QUG xzz2x15M6, roxsCrrxx 5 O O X 11 T2 T o O S8 2SS xS XSS OS5 22BN S 626222266662 265 s e BaNG s CoxcrBcrsszapembconrs
i szttt mcenoecr] ez et reCCCA TR AR CECoNCaxRPrCrCaSORCERsox 11 oo cCrmmCoriz soexre 22BMQ6CT1GIC. | XSBSCXCSZXZERC. 1 111Cex: |, 1286X26: BEQRXCOSCX27SCCS SSX2SSCazS2rXCaS222CBaMMIMWZ 88562 ED882CE622CSSCCCzxCaME] : 28566222XSBCCH . BOS6EXS.

S izzcrmn1SixcT,  mevecans i
T agtademarz0xsaugbiCToTour e rex: o
QG ama6Cr

M
G . zxsEEsswa!xsxxﬁnxrrzzxr\ TiEmabsczsscin
Tl G Bwmauc 266882

i TX]X] PE6ZXXCRXCCOMBES, CzzCex Pxzcecr
anmnmmnwnwnmxwxwz cghancodrimels!ccaczzzcal

X
P IXXCKGIABBCENZ S CESXTSHE Caiceaexiirs
I rciCacCerirTame Tioms, xdeox bt o monatancrzmitrzaCcon mer, 1€ ranc s mmmmaea
elirelrroocoanissss swect Ter waod1111: gt
it B
Slcumq A Bmaauidcoacua AIOGOAGHAB G
e R R e e e e TR S e
o2, 22N A GO 86 N BBtz S s
usczmmmv T TTxCxr 11 omBS 1zzcxanm]nﬂsﬁssusﬁwisxrxsﬁh
ScH o o et AP TAE O saC e, rexrace
BEEC, 111 rXSB62XCT 62X | XXX T XA PXXXXCCZ2CZ6S2CT WiE|

Pocr
1 XeBEeD Eixu e
xrmsl msmmssscxxsxMmmmxrsskcrrssmxsxzssaxsnwswmw«mwr TrroeacccCormmnss CCCrSSzSONCHBEEE: TS Gl s 1511 TCHMIINT. XSNBEWEXCEC2 WGBS | XSS ECXSEBSSE |x2SEomc. Sca
oAGESG6Exzs e, | EaCCEabi 12C]CagoTEsCCir D] BNECBG Coxrc nzCE T262E2RBRBe: 111X, OB SBISEESE. (Lo aBmMMEIXCr oG CEBCENBS.  IIMB2GoMS 1T SBECXAZSEEQEIME . 527
o msx xxmasxx o drrcrsaanscriirzszacelTiizstiir | me mxscmmxsaaummxs?mem w6S6C e
zecom iCeascatac:

s
FrSx:csz_xmaten T e CSCr 2 GANC BB Y. CTRT XEAOREBOSCI
Bz

T, OCZOMMMNG  XCOXRXGE 1xr
cabaicr agam:

u: ,mmsmm SR b
STl 1”cocCrsgammpnmammn

N R S R e

i T PXC KGRI CEC TXECFCCES 1 X IECKTX X2 | SN £ XEB G861 CECCR: Gl

i1 BCxCr H(xr((hr('r((xxxxnxxxz(rxx((hhx\h CCT X BB BBQNOQQBMAMIAZ 171 18

2xzsy <\ T rXT P £ IXCSXCZCS2XCOXT 1 PG i

CTxeC rrrarr el rCiTXroor 11008621 - | Coonrxaxbonceli 1 xEwaouic’
cpcairccorcicescens, Ccixrexd it

<

i

et A1 1Ca 20506 1A 3o Lo SHEsSomBCEEaCEoesr] osnabr xCa
e e T e L T i

TzciTszoxrzzbest el pad wmﬂ((yx((xx(x((rx(xL
rCanxr Xl 2xCa i

nmxxcmmsm uxcmmm Tz el 15 C X Conronraon NS:
CronoonC P T TrccncRiccc wan dorci: T it oo rcl i
i

Zecsscisanc, Vzl((lxd(rxr!(zxxxxnxx(xzs ricesc icelx s(x\xmmmmm@mmmumummmmwxEmmnw!nwn@nmn@damxxEmwnszssr

So0oxoxi ST L1 e MDA 4
DoazxclEm wzz(dx\xxn(s(!xz(x\|(zxxrn s ol xm(x(yr\lle\:rxx(zw1(5[5(55s!sszxssz(cssssztcxxxsmssxszxxzﬁu| S Caar ] ooz (mm IO ErACONCZCIXCaXE I CaraBz) | 68
1 xcoed T rracaccsrt lecexr o T re e X6 POXCCTXx SCICXEw

w1 MNM‘ JTrIxCo xx(ﬂ(xxx(x\(x A Metord o acicson

T A AR CErCar AR A A AN T FECKESK] GO BATOM x| LA TARCL B BN DX XA S SRS AT 111258

MR rrXzZCxx <
B P T P e MR, xMMMx(xxx((xuﬁssx(x\xx((((r(z(z(xx&(x(zx\ it rectixcclixesclectcsenaseaciaccascecclumst: lacrcour manamocaumd Ixrcx ] B RO XTI LCINE o COXKEORT CBRRCET 211 6aMar 11626
rix czxxzesﬁEmmwmwmmwmmwmnmnmﬂmwwwsmﬂ585565SGAWBAS\1 e M HAL ulx sananic T5xx W1 xz8Cs
- T 1 ot i stei xmm adr i1 soxrcrcCoral o iumioc uraccocConrtCrme buam e
i1 xcoec xxxEn X! muwzséz:az:zwswzmz:am 65685
irsa: SQuANMY AR SN
T x(c EQUIWEBQNS ummnmumnmﬂmamam»mam P mmmw

avecs!
socxmarrashy PCrTI T kzzckraciXexch T ixbzoxtonn T CEN TS BbeC xR Emar: soxcol 00 i Qe 3 St 2

i B e T e T s h e er Ao T TCSCaBeSont 1((z(zvu\(z(yﬂ1Sz(((x\r(xx(zsz(xrx((xﬂrurz(xr(z((z((rrxr(x(s(x(x!rnzSBEEEzSz(xxxx(rrM@ﬂnﬁ((x(zxxzx((zr\((s FCCLBE 52 CEC2CCCOC SEANOQBAAAMMG | G5r2CCx IMNBIQB0GQ0M | 1 XSBSERBSSESMUEC FamB0S

ezt o 1cw:\cr\r5r<65x<rcs\cs 2225 6XrEIC: PO Conri 11111101 TxrxCri1Czrixcr TP z e 22000251 Ca2xb2 WS XA X2ZC XXX BN 10T CxxCCx UMOQMNQOQQQMIX 6822 S6SEXYMMSTCES G

Yoz 8me. co1azzurr o irCsicazcmnesccocrcame S OS] Cr TS TN TA GO 1T CaCE2Se A TCEH FTACEr T IXCCS PN eNc] |r(zzx(ernE(\:(((zz((xxsanr C2CCBCICSCCCCXC2CCSnxzXCUINOB0SBQUGNI | X255 10MOQNOG0Q0M] | rXBBE6BZ6CEM MG CaEnEw

o, ec2 i CSSSCSSCHCr Trxxzz282x {CcTexIcazammmmsImaE o 1670 rSTOxlmin] 2 TCCS P BTIaCCOBC Tomg N 2521 XONQQMQOGMIMBC 1 Buxz62CMMBXCWWEEW

Jxnedax i rxxxxnxszEzzSES(uxx((Hxrrsﬁszﬂ(\[mmnlrxﬁsvxzoﬂmwmm QUANMEQaBEaIMG0a CSXT2STIZMOXEMS  TSCxrS2] 22X SOxXCACSZaNAAA00000000 ¢ |1 XMGQIQ0OBaBWABCIBENSENSE) 5665

xrrixccsae; B oS CCrA o

B e e R A U e s P A o S o AL T A e S LA S o A AN s R R AR 23t AL RS S e S M el i i
X001 XEBCT | BMMMQZXCIX AT X ek BCECCeC e MMM 2 X £ DX ECEXECCCE 2R COMONG: FOB6 2T CHIE] 1CB5S 220Nk | XSCCE NGB OWIQBNBE BES2EXCOB 2557522525 ML ZEDES 2T BQUET XX CCSXEQMEH IXBZABINEB  CErXE2CCECT MBI ) FE5535CECRIA0 | SCEECNkCCT 22ComOANG  CoZOAME | 55 6B6BOESE BHamar 832285

J.C. van Gemert
April 2003






X

(t!

X
UNIVERSITEIT VAN AMSTERDAM

Retrieving Images as Text

Combining Images and Text for Information Retrieval
Master’s thesis Artificial Intelligence, specialization Logic.

Under supervision of Dr. Jan-Mark Geusebroek

April 2003

by

Johannes Christianus van Gemert

Intelligent Sensory Information Systems
Informatics Institute
Faculty of Science

Universiteit van Amsterdam






aan ons pap, en ons mam






Abstract

Both interpretations of the title Retrieving Images as Text are considered in this thesis. We use
text retrieval methods for content based image retrieval and we introduce a method for retrieving
and combining images and text. A new method for image retrieval is introduced using Gaussian
color scale space. It uses local features to describe small pieces of images where each piece is
labeled. Such a label is denoted a 'word’ of the image. LSI is applied on the words and yields
good general results on a dataset for content based image retrieval and particularly on occluded
images and camera rotated images, demonstrating the locality of the features. Images and text
are combined by concatenating the words in an image to the textual words describing the image.
When LSI is applied on this combined semantic space, relations are learned between text and text,

image and image and text and image. Some examples demonstrate the usefulness of the method.

Keywords: Information Retrieval, Content Based Image Retrieval, Digital Libraries, Multimodal

Retrieval, Combining Images and Text, Image Semantics, Local Image Color Structure.
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Chapter 1

Introduction

It is said that an image contains more information than a thousand words. However, I have
yet to see the first master’s thesis written in images alone. Textual information adds significant
information to an image, and vice-versa. Much can be gained by linking images to text. When
images and text occur together they most likely have something in common with one another.
It would be useful to learn this relationship. Both modalities have their own characteristics,

advantages and disadvantages. By combining them, parts of their disadvantages can be overcome.

With the advance of the digital revolution, the vast information on the Internet has come available
to a large public. Keyword search engines like Googleﬂ are successfully applied to search through
billions of web pages. However, multimedia documents are not easily described by keywords
alone. New techniques for navigating this space are required, combining information found in all

modalities.

