art baselines - also to allow for a wider adoption by
the community - we implement LAB both in PyTorch and
TensorFlow. For comparison with the state-of-the-art base-
lines, the TensorFlow-based Larq framework [3] is used.

Network structure. To show the versatility of LAB,
we plug it into four different architectures. First, XNOR-
Net [31], is chosen to examine the improved information
flow on an AlexNet-based architecture [19] with no skip
connections. Then, Bi-RealNet [26] and ReActNet [24] are
used for their ResNet [15] and MobileNet [17] backbones,
respectively. Finally, QuickNet [3], an improved version of
Bi-RealNet, is used to assess whether LAB can make an im-
pact on a top performing state-of-the-art network.

Proposed end-to-end network: LAB-BNN. Going be-
yond the proposed module LAB, we also design an end-
to-end network based upon the architecture of Bi-RealNet-
182, which is further enhanced by combining PRelu in
[7, 24, 27, 33] and initial layers (further referred to as the
STEM) as proposed by QuickNet [3].

2ReActNet-A was tried, but we could not reproduce in Larq.

Hyperparameters. All experiments are conducted us-
ing 4 NVIDIA GeForce GTX 1080 Ti GPUs and follow
standard settings in Larq [3], unless otherwise mentioned.
To reproduce nominal reported performance, we used a
batch size of 128 and a learning rate of 1e−4 for the re-
training of XNORNet. For Bi-RealNet a batch size of 256
and learning rate 2.5e−3 was used. For Quicknet we used a
batch size of 512 and a learning rate of 2.5e−3. Lastly, we
re-trained ReActNet-A from scratch with a batch size of 128
and learning rate of 2.5e−3. LAB-BNN uses a batch size of
256 and learning rate of 2.5e−3 and is trained from scratch
for 300 epochs. We chose to train from scratch as recent
studies [4] suggest that multi-stage training is not needed
for high accuracy models, and that it simplifies the train-
ing process significantly. The temperature controlling pa-
rameter β of the Soft-ArgMax(.) is made a learnable
parameter, initialized with the value 1.0.

Real-time inference on the edge. The research in
BNNs is focussed on bringing deep learning to resource-
constrained edge devices. Recent studies report the compu-
tational complexity of their models using theoretical metrics
such as floating-point operations (FLOPs) [24,27] multiply-
accumulate (MACs) [4] or arithmetic computation effort
(ACE) [40]. In coherence with [3, 30] we argue that la-
tency is the best metric to compare model performances.
In order to benchmark model latency, we use a resource-
constrained edge computing device, Nvidia Jetson Xavier
NX3 development kit, which is an ARM-based board for
development of embedded AI systems. Although this de-
vice has a built-in GPU, for the benchmarking exercise we
only use the CPU. Thus, these benchmarks can be repro-
duced on commodity ARM64 devices. To convert models
from TensorFlow to Jetson-compatible models, we use the
Larq Compute Engine Converter [3], which outputs a Ten-
sorFlow Lite (TFLite [22]) model. This model can now be
evaluated using a Larq benchmark tool [3] adapted from the
TFLite benchmark4. For all the benchmarking experiments,
the power mode of the Jetson is set to 15W, we use the sin-
gle thread mode, and report values averaged over 50 runs.

5.2. The Uniqueness Bottleneck: Qualitative and
Quantitative Analysis

In section 3, we have shown that sign(.) can in-
troduce a bottleneck in reaching the theoretical maximum
number of unique binary states, which we argued would
limit the capacity of BNNs. Here, we adopt a small-
scale experiment (followed by large-scale end-to-end exper-
iments in the next subsection) to qualitatively and quanti-
tatively demonstrate that LAB reduces this bottleneck. To

3https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-nx/, accessed August 28, 2022

4https://www.tensorflow.org/lite/performance/measurement, accessed
August 28, 2022

Table 2: Dissimilarity comparison between pre- and post-
binarization of sign(.) vs. LAB for SSIM and END-
SIM (3) applied to extracted featuremaps from the trained
BiRealNet-18 networks (with and without LAB). The direc-
tion of the arrow indicates higher dissimilarity. The SSIM
values are multiplied by ×103.

