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Abstract

This paper is on action localization in video with the aid of spatio-temporal proposals. To
alleviate the computational expensive segmentation step of existing proposals, we pro-
pose bypassing the segmentations completely by generating proposals directly from the
dense trajectories used to represent videos during classification. Our Action localization
Proposals from dense Trajectories (APT) use an efficient proposal generation algorithm
to handle the high number of trajectories in a video. Our spatio-temporal proposals are
faster than current methods and outperform the localization and classification accuracy
of current proposals on the UCF Sports, UCF 101, and MSR-II video datasets.
Corrected version: we fixed a mistake in our UCF-101 ground truth. Numbers are dif-
ferent; conclusions are unchanged.

1 Introduction
The goal of this paper is to arrive at localization of actions in video that is faster and
better than alternatives. Recent action localizations [9, 17, 30, 33] are inspired by suc-
cessful object-proposals in static images [1, 15, 25]. Compared to sliding-subvolume ap-
proaches [10, 19, 22], proposals for action localization reduce the video search space to a
small set of spatio-temporal tubes, with high likelihood to contain an action. Different from
these existing approaches, which all use different representations for localization and classi-
fication, we start from the observation that we can perform both tasks with one and the same
representation.

Diving deeper into two popular proposal algorithms [9, 17], three common steps are
identified: 1. Pre-processing the video by segmentation, 2. Generating tube proposals by
grouping segments and 3. Representing each tube with dense trajectory features [27, 28] so
it can be fed to an action recognition classifier. The video segmentation (step 1) easily takes
several minutes for a modest video of 400x720 pixels of 55 frames [17, 32] and can take
days for a realistic full HD movie. Moreover, a unique meaningful pixel grouping is a more
complex problem than necessarily required for proposal generation. The segmentation step
for action proposals is overly complex and not practical for large video sets.
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Figure 1: We propose APT:
an efficient and effective spatio-
temporal proposal algorithm for
action localization. Different
from existing work, which con-
sider different representations for
the localization and classification
stage, we aptly re-use the dense
trajectories as used in the classifi-
cation representation for localiza-
tion as well. This allows large-
scale deployment with good lo-
calization and classification ac-
curacy. For the action Diving
our blue best proposal results in
an overlap of 0.62 with the red
ground truth.

We propose to skip the video segmentation of step 1 altogether. Instead, we apply the
proposal generation of step 2 on the dense trajectories of step 3. Since the dense trajectories
are computed for the representation anyway, we propose to re-use them for proposal gener-
ation as well. By founding the proposals on the same representation used for classification,
we expect the proven power of the dense trajectories [27, 28] to benefit the proposal genera-
tion. For our Action localization Proposals from dense Trajectories (APT) we cast the strong
points of current proposal methods in an efficient clustering algorithm inspired by trajectory
clustering for video segmentation, such as the seminal work of Brox & Malik [2].

We have the following contributions. i) We base our proposals on the same dense trajec-
tories used for classification; ii) we present an efficient clustering algorithm to deal with large
numbers of trajectories; iii) we demonstrate that video segmentation is time consuming and
that its goals do not necessarily align with the goals of localization proposals. Experiments
show that APT is faster than current methods and outperforms the localization and classifi-
cation accuracy of the state-of-the-art on the UCF sports, MSR-II and UCF101 datasets. In
Fig 1 we illustrate our action localization proposals.