Adding meaning to digital images is a hard problem. First, the sensory gap denotes the difference
between the real object in the world and the computational representation of this object. Moreover,
the semantic gap is the disparity between what one can extract from the visual data and the
meaning a human being can distil from an image [32]. Complementing an image with words
provides significant semantics. In image search engines based on the query-by-example strategy
it is hard to find an initial image to give to the system as an example to find similar images. By
adding text to images, the user can type some words and find relevant images. Adding visual
information to words will also help to distinguish specific visual features. For example searching
for a red bike using merely keywords will only succeed when such an image is sufficiently annotated
with 'red bike’. Using keywords and the image content, in this case its color, will substantially

narrow the search.

Several practical applications for linking images and text may be identified [I]. Numerous organi-
zations manage collections of images for internal use. Automatic image annotation can help such
organizations to search and manage their collections. If people are not familiar with an image
collection, they may wish to browse it. Browsing is a natural way for people to get acquainted
with an image collection. In order to make this manageable the collection can be organized in
a way that makes sense. Collecting images that look similar and are similarly annotated would

provide a good start for organizing images.

Thttp://www.google.com/
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The main objective of this thesis is to create an information retrieval system that links visual
features of an image and words of the corresponding caption together, in order to take advantage
of the semantics added by combining both modalities. See figure [I.1] for a constructed example of

the additional semantics gained by combining words and images.

Query Result

ad  «gike

Bike field woman Bike black Bike garage outside

Figure 1.1: Constructed example of querying an image database. (a) using text only, (b) using
images only, (c) combining images and text.

Words are made up of single letters and are therefore discrete in nature. An image is represented
by pixels, however it’s a continuous function. Therefore we propose to discretize the local image
structure by approximating most of the local neighborhood of a pixel. These image patches
represent the vocabulary of the images. Because an entire image is described by a single caption it
is hard to learn which parts of an image belong to which words, if any direct relation exists at all.
When images and words frequently occur together, there most likely is a relation between them.
A learning algorithm can be used to cluster the words and the image patches. Latent Semantic
Indexing (LSI) learns the most significant linear relationships between words and documents.
Where a document in our case contains words and image patches. LSI maps frequently co-
occurring terms and image patches on a concept. Ideally, this creates a single concept for term

synonyms and image patches representing this concept.

1.2 Organization

In the next chapter we will introduce some history and background of information retrieval. Text
retrieval and content based image retrieval are reviewed. Moreover, the textual model and the
model used to learn relationships between image and text is presented in detail. Chapter [3| will

describe the new method for image retrieval and the integration of words in an image with the
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words in a text. Chapter [] presents an evaluation of the image retrieval scheme and some examples
of text retrieval, image retrieval and the combination of text and image retrieval. Chapter |5| will

end the thesis by presenting the conclusions and the discussion.
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Chapter 2

Information Retrieval

This chapter will introduce the main concepts of information retrieval, in particular text retrieval
and content based image retrieval. Some history and background of information retrieval is pre-
sented, popular text retrieval schemes are described and a small review of content based image
retrieval is given. The textual model as used in this thesis and the model used to learn relationships

between image and text is presented in detail.

2.1 Introduction to Information Retrieval

What is information? The answer to this question seems imperative to build a system which
main function is to retrieve it. An easy answer is not available. Many disciplines of science tried
to conjure a definition. Shannon [30] describes a definition of information from a probabilistic
viewpoint. Bateman [2] gives a more philosophical definition. Shannon claims that information
is that which reduces uncertainty and Bateman states that information is that which changes us.
Both definitions are very subjective. Information depends on the user. The first use of the term
‘information retrieval’ was in 1951 by Calvin N. Mooers. He intended the term to describe the
conversion of a request for information into a useful set of references. He devised the term during
the completion of his MIT master’s thesis [24] in 1947 on zatocoding, an information retrieval
system using punch cards. Everyone who has used a search-engine on the Internet is familiar with

an information retrieval system. A schematic view of an information retrieval system is shown in
figure

Information retrieval is not database querying. Databases work with highly structured informa-
tion. The data model of a specific database determines the possible queries a user can ask. Usually
the form of the query will have to follow the data modeﬂ A database is used where exact match-
ing is required. Information retrieval models use highly ambiguous queries and need some amount

of fuzziness as the user defines the search terms.

The key notion of information retrieval is that relevance is defined in terms of similarity. This

assumes that if a document is similar to a query it is relevant. Similarity can be defined in several

1One may build additional layers upon the database, like a GUT or a natural language interface, but these
abstractions must be translatable to the data model.
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Reyyord Indexed
Query’ Documents

Co@are

Retrieved
Fee: ack <—— Documents

Figure 2.1: Schematic overview of an information retrieval system. The system has indexed a large
set of documents. The user can query the system using keywords, whereupon the system retrieves
the most relevant documents to this query. Some systems allow the user to provide feedback to
the system about the relevancy of the retrieved documents. In this way, the system can take the
preference of the user into account.

ways, depending on the modality of the information. For text retrieval, similarity is usually
measured in the overlap of the words used in both query and document. For image retrieval,
similarity is defined in how much an example image looks like an indexed image. The need to define
relevance as similarity originates from the limited semantic value a computer can extract from a
document. For text, the natural language processing community [12}[22] tries to find the meaning
of a sentence using methods like part-of-speech tagging, parsing and semantic interpretation.
Each sub-field has impressive results on limited domains, however, truly understanding generic
sentences is an unsolved problem. Extracting the semantics for images is an even harder problem.
For text in general, people tend to agree on the meaning of a given text. A language is a system
of communication between people. Images can also be used in communication, think of sketches
and technical drawings. However, a key difference between images and language is that the visual
system is primary used to deal with the physical world, not for communication between people. For
an image, different people see and notice different things. The information a system can extract
from an image is even worse, as humans have substantial a-priori knowledge of the surrounding
world. This discrepancy between human interpretation and extracted information is known as the
semantic gap [32]. In addition to the semantic gap there is the lack of information inherent to using
images of objects in stead of using the objects themselves. An image has a certain illumination,
camera viewpoint, noise etc. This difference between real world objects and the information in a

computational description derived from a recording of that scene is known as the sensory gap.

Information retrieval is historically linked to text retrieval. In the early days, the limited computer
capacity restrained the processing of other sources of information. Examples of other media types
are images, video, speech etc. We will proceed with a small overview of text retrieval methods,

followed by an overview of image retrieval.
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2.2 Text Retrieval

A document is relevant to a query if they are similar. Many approaches determine the similarity
of a query to a document based on the words that are used. Most models use a bag-of-words
approach. This means that the order between words is lost. It is surprising that this approach

works successfully, as the following sentence&ﬂ are considered equivalent:

Information retrieval, embraces the intellectual aspects of the description of information and its specification for

search, and also whatever systems, techniques, or machines that are employed to carry out the operation.

Also and and are aspects carry description embraces employed for information information intellectual its machines

of of operation or out retrieval search specification systems techniques that the the the to whatever

For human beings it is hard to distil the meaning of the second sentence. According to bag-of-words

models they are equal.

Techniques from Natural Language Processing (NLP) [22] can be used to aid text retrieval. Ac-
cessing words in a document presumes that the input text is dividable in distinct words. This
process is referred to as tokenization. The main cue of word separation in English is the occurrence
of a space or a tab between words, however this is not necessarily reliable. Problematic words
for tokenization are words with periods as in ’etc.’, with apostrophes like 'isn’t’, with the use
of hyphenation like 'bag-of-words’, with jargon as in 'Micro$oft’. Words are subject to mor-
phological changes, depending on their place and use in a sentence. The different representations
can be stemmed to their basic form. Words like 'sit, sits, sat’ can be represented by ’sit’.
However, the use of stemming is debatable. As stemming is not perfect, incorrect documents can
be retrieved. Examples of problematic word/stem pairs are ’police/policy, business/busy’.
Moreover, some terms are not suitable for stemming. A term like 'operating systems’ can be
successfully stemmed, yet the stemmed form loses its meaning. Function words or stop words
are only used to glue a sentence together and consequently dispensable in a bag-of-words model.
Examples of stop words are ’a, the, therefore, who’. Removal of stop words reduces the mem-
ory requirements and increases the computation speed. Stop lists are commonly available on the

Internet.

A popular choice for text retrieval is the Boolean model. This model treats a document as a set
of words and uses set-theoretical operators. A bag of words models words and their occurrence
counts where a set of words removes count information. The terms in a query are linked together
with the Boolean operators AND, OR and NOT. They are defined in the following way:

ti and t9 = {d|t1 S d} N {d|t2 S d} s
tiorty = {d|t1 S d} @] {dltg S d} s
t1 not to = {d|t1 S d} \ {d|t2 S d} s

where d are documents, and t are terms. This model gives a user robust control over the retrieved
documents. However, non-expert users find it hard to formulate the queries they want. Documents
are, or are not, retrieved based on the occurrence of a word. A single wrong word in a document

could rank a relevant document non-relevant. Moreover, the retrieved documents are all equally

2Quoted from Calvin Mooers.
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ranked and the number of retrieved documents can vary from the whole collection to a single
document.

A better alternative is given by the probabilistic retrieval model surveyed in [11]. The model tries
to estimate the probability that a specific document d,,, will be judged relevant to a specific query

ak
P(R) = P(Rlqk,dm) - (2.1)

The model is based on the assumption that the terms are distributed differently in relevant and

non-relevant documents. To model this assumption the notion of odds O(R) is often used. Where

o(r) = )

T (2.2)

computes the ratio between the probability of a document being relevant and the probability that
the document is not relevant. The bag-of-words notion is present in the assumption that the
terms are probabilistic independent of each other. As this model uses the probability of relevance,
adjusting the odds can incorporate user feedback by letting the user weigh the relevance of the

retrieved documents.

A recent approach uses language models for retrieval, as surveyed by [I8]. A language model tries
to model the terminology used in a document. When language models are used for retrieval the
probability that the language model of a document generates a query is computed. As unigram
models (n-gram models with n=1) are used, this model follows the bag-of-words approach. N-
grams are commonly used in natural language processing and model the probability of a word given
the previous n words occurring before the word: P(W;|W;_1,W;_o,...,W;_,). The probability
that a query (T1,T%,...,Tn) of length n is sampled from a document D is defined by

P(Th,1y,...,Tn|D) = H((l = A)P(T;) + (1= N)P(T|D) (2.3)
i=1

where P(T) is the probability of drawing a term at random, P(T'|D) is the probability of drawing

a random term from document D and ); is the user assigned relevance weight of the term.