Layer 1 2 3 4 5 6 7 8

SSIM↓ (×10−3) Sign 94.8 21.3 14.5 13.1 11.9 21.6 16.6 13.5
LAB 1.5 9.0 4.2 5.4 8.9 5.1 6.6 6.4

ENDSIM↑ Sign 1.1 0.93 0.85 0.83 0.8 0.86 0.84 0.8
LAB 0.92 0.96 1.1 1.3 1.4 1.4 1.5 1.5
Layer 9 10 11 12 13 14 15 16

SSIM↓ (×10−3) Sign 12.2 25.8 19.7 17.6 14.6 29.3 22.4 18.0
LAB 8.5 4.2 2.9 2.4 8.8 5.6 8.2 7.1

ENDSIM↑ Sign 0.76 0.92 0.88 0.85 0.81 0.98 0.93 0.89
LAB 1.6 1.4 1.4 1.4 1.7 1.4 1.4 1.4

this aim, we compare the binary feature maps of a trained
Bi-RealNet-18 with a trained Bi-RealNet-18+LAB (where
sign(.) is replaced with LAB). The results are shown in
Fig. 4 and Table 2. The figure depicts the selected feature
maps from layer 1 and 6 (out of 18 layers). As can be seen,
more structural information is preserved in layer 1 of LAB
compared to sign(.), even though the features become
too abstract for human understanding as we go to the deeper
layer 6. The most important takeaway from Fig. 4 is to un-
derstand that LAB, in contrast to sign(.) can distinguish
between similar pixel values (e.g. shades in the lemons and
different tints of blue in the watch). Besides the qualita-
tive demonstration, the impact of LAB is further quantified
on the number of unique feature maps learned by both net-
works through two (dis)similarity measures: structural sim-
ilarity loss (SSIM) [35] and a custom-designed metric we
call Euclidean norm dissimilarity (ENDSIM), given by:

ENDSIM(Ai,Aj) =

√√√√√ 1

HW

∑
w,h

|Ai −Aj |

2

+

 1

HW

∑
w,h

|Ai +Aj |

2

,

h ∈ [H], w ∈ [W], i ̸= j ∈ [C]

(3)

where W and H denote the width and height of the input
images in pixels and Ai and Aj , are different single chan-
nel feature maps being compared. The metric has two terms
in which the first term measures discrepancy, and the sec-
ond one ensures fully inverted feature maps are not penal-
ized. The latter is because inverted feature map layers along
the channels can occur but do not indicate structural differ-
ences. Both measures are computed and averaged over all
possible combinations of feature map layer pairs across all
the 16 convolutional layers of 10 randomly selected images
of ImageNet passed through both networks. The results are
summarized in Table 2, and as can be seen, except for the
first layer, LAB shows higher dissimilarity values (a lower
SSIM and a higher ENDSIM) indicating more uniqueness
along the channels.

Figure 4: Qualitative comparison between sign(.) and
LAB on two layers of Bi-RealNet-18. LAB illustrates higher
amount of texture (especially in Layer 1), which indicates
allowing more information to pass through.

Table 3: Results of applying LAB on the corresponding
baselines on ImageNet.

Network Backbone Epochs Method Top-1 Top-5 Model Size Latency
[%] [%] [MB] [ms]

XNOR-Net [31] AlexNet [19] 60 Sign 44.0 68.1 23.9 50.8
LAB 46.5 70.3 24.4 55.1

BiRealNet [26] ResNet-18 [15] 150 Sign 54.4 77.6 4.18 72.5
LAB 59.1 81.2 4.65 100.6

QuickNet [3] ResNet-18 [15] 120 Sign 58.7 81.2 4.35 58.1
LAB 62.5 84.0 4.85 82.4

ReActNet [24] MobileNetV1 [17] 75 Sign 62.4 83.4 7.74 108.1
LAB 64.1 84.8 8.69 210.9

5.3. LAB: A Universal Module
The proposed method LAB can readily be applied to any

BNN, with no architectural adjustments. In this subsec-
tion, we demonstrate this by replacing the sign(.) with
LAB in four seminal BNN architectures and evaluate the
impact on the downstream classification task of ImageNet.
The results are illustrated in Table 3. As can be seen, at
the cost of negligible increase in model size and tolerable
increase in delay (max of 2x in [ms]), the boosted archi-
tectures XNORNet, Bi-RealNet, QuickNet, and ReActNet
offer 3.3%, 7.9%, 3.8% and 1.7% improved Top-1 accu-
racies, respectively. The performance boost is slightly less
pronounced for Top-5 accuracies. Note that the number of
required training epochs to reach the nominal performance
is dependent upon the architecture itself. The key message
from this experiment is that irrespective of the backbone
and architecture design, LAB makes a considerable impact
on all architectures.