2 Related work
Several action localization methods apply an action classifier directly on the video. Examples
include sliding 3D subvolume methods like spatio-temporal template matching [19], a 3D
boosting cascade [10] and spatio-temporal deformable 3D parts [22]. Others maximize a
temporal classification path of 2D boxes through static frames [7, 23, 24, 30, 33] or search
for the optimal classification result with a branch and bound scheme [34]. The benefit is that
these methods do not require an intermediate representation and directly apply a classifier to
sampled parts of the video. The disadvantage, however, is that they have to repeat the same
procedure for each individual action class separately which is impractical for larger numbers
of action classes. Instead, we use unsupervised spatio-temporal proposals to first generate a
small set of bounding-box tubes that are likely to contain any type of action.
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Current spatio-temporal proposals are inspired by 2D object proposals in static images.
A version of objectness [1] is extended to video [26], selective search [25] led to tubelets
from motion [9] and randomized Prim [15] was generalized to a spatio-temporal variant [17].
Several 2D object proposal methods and their 3D generalizations are based on a super-pixel
segmentation pre-processing step [1, 9, 12, 15, 17, 25, 26] which we argue is too com-
plex a problem for proposal generation. The use of segmentation makes proposal methods
computationally too demanding for large scale video processing. To avoid the complex
pre-processing step altogether, we propose a method of generating proposals without any
pre-processing. We generate proposals from local dense trajectory features. These exact
trajectory features are re-used later on for building a representation for action classification.

Local features provide a solid base for video segmentation [2], action recognition [13, 27]
and action localization [9, 33]. Points are sampled at salient spatio-temporal locations [6,
13], densely [20, 31] or along dense trajectories [27, 28]. The points are represented by
powerful local descriptors [4, 11, 14] that are robust to modest changes in motion and in
appearance. Robustness to camera motion is either directly modeled from the video [8, 27]
or dealt with at the feature level by the MBH descriptor [4, 28]. After aggregating local
descriptors in a global video representation such as VLAD [8] or Fisher [16, 18, 27] they
are input to a classifier like SVM. Due to the excellent performance of dense trajectory
features [27, 28] in action localization [9, 33], we adopt them as our feature representation.

3 Action Proposals from dense Trajectories

3.1 Can we use current approaches?
It may be possible to use current spatio-temporal action proposal methods on the dense tra-
jectories. We analyze the tubelets from Jain et al. [9] and prim3D from Oneata et al. [17].
The first step of both methods is a video segmentation, assigning a single segment ID to each
pixel in the video. The second step is grouping of segments into action-proposals. Both algo-
rithms compute feature similarities between all segment pairs that have neighboring spatio-
temporal pixels. The tubelets use a greedy hierarchical clustering approach: merge the pair
of most similar segments into a single segment; compute the features of this new segment
and the pairwise similarities with its spatio-temporal neighbors; repeat till convergence. The
prim3D approach applies a classifier on each segment pair to compute the likelihood of a
good merge and then uses a randomized hierarchical clustering method: stochastically sam-
ple a classifier score; add segments to the hierarchy; repeat till convergence. The third step
is the actual classification of the spatio-temporal proposals. Dense trajectories are computed
for the video and each spatio-temporal proposal encodes its features into a representation fed
to an action classifier.

A strong point of tubelets is that the hierarchical clustering is unsupervised, which al-
leviates the need for any training data. An advantage of prim3D is that it does not need to
recompute similarities after every merge. For n elements, the time complexity of prim3D
is O(n2), whereas recomputing similarities has a worst-case time complexity of O(n3). Re-
garding space complexity, both tubelets and prim3D have a O(n2) worst case complexity.
Even a time efficient implementation for prim3D in a max-heap [15], in the worst case, will
have to store n(n− 1)/2 = O(n2) similarities. Unfortunately, more realistic videos of over
30 seconds may easily contain three hundred thousand trajectories, which would require an
impractical 180GB of memory. Hence, we propose a new method, building on the strong
points of tubelets and prim3D.
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Property Oneata et al., ECCV 2014 [17] Jain et al., CVPR 2014 [9] APT (ours)

Unsupervised
Segmentation free
Time complexity O(n2) O(n3) O(n2)
Space complexity O(n2) O(n2) O(n)

Table 1: Properties of recent spatio-temporal proposal algorithms [9, 17]. APT is de-
signed to include the strong points of existing algorithms: unsupervised, no additional seg-
mentation step, and efficient in time and space.