2.3 Content Based Image Retrieval

In parallel to text retrieval, image retrieval considers an image similar to a query image if they look
similar. This section concentrates on information retrieval aspects inherent to image retrieval. An
overview paper by Smeulders et al. [32] giving a review of over 200 references in image retrieval
is used as a guide. Low level image elements are defined in terms of color, shape and texture.
The content of an image can be described by aggregating the low-level image properties to image
features. The features can be used to compute similarity between images. Interaction and user

feedback can be used to tune the retrieval system to the needs of the user.

Low-level image properties are distinguished in color, local shape and texture. Color lifts the one-
dimensional gray world that we perceive at night to the three-dimensional spectral spectacle we
see during the day. Color is a strong cue for object similarity. Two aspects of color are described:

the variation of the recorded color and the human perception of color. Variations in the recording

10
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can be caused by a different viewpoint, the position of the illumination source, the spectrum of the
illuminant and the way the light interacts with the object. Humans have the ability to perceive
the same apparent color with variations in the illumination, which change the physical spectrum

of the perceived light. This ability is named color constancy.

Local shape denotes all properties that capture conspicuous geometric details in the image. For
example edges, corners, curvature. The Gaussian scale space theory is the complete and unique
primary step in preattentive vision, capturing all local information. Some elaboration on scale

space theory is presented in section [3.2] p.

Texture is defined as all what is left after color and local shape have been considered or it is defined
by terms as structure and randomness. Typically, texture is composed of a repetitive seemingly

random pattern of smaller elements, like the surface of a wall or the fabric of a cloth.

Invariance plays an important role in measuring low level image properties. The aim of invariant
descriptions is to identify objects, no matter from how and where they are observed, at the loss of
some of the information content. E.g. color invariants try to measure image content disregarding

illumination differences. More information about color and rotational invariants is described in
section [3.2] p. [25]

An image is often divided in parts. Four approaches are identified: strong segmentation, weak
segmentation, signs and partitioning. Strong segmentation aims at a complete separation of the
objects from the background. This is not likely to succeed for general domains. Weak segmentation
groups image data in conspicuous regions each homogenous according to some criterion. Signs are
objects with a near fixed shape, like an eye or a traffic light, only applicable in a narrow domain.

A partitioning divides the image regardless of the data in predefined regions, e.g. 3x3 blocks.

Low level image properties are represented in features, describing the content of an image. Different
feature representations are considered: global, salient or shape. Global features aggregate the
spatial information of a partitioning, describing the entire image regardless of the image data. An
alternative is given by using salient features. Salient features use weak segmentation, distilling
the information in the image in a limited number of feature values. This reduction motivates the
use of the most informative parts of the image. Shape features are used with strong segmentation
describing the identified object. The brittleness of strong segmentation constrains this approach

to narrow domains.

Similarity of feature values is a measure of image similarity. Computing the distance between fea-
tures creates an ordering of all images based on some similarity measure. Some distance measures
are reported. If F, and F; are histograms, their distance can be measured as the Mahalanobis dis-
tance (F, — Fy)'S~1(F, — F,), where ¥ is the covariance matrix between F, and F, the histogram
intersection Y . | (), Fu(i), F,(i) and the Minkowski distance Y, |F, (i) — Fy()].

2.4 Vector Space Model

Text is modeled using a bag-of-words approach. Besides the loss of all sentence structure, each
word is considered independent of all the other words. This bag-of-words approach does not reflect
reality. The occurrence of the term ’retrieval’ in a document will give the word ’information’

a higher probability of co-occurring in the document than any random word. Moreover, synonyms

11



CHAPTER 2. INFORMATION RETRIEVAL

have exactly the same meaning but a complete different form. Words are not independent of each
other. This motivates the modeling of a co-occurrence relationship. Latent Semantic Indexing
(LSI) tries to model the underlying relations between words and between documents. In what
follows we will describe the bag-of-words model used for text and the extension of this model to
LSI.

The bag-of-words model used in this thesis for text, is the Vector Space Model [26]. The model

is based on linear algebra. A document is modeled as a vector of words where each word is a

dimension in Euclidean space. Let T = {t!,#2,...,t"} denote the set of terms in the collection.
Then we can represent the terms djT in document d; as a vector & = (z1,2,...,%,) with:
toifttedt
T; = U (2.4)
0 it &d; .

Where té- represents the frequency of term ¢' in document d;. Combining all document vectors

creates a term-document matrix. An example of such a matrix is shown in figure

B8 & 5
T 13|04 ]........
T2[2]0 0]0 ]| i
T3j0|1|0f0]
Tal0(0 1|2
Tn

Figure 2.2: A Term Document matrix.

Similarity S of a query to a document is defined as the Euclidean distance of the query vector ¢

to a document vector d:
S=q-d |, (2.5)

where - denotes the inner product.

The advantages of the vector space model include a ranked result of the retrieved documents, the
possibility to enter free text and no strict matching of the documents. The ranked result is an
ordering on the distance of a document to the query vector. Such an ordering will determine the
similarity of a document to the query. Free text search eliminates the use of a difficult query
language as in the Boolean model. The matching is not strict, in the sense that a query containing

multiple words will also retrieve documents where not all words are present.

Depending on the context, a word has an amount of information. In an archive about information
retrieval, the word 'retrieval’ does not add much information about this document, as the word
‘retrieval’ is very likely to appear in many documents in the collection. A term can be given a
weight, depending on its information content. A weighting scheme has two components: a global
weight and a local weight. The global importance of a term is indicating its overall importance
in the entire collection, weighting all occurrences of the term with the same value. Local term
weighting measures the importance of the term in a document. The value for a term i in a

document j is L(Z,j) * G(i), where L(i,7) is the local weighting for term ¢ in document j and
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2.5. LATENT SEMANTIC INDEXING

G(7) is the global weight. Several different term weighting schemes have been developed. In [9]
several methods are tested in combination with LSI. A method based on Shannon’s entropy [30]
performs best. The words are weighed in an information theoretical manner where words with high
probability get a low weight. The rationale is that words that occur frequently in the complete
collection have low information content. However, if a single document contains many occurrences
of a word, the document is probably relevant. Taken both considerations into account, the weight

w; of a term 7 in a document j is given by

X P(t)) log(P(t))

wh= L(i,j)*G(i) = [log(t;— + 1)} * {1 - Z , (2.6)

log(ndoc)

where t;. is the number of times term ¢* occurs in document d;, ndoc is the number of documents in
the collection and P(t}) is the probability of ¢}, P(t;) =t/ f*, where f* denotes the total number
of times word t* occurs in the collection. The reason for incrementing the number of terms in
document d; with one in the local weight, is to avoid log(0) = co. The logarithms dampen the
effect of very high term frequencies. By subtracting the entropy in the global weight from a
constant, a minimum weight is assigned to terms that are equally distributed over documents and

maximum weight to terms that are concentrated in a few documents.

Large documents containing much more words are more likely to be closer to a query vector. They
have a higher probability to contain a query word because they are made up of many words. As
this is unfair for smaller documents, the document and query vectors are scaled to unity length.
This lowers the weights of the terms in large documents. Dividing the document vector by its

length performs scaling:

- d,,

"

(2.7)

When dealing with vectors of size 1, the cosine of the angle between ¢ and d is equivalent to the

Euclidean distance, scaling the similarity between -1 and 1:

=

S =Cos(q,d) . (2.8)

2.5 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [8] models the underlying, latent, relation between documents and
words. A problem with the Vector Space Model is that the words used in a query are often not
the same as the words used in a relevant document. Similar words can have multiple meanings
and different words can have the same meaning. These phenomena are named polysemy and
synonymy, respectively. For example the words car and automobile are synonyms where the
polysemous word jaguar can either mean a large cat or can denote a type of car. The goal of LSI
is to find a model of the true relationships between terms and documents.

In order to achieve this goal, a truncated Singular Value Decomposition (SVD) is applied on
the term-document matrix. In accordance with the original paper [8 we do not stem words to

their basic form. We use a stop list of 571 common words and omit terms occurring in only one
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CHAPTER 2. INFORMATION RETRIEVAL

document, as they contribute little or nothing to the SVD solution. The truncated SVD projects
the high dimensional term-document matrix to a matrix with less dimensions. This reduced
matrix is the closest matrix in the reduced space, in a least-square sense, to the original matrix.
An example of dimension reduction from two dimensions to 1 dimension is displayed in figure 2.3

Figure 2.3: An example of dimension reduction, from 2 dimensions to 1 dimension. (a) Two-
dimensional datapoints. (b) Rotating the data so the vectors responsible for the most variation
are perpendicular. (c) Reducing 2 dimensions to 1 dimension so that the dimension responsible
for the most variation is preserved.

Singular Value Decomposition is a generalization of Factor Analysis. In Factor Analysis a square
n dimensional matrix is decomposed in 2 matrices containing the eigenvectors and the eigenvalues
of the original matrix. The eigenvectors are all perpendicular to each other and span the high
dimensional space described by the original matrix. Each eigenvector is accompanied with an
eigenvalue. This value denotes the size of the eigenvector. This size corresponds with the variation

of the dimension of the eigenvector found in the original matrix.

Definition 2.5.1 (eigenvector and eigenvalue) If A is a n X n matriz, then a nonzero vector

x in R™ is called an eigenvector of A if x is a scalar multiple of x; that is,

Az =z (2.9)

for some scalar A. The scalar X is called an eigenvalue of A, and z is said to be an eigenvector

of A corresponding to .
Singular Value Decomposition extends Factor Analysis to deal with non-square, arbitrary rectan-
gular matrices. The m x n dimensional matrix is decomposed in 3 matrices. Two matrices contain

the singular vectors and one diagonal matrix the singular values.

Definition 2.5.2 (Singular Value Decomposition) The Singular Value Decomposition of an

m X n matriz of full rank A (with n > m) is given by

A=7TSD" | (2.10)

where T is an orthonormal m x m matriz, D' is an orthonormal n x n matriz and S is a m X n

diagonal matriz. S = diag(o1,02,...,0,) ordered so, that o1 > g9 > ...0p

The generalization of Factor Analysis is based on the fact that any matrix multiplied with its

transposed is a square matrix. When the matrix A is not of full rank, SVD will reduce dependent
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2.5. LATENT SEMANTIC INDEXING

vectors to zero as they are a linear combination of other vectors. The matrix 7 contains the
eigenvectors of the square matrix AA" and D contains the eigenvectors of the square matrix A*A.