Table 4: Comparison against reported state-of-the-art on
ImageNet. A dash indicates no value was reported by the
original authors.

Network Method W/A Top-1 Top-5 BOPs FLOPs OPs
[%] [%] (×109) (×108) (×108)

ResNet-18

Full-precision 32/32 69.6 89.2 0 18.1 18.1
Bi-RealNet [26] 1/1 56.4 79.5 1.68 1.39 1.63
BNN-UAD [18] 1/1 57.2 80.2 - - -
IR-Net [29] 1/1 58.1 80.0 - - 1.63
SI-BNN [34] 1/1 59.7 81.8 - - -
SiMaN [20] 1/1 60.1 82.3 - - -
QuickNet [3] 1/1 63.3 84.6 - - -
LAB-BNN 1/1 64.2 85.0 1.68 0.66 0.92
ReActNet [24] 1/1 65.9 - - - -

Table 5: FLOPs comparison: LAB-BNN vs. Bi-RealNet.

Component Operation FLOPs(
×106

)
Depthwise Conv2D +30.3

BiasAdd +1.68
LAB (ours) Multiply +1.68

ArgMax +0.84
Equal +0.84

PRelu [33] Mul +0.57
Neg +0.76

STEM [3] Conv2D -109.83

Total -73.16

5.4. Comparison Against State-of-the-Art

Now that the universality of LAB has been shown, the ef-
ficacy of the proposed end-to-end network (LAB-BNN) with
LAB sitting at its core, is evaluated. We compare the per-
formance of LAB-BNN against the state-of-the-art baselines
focused on activation binarization. For fair comparison, we
focus on reported Top-1 and 5 validation accuracies on Ima-
geNet with a ResNet-18 backbone. The outcome is summa-
rized in Table 4. Both Top-1 and 5 results are competitive
with the state-of-the-art and come short of the full precision
equivalent network by only about 5%. Notably, ReActNet
reports a higher accuracy (that we could not reproduce in
TensorFlow) in part owing to adopting a multi-stage train-
ing strategy, whereas LAB-BNN is trained from scratch.

Aside from accuracy, the time and computational com-
plexity of a BNN is just as important, even though most
existing baselines overlook the importance of these metrics
and sometimes do not even report them. Following [24], in
Table 4 we report the total binary and floating-point opera-
tions (OP = BOP/64 + FLOP). Here, we achieve a lower
total computational complexity (in FLOPs) compared to
other baselines including the original Bi-RealNet. To fur-
ther break this down, in Table 5 we set Bi-RealNet as our
reference and state the added (+) complexity per operation
listed in the second column. Even though the mechanics of
LAB adds slight complexity, we compensate for this with a
more efficient implementation of the STEM layer [3] leading
to an overall decrease of 73.16× 106 in total FLOPs.

Table 6: LAB-BNN (Imagenette, 100 epochs) with multi-
ple precisions for the depthwise convolution for LAB, and a
comparison with other adaptive binarization techniques.

LAB depthwise Top 1 Top 5 Model Size
convolution [%] [%] [MB]

No-LAB 76.4 97.2 2.04
LAB FP32 88.5 99.2 2.30
LAB INT8 89.1 99.2 2.13
LAB INT4 85.3 98.7 2.10

Post-binarization distribution. To illustrate that the
post-binarization distribution is not a telling factor about
the performance of the network (in contrast to conclusions
drawn in [9,18,24]), Fig. 5 shows the post-binarization dis-
tribution of +1’s and −1’s for original Bi-RealNet-18 and
Bi-RealNet-18+LAB averaged over all channels of 1000 in-
put images. As can be seen, while the distribution of binary
values remains almost the same across both networks, the
performance of the two (reported in Subsection 5.3) is apart
by 7.9%, supporting our claim that the binary distribution is
not important, but the spatial arrangement of pixels is.