3.2 Proposals from trajectories with localized SLINK

Data: distance d, trajectory neighbors NN
Result: clusters in pointer representation {Π,Λ}
Π[1] = 1;Λ[1..N] = ∞;M[1..N] = ∞ ;
for i← 2 to N do

Π[i] = i;Λ[i] = ∞;c = 1;
ids = NN[i]; M[ids]=d[i,ids];
while c≤ |ids| do

j = ids[c],q = Π[ j];
if Λ[ j]≥M[ j] then

M[Π[ j]] = min(M[Π[ j]],Λ[ j]);
Λ[ j] = M[ j];Π[ j] = i;

else
M[Π[ j]] = min(M[Π[ j]],M[ j]);

end
if q /∈ ids then

insert q in sorted ids;
end
M[ j] = ∞;c = c+1;

end
for j← 1 to i do

if Λ[ j]≥ Λ[Π[ j]] then
Π[ j] = i;

end
end

end
Algorithm 1: Localized Slink.

Because existing spatio-temporal pro-
posal methods are not suitable for
dense trajectories, we need another
method that can adopt the strongest
points of tubelets [9] and prim3D [17].
We base our method on the SLINK al-
gorithm [21] which iteratively merges
the best pair of similarities in a single-
link hierarchal clustering. SLINK
is unsupervised, does not require re-
computing similarities, has O(n2) time
complexity and crucially only O(n)
space complexity. This adopts all ben-
efits from tubelets and prim3D, while
avoiding their impractical properties.
We summarize the algorithmic proper-
ties of these methods in Table 1.

The similarities that seed the pro-
posal generation are based on im-
proved dense trajectory features [27].
The features cover appearance with
HOG, trajectory shape with TRAJ, mo-
tion with HOF, and change in motion with MBH. In addition, we also use the spatio-temporal
position SPAT. A combination of multiple features by multiplying similarity scores allows
capturing action type variation [9, 17], where more variation improves recall. We experi-
mentally evaluate individual features and their normalizations.

The SLINK algorithm uses a ‘pointer representation’ to index clusters, see [21] for de-
tails. The elegance of this representation is that it can recursively be updated, allowing a
single pass through all neighboring similarities. The pointer representations consists of two
arrays Π and Λ of size n, where n is the number of trajectories. A cluster is represented by
its member with the highest index i, Π[i] is then the cluster (i.e. highest index) that point i
joins, and Λ[i] is the similarity between i and cluster Π[i] when they join. The pointer rep-
resentation describes a hierarchical clustering tree with n clusters. We cut the tree to output
proposals when the difference between two merging clusters is larger than 50 trajectories.
This value was found in practice to give a fair balance between the size of a cluster and the
number of clusters.
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Figure 2: Success and failure case of APT. In the left video our method (blue tube) ignores
the standing person (red tube) and tracks the moving actor. In the right video, there is ample
variation in depth and position yet APT tracks the action well. Our method is intended for
actions and thus works best when motion is present. See Fig 1 for another successful action
localization result.

To enforce spatio-temporal compactness of the proposals we only consider the k spatio-
temporal neighbors of each trajectory. We use efficient approximate k-best NN search with
the Yael library [5]. The original SLINK algorithm, however, takes similarities between all
points into account. We increase the efficiency of the original SLINK algorithm by using a
sorted list of point neighbors, which we can search in O(log(k)). Note that the value k in
the nearest neighbor search is a lower bound on the number of neighbors per point since the
best k neighbors is not a symmetric relation. We will experimentally evaluate various values
of k, and the relation between the temporal axis and the spatial axis for the spatio-temporal
neighbors. Pseudo code for our modified version of SLINK is given in Algorithm 1 and we
will make python code available.