In both cases, the diagonal matrix S? contains the eigenvalues.

SVD allows a simple strategy for an optimal approximate fit using smaller matrices. If the singular
values in S are ordered by size, the first k largest values may be kept and the (n — k) lower values
set to zero. This gives an approximate diagonal matrix S. The product 78D! of this matrices is
a matrix A which is only approximately equal to A, and is of rank k. It can be shown that the
new matrix A is the matrix of rank k, which is closest in the least squares sense to .A. This yields
the new reduced model:

A~ A=TSD' . (2.11)

Setting values to zero in the diagonal matrix S will set several rows and columns of the matrices 7
and D to zero. The model can be simplified by deleting the rows and columns of all the matrices,
which will be set to zero. Matrix S will become a k x k diagonal matrix, 7 will become a m x k
matrix and D will reduce to a k x n matrix.

The choice of the value k is critical for good results. Ideally, we want a value of k that is large
enough to fit all the real structure in the data, but small enough so that we do not overfit the
data. Displaying the values in S gives some idea where a cut-off could take place. The lower the
values, the less variation is present in the data. A more theoretical sound approach can be taken
using the minimum description length (MDL) method [I7]. The MDL approach deals with the
dimension selection problem by taken into account both the length of the model and the length
of the description of the data using this model. A generic model will be small but needs much
space to describe the data. An overfitting model on the other hand will reduce the description of
the data, but this will use a large model. The optimal solution will be a small model that still
accurately describes the data. Hence, using the smallest combination of model and description of

the data with the model will give a good value for dimensional reduction.

How do we compare a query to the documents in the reduced space? We start with its term vector
X, in the non-reduced space and transform it to a pseudo-document D, in the reduced space that
we can use just like a row of D. In a non-reduced space, an existing document X; would map to
its corresponding row D;. By rewriting the equations we can arrive at a formula for computing
D when X', 7 and S are given. As the derivation is not given in the original paper we will give it
here:

= TSD! (deﬁnltlon SVD)

X = T(DSYHt (A'B' = (BA)", rewrite D' to D)

X = T(DS)! (St S, S is a diagonalmatrix)
_ (DS (A'B' = (BA))

X'=  DST* (rewrote D' to D)

X'T = DS (TT" = I,as T is orthonormal)
XiTS™! = D (S71s =1

= X'TS™! (Change sides)

15



CHAPTER 2. INFORMATION RETRIEVAL

This last formula to calculate a given query vector X; to a row D, in D is also valid for the reduced

space, which gives the formula:

Dy =X!TS™' . (2.12)

Determining the similarity of documents ¢ and j is done by calculating the dot product of rows
and j of matrix DS. As described in the previous section, the matrix D contains the eigenvectors
of the square matrix A* A which contains the dot product values of the document vectors with the
document vectors. The matrix D is scaled to unit length by the SVD. To scale the matrix D to
proportion it has to be multiplied with the corresponding singular values found in § . Comparing
document i with document j in matrix D is just taking the dot product of row ¢ with row j in
the matrix DS. In this way, a query can be mapped in the low dimensional space and compared
to indexed documents.

It is also possible to calculate the r most relevant terms to the query. When a query vector is
projected in the reduced space, it is possible to construct a new row in the approximate matrix
A which corresponds with this query where the matrix A is the new (term x document) matrix
approximating the original matrix .A. This query vector in the reduced space contains a value for
each term that denotes its relative importance, compared to the other terms. When the first r
most relevant terms are required, the values have to be sorted, and the first r term vectors will

represent the most relevant terms. Computing a new row flq from fl, corresponding to a query ¢
follows by using D}, rather than D in formula

A, =TS8D! . (2.13)

Providing the user with the most relevant terms adds extra information compared to only retrieving
the documents. The user may see related words to use in subsequent queries and gets information
about what the system ’thinks’ is important. The latter gives a user more understanding why the

system retrieves certain documents.

This chapter provides the methodology to learn relations between entities. The vector space model
treats a document as a bag of words where the words are independent. LSI is used to learn the
relation between the documents and words. The next chapter will decompose an image in words,

making the models as introduced for text applicable on images.
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Chapter 3

Visual Model

This chapter introduces a new image retrieval scheme, based on Latent Semantic Indexing applied
on invariant local color structure. The same bag-of-words approach as described in chapter |2 is

used, where the order of the words does not matter.

Global features are very popular in content based image retrieval. In contrast with global features,
local descriptors are very suitable both for image retrieval as for the equivalent of a word in an
image. Global features are highly sensitive to noise. Object occlusion and image additions distort
the global shape, texture or color information of the image. When part of the image is not visible
due to occlusion the global description of the image lacks this information. Moreover, in a global
model of an image the object and the background information are merged, in which case the object
representation depends of the background. Some examples of the problems encountered in image
retrieval based on global features are shown in figure

Figure 3.1: Examples of problems with image retrieval with global features. (a) The original
image, (b) adding information to the image (¢) occluding the object (d) both adding information
to the image as occluding the object.

The problem can be solved by grouping part of the data, hence segmenting the image into re-
gions [32]. However, a strong segmentation of an arbitrary image is not likely to succeed. Segmen-
tation is unreliable and results in incoherent fragmented regions. Poor segmentation can result in
inconsistent regions for further similarity matching. We believe that for a generic image retrieval

scheme, local features are required.

Words bind their underlying characters to a single meaningful entity. The same is required for
images. Not a single pixel should be used, rather a small patch of pixels, capturing the local

structure of the image. Using only pixel values in a bag-of-words or histogram approach will
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CHAPTER 3. VISUAL MODEL

remove too much structure from the image, nevertheless Swain and Ballard [35] use this approach
successfully in object recognition. By using only pixel color values the images a, b and c in
figure are considered equivalent. Clearly image b has all spatial structure removed. When
using pixel blocks, images a and c in figure [3.2| are similar. There is still a lot of variation between
both images but compared to image b they are much more alike. The overlap at the boundaries
between the patches introduces spatial correlation between the blocks. This correlation makes it
possible to reconstruct the original image in fig from the jigsaw puzzle in fig [3.2p.

BOERENCAKE

a b C

Figure 3.2: Three equivalent images (a) The original image, (b) the same image using a bag-of-
words approach with pixel values (c) the same image using a bag-of-words approach with blocks
of pixels.

3.1 Literature Overview

Several papers in the literature propose local features that may be used as the words’ in an image.
A popular method is to tessellate the image in square blocks of pixels, and then describe each block
using color, texture or shape features. In [2I] such a tessellation is used in the construction of
visual keywords. They define a visual keyword as a manually constructed set of pixel blocks each
set containing similar semantic concepts like face, crowd, building. Each keyword has a vector of
image features consisting of color features in YIQ space and Gabor filters for texture information.
Visual keywords are used to label each block of an image using a fuzzy membership algorithm.
They aim at adding meaning to images by using semantic concepts in contrast to low level image
features. In [33] text retrieval techniques like inverted files, term weighing and relevance feedback
are applied on tessellated blocks of the image. Inverted files make high dimensional feature spaces
accessible, while term weighing and relevance feedback are used to determine important blocks.
The features used are HSV color and Gabor texture filters. Zhu et al. [38] propose keyblock-based
image retrieval. They denote a keyblock as the representative of an unsupervised clustering of
pixel blocks. Each pixel blocks in an image is then labeled with their corresponding keyblock.
Local spatial correlation between keyblocks is modeled with a n-gram structure (see section
p. . Using tessellated blocks of pixels has some drawbacks, as these methods use no color
invariance nor 2D rotational invariance. Translational invariance is limited to the case where an
entire block has changed position. Identical objects photographed upside down and under different
light intensity will yield different representations.

A different approach by Schmid et al. [28] uses local gray value invariant salient points for image
retrieval. Salient points are local features with high informational content, in their case points

where the signal changes in two directions. For these salient points, the third order local 2D
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rotational invariant jet is computed at several scales. Their method deals with problems as partial
matching and occluded images. A problem with this approach is misdetection of the salient points,
which are not guaranteed to be the same after a rotation of the image. Moreover, the salient points
are typically found at the edges and corners of the object. When the object is placed in a different
background, as for example figure (b), the corners and edges are exactly the points where the

most change occurs. Hence, the algorithm may fail.

The misdetection of salient points is circumvented by taking histograms of local multi scale gray
value structure information for every pixel in the image [27]. Translation invariance is given by the
use of histograms and 2D rotational invariance is achieved by generating several rotated versions
of the original image in steps of 45°. The technique proves robust for small-scale differences and
3D rotated images. Histograms of local features are also used by Siggelkow et al.[31]. They use
explicit invariant features for rotation and translation, eliminating the need to generate rotated

versions of the original image.

Not so many authors deal with the integration of text and image. We present an overview of

relevant work.

A method dealing with the relationship between an image and its caption in a narrow domain
is presented in [34]. The Piction system is described, a system that identifies human faces in
newspaper photographs based on the information contained in the associated caption. The lim-
ited domain makes sophisticated natural language processing possible in order to extract spatial
information about the image. The approach nicely illustrates the advantages of integrating text

and images.

Relevance feedback is utilized in [37] to weigh relations in a semantic network. Relations between
texts, visual features and their combination is modeled. Several predominant global features are
used to describe an image. By using relevance feedback the user can indicate the importance
of both an image and of keywords. Relations between relevant keywords and relevant images
are learned. The method is very flexible, making it possible to learn relations solely based on
user preference. However, no automatic extraction of implicit semantic relations in the data is

performed.

Tessellated blocks of an image are used in [25] to relate images and words. Each block is described
with the color histogram and 45° rotated Sobel filters for measuring gradient intensity. The blocks
are reduced to prototypes by using vector quantization. As each block inherits all words of the
annotation of the complete image, the prototypes have accumulated all words of the clustered
blocks they stand for. This aggregation of words is used to calculate the most probable words for

a prototype. Experiments indicate an increase over random word assignment of 9%.

A machine learning technique called Multiple-Instance learning is used in [23] to classify images of
natural scenes based on their keyword categorization. Multiple-Instance learning is a technique to
discriminate in a set of positive and negative labeled bags. An image is considered a bag of small
blocks and the keyword label determines the class of the image. Experiments show the technique
capable to retrieve images with similar classification. The problem with this approach is that it

can only handle single classes, assigning only one keyword to an image.