Going deep or going LAB? Plugging LAB into the stan-
dard Bi-RealNet (our base to build LAB-BNN) adds ad-
ditional complexity to the network, and one could argue
that adding the kernel of LAB per layer could virtually help
make the network deeper. However, as a counter-argument,
we compare LAB-BNN against a Bi-RealNet with a deeper
backbone. More specifically, in the current construct, our
method adds a depthwise convolution for each binary layer
in Bi-RealNet-18. This is (roughly) equivalent to addition
of 16 convolution layers, yielding a total of 18 + 16 = 34
layers. According to [26], Bi-RealNet-34 and Bi-RealNet-
50 respectively achieve 62.2% and 62.6% validation accu-
racies on ImageNet which are both still below the accuracy
of LAB-BNN. Furthermore, the model size of BiRealNet-
18+LAB is 4.24MB (FP32 weights for depthwise kernel),
whereas BiRealNet-34 occupies 5.23MB. Thus, we are of-
fering smaller model size and higher accuracy. To assess the
impact of precision on the accuracy gain of LAB, we evalu-
ated the depthwise convolution kernel of LAB for different
bit widths. The results summarized in Table 6 indicate that
going down from FP32 to INT8, the impact of LAB does
not degrade, and even INT4 still offers a significant gain
over no-LAB baseline.

Comparison against local thresholding We compare
LAB against classical local binarization techniques, to show
that LAB adheres to the common wisdom that learnable ap-
proaches outperform statistical approaches. We implement
Niblack [28] and Sauvola [32] and use a window size of 3
and common values for k. Table 7 shows LAB has a gap of
11.5% with Niblack and improves with 2.7% over the best
configuration for Sauvola.

Table 7: LAB-BNN (Imagenette, 150 epochs, batch size
32) A comparison with adaptive binarization techniques.

Binarization Top 1 Top 5 Model Size
method [%] [%] [MB]

STE-sign 87.0 98.7 2.06
Niblack, k = −0.2 77.8 97.0 2.06
Sauvola, k = 0.2 82.5 98.3 2.06
Sauvola, k = 0.5 86.6 98.8 2.06

LAB 89.3 99.1 2.09

6. Ablation Studies
In this section, the effect of different components of

LAB-BNN is further inspected. In what follows, we use the
same settings listed in Section 5.1, except for the number of
epochs which are shortened to 30. We start with the original
Bi-RealNet-18 (model A) and update the components pro-
gressively towards LAB-BNN (model D). We first upgrade
model A by incorporating PRelu activation [33] resulting
in B. Model B is then extended by replacing sign(.) by
the proposed LAB module leading to model C. Lastly, we
replace the initial convolution in Bi-RealNet with the STEM
layer of QuickNet [3], which forms LAB-BNN (model D).
The results are illustrated in Table 8. Plugging LAB into
model B results in an improvement of about 6% on the Top-
1 validation accuracy (and roughly 5% for Top-5), at an in-
crease of 0.46MB in model size and 28.5ms in latency. To
make up for the added latency, we apply the STEM layers as
proposed by QuickNet [3] which results in decreasing the
latency with respect to model A down to 9.7ms.

Figure 5: Post-binarization distribution of original Bi-
RealNet-18 vs LAB-BNN averaged over all channels of
1000 input images. Rows indicate the blocks in the ResNet
structure, columns indicate layer number within each block.

To provide further insights into the distribution of per-
operation latencies, in Fig. 6 we profile the network delays
for models A to D. In other words, this is a fine-grained
visual breakdown of the total latencies reported in Table 8.
The depthwise convolution together with the ArgMax(.)
operation in LAB are the main culprits behind the added
latency. Additionally, it is clear that the STEM layer indeed
helps to alleviate the overall latency as discussed in Table 8.

Figure 6: Breakdown of per-operator latencies for ablation study of LAB-BNN. Operators contributing to the latency mini-
mally have been marked as “other”.

Table 8: Ablation study for LAB-BNN, trained for 30
epochs on ImageNet dataset. The per-operator breakdown
of the latency column is shown in Fig. 6.