4 Experiments

4.1 Datasets and evaluation
We evaluate on three diverse datasets for action localization: UCF Sports, UCF 101 and
MSR-II. UCF Sports consists of 150 videos extracted from sports broadcasts of varying
resolution; it is trimmed to contain a single action in all frames. UCF101 is collected from
YouTube and has 101 action categories where 24 of them contain localization annotations,
corresponding to 3,204 videos. All UCF101 videos contain exactly one action, most of them
(74.6%) are trimmed to fit the action. In contrast, the MSR-II Action dataset consists of
203 actions in 54 videos where each video has multiple actions of three classes. The actions
are performed in a crowded environment with ample background movement. The MSR-
II videos are relatively long, on average 763 frames, and the videos are untrimmed. Thus
actions are temporary unconstrained which adds temporal localization. Compared to the
trimmed UCF-Sports/UCF101 videos, the untrimmed nature of MSR-II makes this dataset
the most realistic and the most challenging.
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Figure 3: Evaluating APT properties. Analysis of computation time (x-axis) versus recall
(y-axis) for the five base features: SPAT, HOG, HOF, TRAJ, MBH, for various values of k.
Similar marker color denote a similar value of k, while the marker shape connected with
dashed lines represent a single feature. Note that MBH does not perform well on trimmed
UCF-Sports/UCF 101, while MBH is the best for untrimmed MSR-II. We draw 2 conclu-
sions: i) in practice, computation time scales linearly in k; ii) No single feature will lead to
good performance, heterogeneous features are key.

The quality of a proposal P with a ground truth tube G is evaluated with spatio-temporal
tube overlap measured as the average “intersection-over-union" (IoU) score for 2D boxes for
all frames where there is either a ground truth box or a proposal box. More formally, for a
video V of F frames, a tube of bounding boxes is given by (B1,B2, ...BF), where B f = /0, if
there is no action i in frame f . The IoU score between G and P is

IoU(G,P) =
1
|φ | ∑f∈φ

G f ∩Pf

G f ∪Pf
, (1)

where φ is the set of frames where at least one of Pf , G f is not empty. A detection is correct
if the action is correctly predicted and the localization score is accurate, i.e., IoU(G,P)≥ σ .
We set the threshold for the localization score to σ = 0.5 to evaluate recall, as commonly
done for object detection [1, 15, 25]. When comparing with other action localization meth-
ods, we also report on lower σ values if σ ≥ 0.5 is not reported.

4.2 Evaluating APT properties

The effect of the k-NN parameter. The k-parameter sets the number of spatio-temporal
neighbors considered in the grouping. In Fig 3 we illustrate its effect on the computation
time and the recall accuracy. For practical values of k ≤ 30 the computation time is linearly
related to k. The recall accuracy for each single feature is not heavily influenced by the value
of k, from now on we use k = 10.

Which trajectory features to use. We plot recall accuracy for each of the five base
features: SPAT, HOG, HOF, TRAJ, MBH independently in Fig 3. Note the role switch of the
TRAJ and MBH features for trimmed UCF-Sports/UCF101 versus untrimmed MSR-II. The
TRAJ feature performs well on the trimmed UCF-Sports and UCF101, while TRAJ scores
badly on MSR-II. For MSR-II, the best single feature is MBH which performs sub-par on
UCF101/UCF-Sports. The untrimmed videos of MSR-II benefit from motion boundaries for
temporal segmentation while the majority of trimmed videos in UCF101 can focus on spatial
trajectories since temporal segmentation is not an issue in trimmed videos. We conclude
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Figure 4: Evaluating APT properties. Left: Effect of scaling the temporal-axis in APT.
Right: Effect of feature normalization when combining features. Note the conflict for
trimmed (UCF101) vs untrimmed (MSR-II) in both graphs.
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Figure 5: Evaluating APT computation
time on all videos of MSR-II. Note the
log scale on the y-axis. APT is typi-
cally faster than the pre-processing used
for video segmentation (Xu & Corso [32])
in the tubelets localisation proposals [9].
APT is an order of magnitude faster than
the trajectory clustering of Brox & Ma-
lik [2].

that no single feature is best, and heterogeneous features are essential. We use all feature
combinations for generating proposals.

The importance of the time scale. For trimmed videos the temporal axis is not impor-
tant and we evaluate setting the time scale to 0 when computing the kNN. The results in Fig 4
(left) show no effect for UCF-Sports. For UCF101 results improves significantly by ignoring
time, whereas for MSR-II ignoring the time scale reduces performance dramatically. This
shows that temporal modeling is important for untrimmed videos, whereas time should be
ignored for trimmed videos. For APT we ignore the time scale for UCF-Sports and UCF101.