Several probabilistic learning models used for matching image and text are evaluated in a paper by
Barnard et al. [I]. They describe several versions of linear and hierarchical clustering methods [19]

as used for images and words [I0], and Latent Dirichilet Allocation (LDA) for modeling annotated
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images [5]. They define annotation as the prediction of text given an image. Both methods are
extended to a machine translation approach trying to model regions with text. Naming each region
with words is denoted correspondence. All models use segmented images to relate image regions to
words, where words occurring less than 20 times are removed. Both annotation and correspondence
is evaluated. Annotation is tested by (r/n—w/(N —n)) where w is the number of words predicted
right, w denotes the words predicted wrong, N is the vocabulary size and n is the actual number
of words for the image. Correspondence is measured by hand, as no dataset with a ground truth is
available. Tests are conducted on images in the training set, held out images, and on substantial
different held out images. For annotation, hierarchical models and linear models perform similar.
LDA does not perform well on the training set, however the results are competitive with the other
models when the test data are novel. Correspondence results are somewhat better then annotation
results. The authors conclude that words are generally associated with pieces of images, not with
the entire image. Future work lies in the integration of a thesaurus, supervised learning by user

feedback and a sound evaluation of the correspondence relation.

Text retrieval and image retrieval is combined in [7]. This method spiders the World Wide Web
for images and supplements the images with weighed words found in the HTML file. Two different
vectors are created for an image, one vector for image features and one vector for text features.
The image features consist of the color histogram [35] and the dominant orientation histogram [29].
The text vector is the low dimensional vector of the words after applying LSI on the text collection.
The two vectors are concatenated to combine images and text, thus excluding image features from
the LSI.

Benitez and Chang [3] use several clustering techniques on image features and text. The words
are stemmed, filtered for stop words and words appearing less than 5 times are removed. Two
versions of term weighting are used: tf-idf and the same log-entropy as we use (see section
p. After term weighting, the LSI is applied on the text only. The image features include the
color histogram, texture and edge histograms. Experiments were conducted with a pre-labeled
collection of images and their textual annotation. As a measure of evaluation they compute an
entropy-based score, indicating the quality of the clusters with respect to the labels. The cluster
algorithms used are: k-means, Ward algorithm, k-Nearest Neighbors, Self-Organizing Map and
Linear Vector Quantization. Experiments were performed using text only, image only, and image
features concatenated with text. Only the best results are presented, yielding the best results for
text-only clustering, then, the image features with concatenated LSI-text, followed by images-only.
The authors conclude that both text and image features can be used to cluster meaningfully, as
both approaches do better than random. Moreover, they conclude that visual features and text
descriptors are highly uncorrelated, as LSI does not make a significant difference. Therefore the
authors believe text and image should be integrated.

In [I6] LSI is used on a small dataset of 50 images. Image retrieval experiments are conducted
with the color histogram and tessellated blocks. The result shows an increase in performance
when using LSI. Further experiments include supplemented keywords to the images, with a total
of 15 different keywords, where a keyword denotes the classification of the image. As a keyword
reveals the class of the image, results improve when using keywords. As the experimental dataset
is very small, the presented results show no significant difference between all methods and tend to

lie close together.

LSI is performed on the image content combined with the textual context in [36]. Feature descrip-
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tions of tessellated blocks of the image include the HSV color space and Gabor texture filters. The
author notes the difference between the distribution of the visual features and the distribution of
the textual terms. T'wo approaches are adopted to match both distributions: an equally sparse set
of image terms by attaining a large range of possible feature values and an equally small vocab-
ulary size of the image terms by limiting the possible feature values. Experiments are conducted
for text-only, images-only and the text and image combination. For both approaches the retrieval
results of the combined text and image index greatly resembles the images-only experiments with
an overlap of more than 80%. Visual similarity dominates the model. Nevertheless, examples in-
dicate retrieval performance of image and text combined outperforms both text and image based

approaches.

We believe histograms of local features are similar to a bag-of-words approach. A ’word’ in an
image describes the local behavior of the image at a point. We propose to extend the local feature
histogram method to color and use well defined techniques from scale space theory to describe
the local structure. Color is an important cue for object similarity and several color invariance
techniques can be used to achieve a robust method for lighting and shading differences. Moreover,
the proposed method models explicit 2D rotational invariant local structure, removing the need to
generate rotated versions of the image. Using Latent Semantic Indexing on the 'words’ will learn
relationships between frequently co-occurring image patches. Moreover, our new image feature
model captures a more suitable equivalent of a word in an image. Hence, making an improvement

possible for the relation between word and image.

This chapter is organized as follows. First, the notion of local spatial structure for gray value
images is described. Next, the Taylor series is explained, which provides the basis for both the
extension to the color model, as for the modeling of the local image structure. Then the Gaussian
color model is introduced, followed by the description of the discritization of the continue values
that make up local image structure. The chapter is concluded with the integration of image words

with textual words.

3.2 Multi Scale Local Color Jet

This section will introduce the basic mathematical tools to model the local color structure of an
image. We will first describe the representation and approximation of local structure in a gray

value image and then extend these methods to the color domain.

An image is a representation of a physical observation. This can be expressed mathematically as

a function of the electromagnetic energy E over a spatial domain D:

f:D—E . (3.1)

A two dimensional gray value image f : R? — D has a value f(a,b) at each location (a,b).

The local structure of a function can be described with the Taylor series, the polynomial approxi-
mation of any differentiable function in a point. The quality of the approximation around a point
increases with the degree of the polynomial. The n-th degree Taylor polynomial approximating a

1-dimensional function f(z) in point a is given by
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OIS0

fla+a) = f(a) + f(@)e+ 1 A

2"+ O0(m+1) . (3.2)

Figure 3.3 shows an example of such a Taylor approximation of the function e* around the point
T =2.

200 200 200 200

150 150 150 150
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g i 0p— I
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Figure 3.3: Example of a Taylor approximation at x = 2 of the function e®. The red line is the
approximation, the black line is the original function e*

When extending the Taylor series to two dimensions we can approximate an image function. The
two-dimensional Taylor series is created by supplementing the polynomial for the x codrdinates
with an additional polynomial for the y coordinates. Approximating a two-dimensional function
f(z,y) around the point a gives:

f(aw +x,ay + y) ~ f(awvay) + xaﬂcf(a’a:aay) + yayf(aa:;ay) +

1
azacf(am ay) + ayyf(azvay) + 2maryf(ama ay) +- (33)

1
21x2 2y?
Image information is highly dependent of scale. The mathematical model assumes a continues
function, however image information is limited by its resolution. High-resolution images contain
details of the scene while low-resolution images only store crude image information. The Taylor
series in equation [3.3| uses the partial derivatives of a function. The partial derivative in the

x-direction is defined by

0. f(a,b) = hg%) f(a"‘%fa:) — f(a,b)

(3.4)

However, because images are typically stored as discrete pixel values with given resolution, v can
not approximate 0. It is necessary to create a 'proper’ differentiable function from f. The discrete
image has to be smoothed. The only way to do this, under general constraints, is by using a
convolution with a Gaussian function [20]. A convolution of function f with function g is defined
as:

(f ® 9) () = / / f@—ivy - i) didj . (3.5)

An example of the 1-dimensional and 2-dimensional Gaussian function can be seen in figure [3.4

The 1 dimensional Gaussian kernel is given by

Go(x) = e 207 (3.6)
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Figure 3.4: The 1-dimensional and 2-dimensional Gaussian function, with o = 1.

The size of the Gaussian kernel depends on the value of o. This value determines the amount of
smoothing of the image and thus the scale of observation. The effect of convolving with different
values of ¢ can be seen in figure When keeping o a free parameter, a multi scale structure
emerges. This notion of scale is inherent to our perception of the world. Given an image of several
trees, there is no reason to assume a-priori interest in the forest, a tree or in the leaves. Scale of
interest has to be explicitly modeled in the description of the local structure.

Original G=1 c=2 O=4

Figure 3.5: Using gaussian convolution at scale o € {1,2,4} to smooth an image.

The derivatives of an image are accessible via the linear properties of the convolution. Taking the
derivative of the function (f ® g) is equal to convolving function f with the derivative of g:

(Of)eg=0(f®g) =f®(9g) . (3.7)

This means that convolving with the derivative of the Gaussian yields the derivative of the Gaus-
sian convolved image. Using this property, a whole family of higher order derivatives comes
available by convolving the image with higher order derivatives of the Gaussian.

Up to now, the techniques all deal with gray, scalar images, i.e. image functions with a single
value at each location. This domain needs to be extended to color. Color provides much extra
information. Some edges are only available in the color domain and color can help determine
object color similarity, indistinguishable in gray images. Figure |3.6| shows an arbitrary spectrum

of light that may fall on the camera or the human eye.

Color is defined in terms of human observation. There is no one-to-one mapping of the spectrum
of a light source to the perceived color. The human color processing apparatus down-samples the
infinite dimensional color space to three dimensions, yielding similar colors with different spectral
distributions. The color model described by [13] fits very well into the Gaussian model for treating
scalar images. The manner of describing the structure of an image is extended in a similar way
to the wavelength domain. Furthermore, a range of invariant properties are available for this
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Figure 3.6: An arbitrary spectrum (the energy E distribution over the wavelength .

model [I4]. In analog to gray value images, the derivatives of a smooth spectral distribution are
taken. These can be used to approximate the spectral distribution with a Taylor series. If E()) is
the energy distribution of the light, where A describes wavelength, then the Taylor approximation
at a central wavelength \q is

OE(No)

A (3.8)

Similar to the spatial domain, the derivatives of the energy distribution E come available with the
linear properties of the convolution. As this involves a Taylor approximation in a single point,
the convolution reduces to an integration with a Gaussian G(Ag, o) at the single point Ag with a

scale of o where
EQo) = / E(G(\ Ao, 00) dA
HE() = [ EN0GOAe,0) A (3.9)

IE(X) = /E()\)a,\,\G()\a)\oﬁo)d)\

These derivatives are plotted in figure
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Figure 3.7: The zeroth, first and second derivative of the Gaussian function with respect to the
wavelength.