Method Top-1 Top-5 Model Size Latency
[%] [%] [MB] [ms]

A: BiRealNet [Base] 45.0 69.7 4.18 70.3
B: Base+PRelu 52.4 76.1 4.19 70.8
C: Base+PRelu+LAB 58.1 80.9 4.65 99.3
D: C+STEM [LAB-BNN] 58.2 80.8 4.62 80.0

6.1. Where to apply LAB.

So far, when applying LAB, all instances of sign(.) in
every binary layer of the network were replaced with LAB.
For the architecture Bi-RealNet-18, this means for all of the
four residual blocks, in all four convolutions per block. As
we saw in Table 1, the uniqueness bottleneck is mainly visi-
ble in later layers. Therefore, in Table 9 we assess in which
combination of blocks (out of 16 possible combinations) it
is most impactful to apply LAB as a binarization function.
In doing so, we apply LAB on all layers per selected block.
The networks are trained for 30 epochs and we report Top-1
and Top-5 validation accuracies, model size and and laten-
cies. We conclude from the table that omitting LAB (using
the original sign(.) everywhere) leads to the worst re-
sults, and see that as we apply LAB in more blocks progres-
sively, the accuracy increases, and applying LAB to every
block gives the highest accuracy. Interestingly, the model
with LAB applied to the last 3 blocks (in the second row) has
an exceptional accuracy-latency trade-off. Table 9 shows
that by applying LAB in different blocks across the network,
it is possible to design a network with a certain accuracy-
latency trade-off, which gives useful design freedom for the
practical use cases of BNN’s.

Table 9: Study on applying LAB to different blocks of
LAB-BNN. A checkmark indicates that LAB was used for
all layers in that block.

Block Top-1 Top-5 Model Size Latency
1 2 3 4 [%] [%] [MB] [ms]

□✓ □✓ □✓ □✓ 59.1 81.3 4.68 83.7
□ □✓ □✓ □✓ 58.7 81.0 4.66 68.0
□✓ □ □✓ □✓ 58.4 80.6 4.64 75.3
□✓ □✓ □✓ □ 58.4 80.5 4.33 79.1
□✓ □✓ □ □✓ 58.1 80.4 4.61 77.1
□ □✓ □✓ □ 58.0 80.2 4.31 63.9
□ □✓ □ □✓ 57.9 80.1 4.58 64.9
□ □ □✓ □✓ 57.8 80.0 4.62 60.6
□✓ □ □✓ □ 57.8 79.9 4.29 72.9
□ □ □✓ □ 56.7 78.9 4.27 58.8
□✓ □ □ □✓ 56.7 79.3 4.57 71.1
□✓ □✓ □ □ 56.4 79.1 4.26 75.0
□ □ □ □✓ 55.9 78.6 4.54 41.4
□ □✓ □ □ 55.7 78.1 4.23 47.6
□✓ □ □ □ 54.9 77.3 4.22 59.9
□ □ □ □ 53.2 76.1 4.20 54.6

7. Concluding Remarks
We have shown that the commonly adopted binarization

operation sign(.) imposes a uniqueness bottleneck on
BNNs, making it a sub-optimal choice for binarization. As a
remedy, we introduce learnable activation binarizer (LAB),
a novel binarization function that allows BNNs to learn
a flexible binarization kernel per layer. We have demon-
strated that LAB can readily be plugged into existing base-
line BNNs boosting their performance regardless of their
architecture design. Beyond that, we have also built a new
end-to-end network (LAB-BNN) based upon LAB that of-
fers competitive performance on par with the state-of-the-
art. For future work, we will investigate applying learn-
able binarization to weights in addition to activations. We
also plan to further extend our experimentation especially
around LAB-BNN to push the performance boundaries and
advance the state-of-the-art.

References
[1] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D

Lane, and Yarin Gal. An empirical study of binary neu-
ral networks’ optimisation. In International conference on
learning representations, 2018.

[2] Kota Ando, Kodai Ueyoshi, Yuka Oba, Kazutoshi Hirose,
Ryota Uematsu, Takumi Kudo, Masayuki Ikebe, Tetsuya
Asai, Shinya Takamaeda-Yamazaki, and Masato Motomura.
Dither nn: An accurate neural network with dithering for low
bit-precision hardware. In 2018 International Conference on
Field-Programmable Technology (FPT), pages 6–13. IEEE,
2018.

[3] Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin,
Leon Overweel, Jelmer Neeven, and Koen Helwegen. Larq
compute engine: Design, benchmark and deploy state-of-
the-art binarized neural networks. Proceedings of Machine
Learning and Systems, 3:680–695, 2021.

[4] Joseph Bethge, Haojin Yang, Marvin Bornstein, and
Christoph Meinel. Back to simplicity: How to train accu-
rate bnns from scratch? arXiv preprint arXiv:1906.08637,
2019.

[5] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos.
Bats: Binary architecture search. In European Conference
on Computer Vision, pages 309–325. Springer, 2020.