Feature normalization. The dense trajectory features ranges vary. Thus when simi-
larities are combined by multiplication, their weight is not equal. We evaluate two feature
normalization schemes: i) min-max scaling of the similarities and ii) whitening the similari-
ties in a video. The results in Fig 4 (right) show that UCF-Sports is agnostic to normalization.
UCF101 has a preference for whitening, whereas MSR-II has a preference for min-max scal-
ing. This illustrates another difference between trimmed and untrimmed videos, and we use
whitening for UCF-Sports, UCF101 and min-max for MSR-II.

Success and failure cases. In Fig 1 and Fig 2, we show success and failure cases of
APT. When static actions are performed, our method has difficulties finding the action. On
the other hand, APT performs well even with severe camera-motion as in Fig 1 and large
scale changes as in Fig 2. Since APT is based on dense trajectories, which are meant for
action recognition, our proposals perform best when motion is present.
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Figure 6: Comparing action proposals. Top row: recall for a varying threshold σ . Bottom
row: recall per action category, where not all categories have proposals for σ = 0.5. For UCF
Sports, exception for Ride-Horse, we are competitive with others, and even outperforming
all others for Run. For UCF101 and MSR-II we outperform others on all actions.

4.3 Comparing action proposals
Speed. We evaluate computation speed on MSR-II which contains longer videos. Longer
videos have relatively less overhead and thus provide more accurate measurements than short
videos. In Fig 5 we compare the speed of our proposals against flow clustering of Brox
& Malik [2] and the GB segmentation method by Xu & Corso [32]. GB is used as pre-
processing in the spatio-temporal proposals by Jain et al. [9]. APT is typically faster than
pre-processing [32] and an order of magnitude faster than flow clustering [2].

Proposal quality. In Fig 6 we show the proposal quality for the three datasets, including
an analysis of recall per action category.

We first compare our method against an alternative trajectory clustering by Brox & Ma-
lik [2] on all three datasets. We used the author recommended settings, and fit tubes around
the output segment. As can be seen in Fig 6 this method [2] is not well-suited for action pro-
posals as it offers a precise, high-quality object segmentation. The goals for object proposals,
however, are different: 1. a loose bounding box tube instead of a precise segmentation; 2.
multiple hypotheses instead of a single grouping. We conclude that the goals of video seg-
mentation do not necessarily align well with the goals for action proposals. We detail a
comparison with the state-of-the-art per dataset, next.

On UCF Sports we perform best for 9 out of 10 actions. The only exception is Ride-
Horse, where only the fully supervised method of Gkioxari & Malik [7] gives excellent
results, suggesting that this class is hard for unsupervised methods based on motion. For all
other actions our proposals are competitive or improve over the state-of-the-art [7, 9, 17].
For the motion-rich category Run we outperform all other methods, illustrating the power
of dense trajectories to capture motion proposals. For UCF101 and MSR-II we outperform
others on all categories. For UCF 101 we compare against the recent work of Yu & Yuan [33]
who only report recall for 0.1 and 0.05 IoU. We outperform this method with a large margin
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ABO MABO Recall #Proposals

UCF Sports
Brox & Malik, ECCV 2010 [2] 29.84 30.90 17.02 4
Jain et al., CVPR 2014 [9] 63.41 62.71 78.72 1,642
Oneata et al., ECCV 2014 [17] 56.49 55.58 68.09 3,000
Gkioxari & Malik, CVPR 2015 [7] 63.07 62.09 87.23 100
APT (ours) 65.73 64.21 89.36 1,449

UCF 101
Brox & Malik, ECCV 2010 [2] 13.16 12.68 1.40 3
APT (ours) 42.43 41.90 36.84 2,299

MSR-II
Brox & Malik, ECCV 2010 [2] 2.28 2.34 0 6
Jain et al., CVPR 2014 [9] 34.88 34.81 2.96 4,218
Yu & Yuan, CVPR 2015 [33] n.a. n.a. 0 37
APT (ours) 48.02 47.87 44.33 6,706

Table 2: Comparing action propos-
als for commonly used metrics against
other methods, where n.a. denotes not
reported values. ABO is the Average
Best Overlap, MABO the Mean ABO
over all classes, Recall is measured at
an IoU overlap σ ≥ 0.5 and the num-
ber of proposals is averaged per video.
APT outperforms others with a modest
number of proposals.

and also report localization results for IoU ratios up to 1.0. The category-recall is not reported
in [33], thus we do not show per-category results for this method. For the untrimmed MSR-II
dataset we compare against [9, 33]. For more precise localization results on MSR-II with
IoU overlap scores of σ ≥ 0.2 we outperform both methods with a large margin (top right,
Fig 6). The results per category re-iterate this point, where [33] reports no proposals above
the IoU overlap threshold of σ ≥ 0.5.