The human visual system uses three dimensions, yielding a second order approximation of the

24



3.2. MULTI SCALE LOCAL COLOR JET

spectral information. In accordance with the human visual system, the Gaussian color model
uses second order spectral information. The zeroth order derivative measures the luminance, the
first order derivative the 'blue-yellowness’, and the second order the 'red-greenness’ of a spectrum.
The Gaussian color model uses the first three components of the Taylor expansion of the Gaussian
weighted spectral distribution, however a RGB image is measured in the Red Green and Blue
sensitivity components of the light. The RGB sensitivities have to be transformed to the Gaus-
sian spectral derivatives. In [I3] an optimal transformation matrix with the Taylor expansion in
the point Ay = 520nm and with a Gaussian spectral scale of o) = 55nm is derived under the
assumption of standard REC 709 CIE RGB sensitivities:

E 0.06 0.63 0.27 R
HE |=| 03 004 —035 €] (3.10)
OWE 034 —0.6 0.17 B

The spectral and spatial derivatives can be used in a Taylor approximation of the local color
structure of an image. The set of N Gaussian derivative kernels for the three color channels,
including the zeroth order derivative is referred to as the color N-jet. An example of a Taylor
approximation in a single pixel using the color N-jet is shown in figure The figure demonstrates
that local color and spatial information can be obtained from the derivatives. Note that only the
middle of the image can be well approximated. As the Gaussian used in the convolution falls off
to zero at the tail of the distribution the Taylor approximation becomes unstable at points further

away from the origin.

Original Order 0 Order 1

er 4

Order 2 Order 3

Figure 3.8: Approximating local color structure with a Taylor expansion in a single pixel, using
o=3.

When comparing images of the same object, differences in measurement due to the scene envi-
ronment pose a problem. Taking two pictures of an object yields two different representations
of the same scene. Differences in lighting conditions and in camera rotation change the recorded
measurements of the scene. Image invariants deal with the problem to measure the information
in a scene independent of properties not inherent to the recorded object. Color invariance aims
at keeping the measurements constant under different intensity, viewpoint and shading. In [14]
several of these color invariants are described. We will test two invariants for our method. We use

uniform intensity invariance, which gets rid of uniform luminance differences between images. An
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invariant property W is described for uniform local illumination

Oman B

W/\mac" = E

m>0,n>1 , (3.11)

where E is the energy. The rationale is, that the reflected light of an object depends on the intensity
of the light which illuminates the object. Thus normalizing for intensity creates measurements
invariant of illumination. We also test for uneven intensity invariance, which removes reflectance
independent of the viewpoint, surface orientation, illumination direction and illumination intensity.

An invariant property C is described as

8)\ m E

C)\rnxn = am" E

m>1n>0 |, (3.12)

where E is the energy. The invariant may be interpreted as the spatial derivative of the intensity
normalized spectral slope 9,C and curvature O \C. As this property is only valid for O\m FF where
m > 1, the invariant cannot be used for gray valued images. The difference between invariants
W and C is in the assumption of illumination. In W the complete spatial and spectral derivatives
are normalized for luminance. This models the assumption that the local spatial neighborhood
as described by the Taylor series of the spatial structure is illuminated with the same energy E.
The shadow invariant C normalizes the spectral information with the energy F and computes the
spatial derivatives independent of the spectral energy. This makes the local spatial neighborhood

invariant for intensity changes like shadow.

Rotational invariance aims at keeping values constant when rotating the image under the camera,
for example the images in figure The process of finding the local N-jet for gray images is
described in section p These derivatives are taken in the (x,y)-coordinates of the camera.
When the cooérdinates change the values of the derivatives also change, while the local image
structure remains constant. In order to deal with this variation, we rotate the derivatives of
each pixel to the direction where there is the most change. Hence, rotating all the derivatives to
the direction of the gradient, as the gradient does not change when the angle of the camera is
rotated. Rotating derivatives to the direction of the gradient yields the following formula for the

nth derivative in the x-direction and the m!" derivative in the y-direction:

13 0 \m 0 0 \n
nOpm = (SInf— — — — inf— > .
Oy O (sm@ax cos@ay) (cos@(,h + sm@ay) n,m>0 , (3.13)

where 6 is the angle of the gradient, tanf = %. For color images we chose to rotate each channel
to the direction of the gradient in the luminance, the zeroth order derivative with respect to the
wavelength A. This rotates the spectral derivatives with the same angle 6, and makes equation |3.13

applicable to each color channel.

In summary, the local spatial and color structure in an image can be represented by a truncated
Taylor series at a pixel. By using the Gaussian color model the color information fits naturally in
this framework. Moreover, image invariants measure intrinsic properties of the scene, independent

of luminance and camera rotation.
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3.3 Representing Local Color Structure

The continues values of the color N-jet lack the natural discrete nature of words in a text. The color
N-jet needs to be discretized. Labeling each element of this discrete partition of the color N-jet
creates words representing the local color structure of an image. Each word then says something
about the behavior of the image at a certain pixel. Similar image patches are described with the
same word. Local structure with similar color and similar curvature are then grouped. Discretizing

the local color N-jet yields a vocabulary that can be used to describe local spatial color structure.

A multidimensional histogram is used for the discretization process. The dimensions of the his-
togram are equal to the number of derivatives in the color N-jet. Each spatial spectral derivative
is partitioned in equally sized bins each with their own bin label. The bin labels in this context
represent a single character and the concatenation of all these characters make up a word. As this
word is determined by the color N-jet, it models the local spatial color information. For example a
first order spatial Taylor approximation with a second order spectral approximation of a pixel
yields words with a length of 6 letters. This because the multidimensional histogram uses these 6

values:
(Eo, 0 Eo, 0yEo, OxEo, Oxa Eo, OxyEo, OxxEo, Oxxa Eo, Oaxy Eo)

Figure visualizes the creation of the words with first order structure for a gray value image.
Each pixel of the image is labeled in this manner.

Zero order First order
° ° XX <> o oo ° 4
[J @
a b c d e f 3 1 ¢ ’S‘:
° o © \>_</
f(x,y) ) . T 7. . (‘%
1 °
a b c d e f
Oxf(x.y)

Figure 3.9: The labeling process for zeroth order derivatives (left) and for the first-order derivatives
(right). The green diamond on the left and right represent the derivatives of one pixel. This pixel
is labelled as EF3.

The partitioning of the color N-jet is in a way related to image segmentation. For, both methods
group similar image structure. Image segmentation aims at separating object from background.
Hence grouping object pixels and background pixels. The problem with image segmentation is that
the notion of ’object’ and ’background’ are only defined in a semantic interpretation of the image.
What is, or is not an object that depends on the context, meaning and use of the image. To an
engineer, the segmented image of a ship will consist of the welding plates, the propulsion system,
the pipelines running along the deck, e.g. In contrast, a tourist will give a completely different

interpretation of the segments of the ship yielding e.g. swimming pool, sun deck and dance floor.
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The labeling of the color N-jet makes no such effort. It groups low level image features to describe

the local behavior of the image and operates at a low semantic level.

The grouping of similar structure can be visualized. If we represent each word with a different
color, identical colors in a single image represent identical words. Using this visualization, we can
display the effects of applying the invariants discussed in the previous section. Figure [3.10] shows

the effect on the vocabulary of an image when using different invariants.

Nr. Different words: 117 Nr. Different words: 65 Nr. Different words: 115 Nr. Different words: 11
AN LR
/ 5 ~ n % -
\ :‘, A'V‘ - K
g N R

o 5

Figure 3.10: The effect of using invariance on the vocabulary. FEach word is represented with
a different color. Identical colors in a single image represent identical words. The size of the
vocabulary is displayed above each labeled image. The labeling is done with the second order color
jet using 17 bins for each value at a scale of 0 = 2 pixels. (a) The original image. (b) Labeling
the image using no invariance. (c) Labeling the image with rotational invariance. Note the
contour of the object is labeled everywhere with the same word and the vocabulary size decreases.
(d) Labeling the image with rotational and luminance invariance W. Note the disappearance of
intensity changes. The vocabulary size increases, as shadows are labeled incorrectly. (e) Labeling
the image with rotational and shadow invariance C. Note the significant reduction of the words in
the vocabulary and the disappearance of the shadow of the object.

Latent Semantic Indexing (LSI) (see section [2 p[7) maps frequently occurring terms close to each
other in a reduced space, thus learning relationships between frequently co-occurring words. In
the image domain, the words describe local color structure. Using LSI on these words thus learns
relationships between frequently co-occurring local image structures. LSI will retrieve images
beyond the information present in the image query, finding images containing local structures
frequently co-occurring with the local structure in the query. In the text domain this increases
the number of retrieved relevant documents as synonyms are found. A similar increase in recall

should be expected of the use of LSI on the image domain.

Moreover, the text retrieval techniques term weighing and vector normalization (see chapter
pil12)) are applied on the images. The term weighing scheme will automatically give a high weight to
patches occurring frequently in a single image and appearing non-frequently in the total collection.
In this manner, the more informative patches are given higher weight in determining similarity
than the less informative patches. Vector normalization makes the method robust for dealing
with different image sizes. We use the cosine distance to measure similarity between vectors, (see
chapter p, as is often done in text retrieval.
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3.4 Combining Image and Text

Combining text and images in our model is a matter of concatenation the textual word vector to
the image feature vector. As each pixel in the image is labeled with a word, the visual information
dominates the model. This problem has been identified by [36]. Their solution is restricting
the visual model to match the sparseness or vocabulary size of the textual model. We believe a
restriction on the model severely limits the information in the visual representation. Therefore,
we deal with the model imbalance by normalizing the visual and textual information to equal
importance. Similar to vector normalization (see section p- [13), we can scale the length of
the text vector to the same length of the image feature vector. If the combined model is given by
tv and vector ¢ represents the textual model and ¥ denotes the visual model the normalization is
given by

<

tv="1

TN (3.14)

T+

where :: is the concatenation operator. This normalization is also applied on the query. Using
LSI on this combined space learns co-occurrence relations between: words and other words, image

patches and words, image patches and other image patches.