[6] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos.
High-capacity expert binary networks. In International Con-
ference on Learning Representations, 2020.

[7] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and
Maja Pantic. Improved training of binary networks for hu-
man pose estimation and image recognition. arXiv preprint
arXiv:1904.05868, 2019.

[8] Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu,
Zhiqiang Shen, and Zhangyang Wang. ” bnn-bn=?”: Train-
ing binary neural networks without batch normalization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4619–4629, 2021.

[9] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Mar-
culescu. Regularizing activation distribution for training bi-
narized deep networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11408–11417, 2019.

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of Ma-
chine Learning Research, 20(1):1997–2017, 2019.

[11] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey
Levine, and Pieter Abbeel. Deep spatial autoencoders for
visuomotor learning. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 512–519. IEEE,
2016.

[12] Joshua Fromm, Meghan Cowan, Matthai Philipose, Luis
Ceze, and Shwetak Patel. Riptide: Fast end-to-end binarized
neural networks. Proceedings of Machine Learning and Sys-
tems, 2:379–389, 2020.

[13] Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Interna-
tional Journal of Computer Vision, 129(6):1789–1819, 2021.

[14] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu,
and Chang Xu. Training binary neural networks through
learning with noisy supervision. In International Conference
on Machine Learning, pages 4017–4026. PMLR, 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[16] Lu Hou, Quanming Yao, and James T Kwok. Loss-
aware binarization of deep networks. arXiv preprint
arXiv:1611.01600, 2016.

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[18] Hyungjun Kim, Jihoon Park, Changhun Lee, and Jae-Joon
Kim. Improving accuracy of binary neural networks us-
ing unbalanced activation distribution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7862–7871, 2021.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012.

[20] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Fei
Chao, Mingliang Xu, Chia-Wen Lin, and Ling Shao. Siman:
Sign-to-magnitude network binarization. arXiv preprint
arXiv:2102.07981, 2021.

[21] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan
Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen Lin. Ro-
tated binary neural network. Advances in neural information
processing systems, 33:7474–7485, 2020.

[22] TensorFlow Lite. Deploy machine learning models on mo-
bile and iot devices, 2019.

[23] Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen,
Dong Huang, and Kwang-Ting Cheng. How do adam and
training strategies help bnns optimization. In International
Conference on Machine Learning, pages 6936–6946. PMLR,
2021.

[24] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision, pages 143–159. Springer,
2020.

[25] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

[26] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018.

[27] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-to-
binary convolutions. In International Conference on Learn-
ing Representations, 2019.

[28] Wayne Niblack. An introduction to digital image processing.
Strandberg Publishing Company, 1985.

[29] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2250–2259,
2020.

[30] Haotong Qin, Xiangguo Zhang, Ruihao Gong, Yifu Ding,
Yi Xu, et al. Distribution-sensitive information reten-
tion for accurate binary neural network. arXiv preprint
arXiv:2109.12338, 2021.

[31] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

[32] Jaakko Sauvola and Matti Pietikäinen. Adaptive document
image binarization. Pattern recognition, 33(2):225–236,
2000.

[33] Wei Tang, Gang Hua, and Liang Wang. How to train a com-
pact binary neural network with high accuracy? In Thirty-
First AAAI conference on artificial intelligence, 2017.

[34] Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian
Cheng. Sparsity-inducing binarized neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12192–12199, 2020.

[35] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[36] Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and
Hongkai Xiong. Deep neural network compression with sin-
gle and multiple level quantization. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

[37] Haojin Yang, Martin Fritzsche, Christian Bartz, and
Christoph Meinel. Bmxnet: An open-source binary neural
network implementation based on mxnet. In Proceedings
of the 25th ACM international conference on Multimedia,
pages 1209–1212, 2017.

[38] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.
On compressing deep models by low rank and sparse decom-
position. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7370–7379,
2017.

[39] Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao
Mei. dabnn: A super fast inference framework for binary
neural networks on arm devices. In Proceedings of the 27th
ACM international conference on multimedia, pages 2272–
2275, 2019.

[40] Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn:
A binary pursuit of lightweight accuracy. arXiv preprint
arXiv:2112.00133, 2021.

[41] Baozhou Zhu, Zaid Al-Ars, and H Peter Hofstee. Nasb: Neu-
ral architecture search for binary convolutional neural net-
works. In 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2020.