In Table 2 we summarize proposal results with commonly used metrics. With a modest
number of proposals our method outperforms all others on ABO, MABO and Recall.

4.4 Classifying action proposals
For classification we re-use the improved dense trajectories [27], exploiting exactly the same
trajectory features as used for creating the action proposals. We compute a standard Fisher
vector [16, 18, 27] aggregated over the trajectories that form a proposal. We concatenate all
descriptors to a 426d vector, use PCA to half the dimensionality to 213d and fit 128 GMMs.
For training, we use a one-vs-rest SVM classifier with a Hellinger kernel.

In Fig 7 (left) we show the Area Under the ROC curve for a varying recall threshold σ on
UCF-Sports. The fully supervised method of Gkioxari & Malik [7] gives excellent results.
Their method, however, does not use spatio-temporal proposals, and needs to temporally
aggregate detection results for each class separately. This scales poorly to larger datasets
with more classes. Our results are competitive with the state of the art, while retaining fully
unsupervised action proposals.

For the large UCF 101 dataset we follow [33] and report mean average precision (mAP)
over all 24 classes. In Fig 7 (middle) we show mAP scores for increasing IoU threshold
qualities and compare with the recent work of Yu & Yuan [33] that evaluated on this dataset.
They report mAP for only a single IoU threshold, which we outperform.

For MSR-II we follow standard practice and train on KTH [3, 33]. In Fig 7 (right) we
show mAP scores for a varying IoU threshold. To reduce clutter we only show the best
reported number on this dataset [33]. A comparison with the full state of the art is given in
Table 3, where an IoU threshold of 0.125 is common. We are best for Clap, and second for
Box. On average we outperform all methods on MSR-II.
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Figure 7: Classifying action proposals with a varying IoU threshold σ . Left: AUC on UCF
Sports, the fully supervised method of Gkioxari & Malik [7] is best, we are competitive with
the unsupervised state of the art. Middle: mAP for UCF 101, we outperform the recent
scores on this dataset by Yu & Yuan [33]. Right: mAP for MSR-II, where we outperform
the best results on this set by Yu & Yuan [33]. To reduce clutter for MSR-II we only plot the
best results, others are in Table 3.

Table 3: Classifying ac-
tion proposals on MSR-II
for a threshold of 0.125.
Our average precision
score is best for Clap and
runner-up for Boxing. On
average we outperform all
other methods.

Method Boxing Clap Wave mAP

Cao et al., CVPR 2010 [3] 17.48 13.16 26.71 19.12
Tian et al., CVPR 2013 [22] 38.86 23.91 44.70 35.82
Jain et al., CVPR 2014 [9] 46.00 31.41 85.79 54.40
Yuan et al., TPAMI 2011 [34] 64.90 43.10 64.90 55.30
Wang et al., ECCV 2014 [29] 41.70 50.20 80.90 57.60
Yu & Yuan, CVPR 2015 [33] 67.40 46.60 69.90 61.30
APT (ours) 67.02 78.40 74.14 73.19

5 Conclusion

We describe APT: an apt method for spatio-temporal proposals for action localization based
on the same dense trajectories as proved effective as a video representation for action classi-
fication. By reusing the trajectories, we preempt any pre-processing such as video segmenta-
tion as used by other proposal methods. Our method is efficient and outperforms the state of
the art on localization and classification on three datasets. Results show that APT is particu-
larly effective for realistic untrimmed videos where temporal localization is essential. These
results are promising to facilitate action localization for large realistic video collections.
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