In summary, we define the words in an image as a set of labels where each pixel is assigned a label
describing the behavior of the image in the pixel. A label stands for a discretized signature of
the color N-jet, making up the local spatial and spectral structure of the image in the pixel. Text
and image information can easily be combined in the same semantic space by concatenating the
textual word vector and the visual word vector. Performing LSI on the combined space will relate
text to text, image to image and text to image. The next chapter will evaluate the image retrieval

scheme, including some examples of the combined search on images and text.
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Chapter 4
Experiments

Latent Semantic Indexing for text retrieval has proven more effective then standard Vector Space
retrieval [8, [9]. Our new visual model based on LSI has yet to demonstrate its quality in content
based image retrieval. This chapter will measure the effectiveness of the new visual retrieval
model. A dataset of 430 images of common household articles is indexed and a queryset of 100
different images of the same objects photographed under different conditions is used to query the
model. Furthermore, this chapter will demonstrate the advantages of using the combination of
images and text for retrieval. As no suitable standard dataset is available to measure the retrieval

performance of combining image and text, we leave it at several examples.

The practical issues of doing experiments require an implementation, parameter settings and
pragmatic handling of the theory. We implemented LSI in C++ using svdpacke [4] for a fast
Singular Value Decomposition. The SMART stoplistﬂ of 571 words is used to remove stop words.
We use no stemming. As LSI learns the relationships between frequently co-occurring entities, we
remove all terms that occur only in one single document, to save time and memory. For image
processing we use the Horusﬂ library of the ISIS group at the University of Amsterdam. When
performing experiments several parameters can be considered. We have chosen to calculate the
N-jet up to order 2 as this adds curvature information and still is feasible to index. The range for
assigning bins or characters to the N-jet values of each pixel is set between -1 and 1. If a value is

out of bounds, it is assigned to it’s closest bin.

The intensity of the N-jet deteriorates for derivatives taken at a large scale. We therefore scale
the N-jet according to:
5ZE"’ = O'n iz 511771 = O'WLaym, (41)

Small scale Gaussian convolution of ¢ = 2 is used to utilize prototypical, small image patches at

narrow scale.

Color invariant indexing becomes unstable at low intensity, since color values are normalized by
the intensity, and dividing by zero yields infinity (see chapter p. Therefore, if the intensity

is below 5% of the intensity range, we use the original non-invariant values of the N-jet.

Uftp://ftp.cs.cornell.edu/pub/smart/english.stop
%http://www.science.uva.nl/ horus/
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CHAPTER 4. EXPERIMENTS

4.1 Evaluating the Visual Model

In order to evaluate different aspects of our retrieval method we performed several experiments
with a database of 430 images containing camera rotated images, occluded images and 2D rotated
images. We experimented with grayscale and color indexing, both with and without intensity
invariance and rotational invariance. The experiments are conducted for three different image
query sets also used in [I5]. The dataset Dy,..., D, contains 430 images. The largest queryset
is the 2D rotated objects with 70 query images. Figure contains an example of the images in
the dataset with corresponding query images. We will refer to this set as the ’standard’ queryset.

Figure contains an example of another image query set varying in camera angle, the images

n B

Figure 4.1: Example images of the 'standard’ queryset. The images in the dataset (left) with
their corresponding query images (right).

in the dataset are shown with corresponding query images. The camera angle s is changed for
s € {45,60,75,80,85}. This set has 4 different objects with a total of 20 images. We will refer to

this set as the 'camera angle’ queryset.

V‘F
[ i B —

Figure 4.2: Example images of the 'camera angle’ queryset. The image in the dataset (left) with
it’s corresponding query images varying in camera angle s € {45, 60, 75,80,85} (right).

Figure contains an example of the images varying in occlusion percentage. The images in
the dataset are shown with corresponding query images. The percentage of occlusion o varies for
o € {50,65,80,90}. This set has 4 different objects with a total of 16 images. We will refer to this
set as the ’occlusion’ queryset.

| B I

Figure 4.3: Example images of the ’occlusion’ queryset. The image in the dataset (left) with it’s
corresponding query images varying in the percentage of occlusion o € {50, 65, 80,90} (right).

For a measure of recognition quality, let rank r%¢ denote the position of the correct match for
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query image @; in the ordered list of the D,, results of a query. This ranking gives r?@: = 1 for a
perfect match and r?@ = D,, when the required image is retrieved last. Ranking all the queries

Q@ for their corresponding image in the dataset and scaling between 0 and 100 gives the average
ranking principle:

1 & D, @
F= (Q—m;ﬁ)mo% (4.2)
The color histogram is a popular method used for retrieval. A color histogram is comparable
to our method when using only the zeroth order derivative in the labeling. This uses only the
color values of the smoothed image, discarding local structure. Color histograms are known to be
robust for occlusion and invariant for 2d rotation. To establish a baseline we test LSI on color
histograms, using only the color pixel values. In the original paper [35] the authors advocate a
small number of bins, grouping similar color. We used 64 bins for each color channel. We vary the
size of the LSI dimension keeping it a parameter in the results. The higher the dimensions of the
reduced space, the more accurate the approximation of the original space becomes mapping less
co-occurring terms together. The highest dimension is most similar to the original color histogram.

Standard Camera Angle

o 7\/.\‘\/__./~/\—W{ o5l

90 [

Occlusion

I =y

90 [

90 [

85 85

Average Rank %
Average Rank %
Average Rank %

85

80 [ 1 80 [ 80
— bins used: 1141 — bins used: 1141 — bins used: 1141
75 75 75
o 100 200 300 400 ] 100 200 300 400 o 100 200 300 400

Lsi Dimension Lsi Dimension Lsi Dimension

Figure 4.4: Results for using LSI on color histograms using 64 bins for each color channel. The
vocabulary size or the number of bins used is shown in the legend.

The retrieval results for color histogram indexing are displayed in figure[d.4] With color histograms
LSI already performs better at a lower dimension than at the highest dimension. This already
justifies the use of LSI for image retrieval. Further experiments will evaluate our new method, with
local color structure rather than single pixel values. We will now present the results for second
order spatial structure. The experiments use 19 bins for each element in the N-jet. We performed
experiments for both grayscale and for color. Grayscale uses only the values for intensity, e.g. the
smoothed spectral channel E. The LSI dimension is kept as a free parameter. For color indexing
we used the color N-jet. The retrieval results for plain gray values and color indexing are displayed
in figure The retrieval results for rotational invariance are shown in figure [£.6 The retrieval
results for the YW and C color invariants, both with rotational invariance are shown in figure [£.7]
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Figure 4.5: Results for color and gray indexing. The histograms use 19 bins

. The vocabulary size
is shown in the legend.
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Figure 4.6: Results for rotation indexing. The histograms use 19
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Figure 4.7: Results for the two color invariants with rotational invariance. The C color invariant

cannot be used with grayscale images, as all intensity is discarded. The histograms use 19 bins.
The vocabulary size for all methods is shown in the legend.

All methods perform better at a lower dimension, warranting dimension reduction. The best overall
results are achieved with color indexing, using both rotational invariance and color invariance W.
Rotational invariance performs equally, or slightly worse than using no invariance at all. Color
invariant W in general outperforms the C invariant. The lack of performance of rotational invariace
and the C color invariant can be explained by the loss of information when using invariance,

illustrated by the significant reduction in the vocabulary size of these invariants. The W color
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invariant does not suffer from this problem, as already demonstrated in figure 3.10|p[28] Color
presents an important cue for object similarity. Only when no color invariance is used, grayvalue
indexing sometimes outperforms color indexing, indicating the increase in performance when using

invariants.

Comparing the results of figures [£.5] [£.6] and [£.7] with figure [£.4] show an increase in performance
for the ’standard’ dataset.

The vocabulary size is a measure of the complexity and the memory requirements of the method.
The vocabulary represents the power of the words to express the image. In concurrence with text,
a large vocabulary of words makes more elaborate word usage possible, while a small vocabulary
limits the distinctiveness. The size of the vocabulary is displayed in the graphs of the retrieval
results. Note the differences in vocabulary size between color and gray value indexing and between
different invariants. The power of invariant descriptors has already been illustrated in figure [3.10}
p. 28 The number of bins is directly related to the vocabulary size. A large number of bins, can
distinguish between small shape and color differences, where a small number of bins labels small
differences with the same word. As can be seen by the vocabulary size in figures and
invariant descriptors label similar structure with the same word, yielding a smaller vocabulary size
with an equal number of bins. We believe that similar vocabulary size is a better measure than a

similar number of histogram bins to compare performance differences between methods.

We will now present experimental results giving the same expressive power to each model. The
histogram binsize is adjusted in a way that the size of the vocabulary used to describe the images is
kept approximately constant. As the color N-jet uses approximately 3 times the information used
for grayscale indexing, the latter can take advantage of a smaller binsize to arrive at a predefined
constant vocabulary size. Grayscale indexing can thus use a finer sampling of the truncated N-
jet yet lacking any color information. A very high vocabulary size becomes problematic for the
memory requirements of our implementation of the SVD. We use a constant vocabulary size of
about 75.000 labels. In the retrieval results the LSI dimension is used as a free parameter which
is varied between 10 and 400. The results for plain gray values and color indexing are displayed
in figure [£.8 The retrieval results for rotational invariance are shown in figure [£.9) The retrieval
results for the YW and C color invariants, both with rotational invariance are shown in figure
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Figure 4.8: Results for color and gray indexing. The histogram for grayscale indexing uses 51
bins. Color indexing uses 33 bins. The vocabulary size is shown in the legend.
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Figure 4.9: Results for rotation indexing. The histogram for grayscale indexing uses 83 bins. Color
indexing uses 41 bins. The vocabulary size is shown in the legend.
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Figure 4.10: Results for the two color invariants with rotational invariance. The C color invariant
cannot be used with grayscale images, as all intensity is discarded. The histogram for grayscale
indexing with the W invariant uses 69 bins. Color indexing with the W invariant uses 19 bins and

color indexing with the C invariant uses 37 bins. The vocabulary size for all methods is shown in
the legend.

The best overall results are achieved with color indexing, using both rotational invariance and
color invariant C. The loss of information by using invariants is compensated by expressive power,
yielding color invariant C more powerful. However, the added expressive power by adapting the

binsize to create equal vocabulary sizes can not compensate for using rotational invariant indexing
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only. Furthermore, the dataset seems to be exhausted by our method, as we perform near 100%

for both the ’standard’ and the ’occlusion’ test collections. The 'camera angle’ score peaks at
97%.

Compared to [I5] we perform somewhat equally well, e.g. near 100% with the ’standard’ test
collection. In [I5] the results for 'occlusion’ and ’camera angle’ are plotted against occlusion
percentage and camera rotation. To compare our results, we kept the LSI dimension fixed at our

best average dimension 40 and plotted the results for camera angle and rotation in figure 4.11
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Figure 4.11: Results for color and gray intensity invariant indexing compared to the percentage
of occlusion (left) and the angle of 3d camera rotation (right).

We score a lot better both for 'occlusion’ and for the variation in ’camera angleﬂ This confirms
the power of the local features. These features are comparable to the bag-of-words-approach used
for text. The next section will give some examples of combining images and text for informatino
retrieval in a single model.

4.2 Text and Imaging Results

The combination of images and text is tested on the Elsevier data set. This set is comprised of
biomedical images with a corresponding textual caption. There are nearly 745 color images in this
set from scientific publications on biomedical research. The captions vary in size and description.
See figure for an excerpt of the dataset.

This section gives some examples of queries and their results. We will try and recreate the
constructed example in figure p/l All examples are conducted with the best performing
setting, using both rotational invariance and color invariant C. Moreover, LSI provides the tools
to calculate the most relevant terms to a query. As described in section plIf] the relevant
terms to a specific query can be computed with

Dy =X!TS™' . (4.3)

Applying equation on the image domain, enables us to calculate the most relevant local struc-
tures to an image query. This can give a user significant more information about the reason why
an image is retrieved. We will display some queries with the 10 most relevant terms to the query,

3however in [I5] the results for 85 degrees rotation are not included
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Autoradiographic images of 2 nM [3H]8-OH-DPAT binding at the
medial prefrontal corfical coronal level (Bregma 2.7) of HDS, LDS
and RDS rat brains. The bottom gray-scaled image depicts regions
quantiied at this brain level. Cl, clausiium; CgCx, cingulate

cortex; DFCx, deep fontal cortex; DPICX, dorsal
peduncular/infralimbic cortex; LD, lamina dessicans; MPC, medial
prefiontal cortex; SFCx, superficial frontal cortex; 8, subiculum; TT,
fenia fecta; VLOCx, ventrolateral orbital cortex; Ace, accumbens.

Figure 4.12:
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(B). Lorge (C) and small D) ireguiar masses and fine thread-lke
sfructures (E) (perikaryal threads, aow) lying among the lipofuscin
granuies in the perikarya are faintly stained. A cortical L8 appears
as a globular inclusion fhat has occasional indistinct central
lacunae (F). From the substantia nigia (A8),

anti-CLA. (D) Cerebral cortex surounding
hous affer wounding stainedt with anfi-CLA. (E) Cereboral cortex
surounding fhe endofoxin-containing lesion 48 hours affer injury
stained with anti-F4/80. This area s similar fo (D) which was stained
with anfi-CLA. Note the reduced staining infensity with F4/80. (F)
Cerebral cortex surounding fhe sterile lesion 48 hours affer injury,
stained with anti-CLA. Comparison of this figure with D shows
siightly reduced staining infensiy in the sterlle lesion compared fo

nucleus (C}, raphe nucieus (D). dorsal
motor nucleus of the vagus nerve (E), and anfeor cinguidte gyrus
(F). paraffin sections with peroxidase&ndash;DABematoxylin.
Bar=10 &mu; for all pictures

i culture, Astrogiial cels
stain posttively for GFAP (ihodamine) and appear red, while
neurons are MAP 2+ (FITC) and are green/yellow. Approx.
58ndlash;10% of the cells is MAP 2+

the endotoxin-containing lesion.

Some examples of the Elsevier dataset.

and the best five retrieved images with their caption, including a second image where only the

most relevant pixels are

displayed.

the query 'blood vessel’.

Query: “Blood vessel”

Terms:
Score: 0.559627
Image: A
N .
Light photomicrographs of dura mast cells stained
‘with either: (A) toluidine blue or (B) berberine sulfate;
bv=blood vessel; white arrowhead=nerve fiber; black
arrow=mast cell. Bar=20 um.
Caption:
-
i
Pixels: . —

0.336264

Neurons with SPR-IR in cranial ganglia innervating
cerebral blood vessels. (a) Trigeminal ganglion.
Artows indicate neurons with SPR-IR. Arrowheads
indicate neurons without SPR-1R. Small arrows
indicate nerve fibers with SPR-IR. (b) No neurons
with SPR-IR were observed in the absarpnon test

Blood ,spr ,mast ,vessels ,vessel ,nerve ,dura ,toluidine ,ganglion ,trigeminal

0.308196

Asagittal section of the hippocampal formation of
adultrat. Note pyramidal cells in CA2 and CA3
exhibit more intense Kir6. /uKATP-1
immunoreactivity than those in CAL. In the dentate
qyrus (DG), the outer part of the granule cell layer is
more intensely immunorezctive than the inner part of

0.305248

Y

L

GHR/BP immunoreactivity. (A) and (B) show basal
expression of GHR/BP in CA3 neurones of the
hippocampus (), and the ependymal cells (arrow) and
choroid plexus (cp) (B) of control brains. (C)~(F)
show increased levels of GHR/BP immunoreactivity
after he 60min rjury, i lood vessls a1 (©)

(rigeminal ganglion). (c) O]
Oic ganglion. Nerve fibers with SPR-IR e also
observed (arrowheads). (¢) Internal carotid ganglion.
Asterisk shows the vidian nerve. (f) Superior cervical
ganglion. SPR-IR is more intense at the periphery of

e cytoplasm. Scale bar=100 pm.

layer. Blood

in the i days (D),

intense Kir6.1/uKATP-1
fields of CA1-3 of Ammon’s horn; cc,
callosum; H, hilus of dentate gyrus. Bar=100 .

CAL3,

in ke cells in the
at’5 days (E), and in cells in the process of dividing (a5
shown by the appearance of thionin-stained
chvomosomes) i he ippocampus at 3 cays post-
hypoxia (F). The cells in (F) were shown t

hoeyts {rotshown) Sl bars (. (8, (c) and
(D)=40 um, (E) and (F)=20 pm,

Figure will show the retrieval results using text-only for

0.249970

Light micrograph of a dura mater stained
immunohistochemically for SP and counterstained
with toluidine blue, showing a dura mast cell (blue)
adjacent o a blood vessel (by) and to SP-reactive
neuronal processes (brown). Bar=5

Figure 4.13: Example of text searching for the query vlood vessel’ in the combined images and
text space. The 10 most relevant terms are shown, the score of the retrieved image with caption,
the image itself with its caption, and the 50 most relevant image labels are displayed. Non-relevant

pixels are left white.

Local image features lend themselves easily for user selection. Letting the user indicate which part

of an image is interesting can incorporate relevance feedback. We will now present an example

of searching for a part of the first image as found by searching for text only. We used a square

block of pixels, however the bag-of-words approach makes any combination of pixels possible. We

selected a part of the image where the system found many relevant pixels (upper right corner,
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4.2. TEXT AND IMAGING RESULTS

o [

Terms: mast ,arrowhead fiber ,\vessel ,dura ,blood ,white ,light ,nerve toluidine

Score: 0.552968 0.530538 0.395131 0.368442 0.303640
- ’ - P. -
i !E
Image: Ry LN ~: -
e b g
| ol b _;) N
Light photomicrographs of dura mast cells stained ‘Synapsin | MRNA expression in coronal sections of rat  Expression of tie 1 in ischemic brain at 2 h after MCA  In situ hybridization of ressior Bcl-2 and Bax immunoreactivity in the external
‘with either: (A) toluidine blue or ; hippocampus. f 10 um-thick occlusion. In situ hybridization (A) shows tie 1 mRNA  CaMKlla (left two panels) am rx mhulln (ngm wo granule cell layer of the cerebellum (A, D) in control
fiber; black Iprobe  onamicrovessel (arrow nm) in the area with panels, marked as BT) in the cmml cortex.ASand S rats and at 24 h (B, E) and 48 h (C, F) following MAM
anow'masi oell Bar=20 um. were dipped in Dhawwmnhvc emulsion and shrunken refer robes, respectively. (D? administration. Apoptotic cells at 24 h anc fter
stained with H&E i Exwessmn of Dem 7. (1-3) Cevebval cortices. (4 and MAM treatment are not stained with anti-Bcl-2 and
Capti on: ipsilat Bar=40 pm. 5) CA1 region of mppecampus (a and 7) Cerebellum.  anti-Bax antibodies. Haematoxylin counterstaining,
. electrodes 07 control rals (A) and rats killed 8 h after The probes used for tissue (3) in (b) was um.
stimulation (B) are shown. Marked synapsin | MRNA camvlememary to those used for the other tissues, and
‘expression in the dentate gyrus after LTP-inducing did not produce a hybridization signal. KA indicates
stimulation, mainly localized over the granule cell spemmens prepared from a rat mmn with ainate.
layer (B), is evident, whereas only a few grains can be ‘Some dendritic stainings are labeled with arrows.
seen in the control tissues (A).
-
ivale & - =
Pixels: * 'S

Figure 4.14: Example of image searching in the combined images and text space. The query
image is part of the first image found using text only (upper right corner, of the first image in
figure 4.13)). In the text-only query, this part of the image was indicated as relevant. The 10 most
relevant terms are shown, the score of the retrieved image with caption, the image itself with its
caption, and the 50 most relevant image labels are displayed. Non-relevant pixels are left white.

of the first image in figure 4.13). Figure will show the results when searching with image
information only for a selected part of an image.

Query: “Blood vessel”  + a

Terms: mast ,blood ,vessels ,spr ,vessel ,nerve ,arrowhead ,dura ,vip ,cerebral

Score: 0.626972 0.365543 0.352797 0.266146 0.258616

Image:
Light photomicrographs of dura mast cells stained Synapsin | ion i i rat L of a dura mater stained In situ hybridization of Dems. (a) Expression of Photomicrographs showing nerve fibers with SPR-IR
‘with either: (A) toluidine blue or ; hippocampus. 10 pm-thick i i |u| i CaMKlia (left B-tubulin (right two in the cerebral blood vessels of rat. (a) Proximal
3 fiber; black I probe showing a dura mast cell (blue) panels, marked as BT) in the cerebral cortex. ASand S segment of anterior cerebral artery. Fine nerve fibers
arrow=mast cell. Bar=20 pm. were dipped in photographic emulsion and amnw“ toablood vesel (bv) and to SP-reactive refer to anti-sense and sense probes, respectively. (b) running across the axis of the vessel are observed. (b)
nal Bar=5 um. Expression of Dem 7. (1-3) Cerebral cortices. (4 and Posterior communicating artery. Relatively thick nerve
Caption: the dentate gyrus |ps||a|eml to the stimulating 5) CAL region of hippocampus. (6 and 7) Cerebellum. fibers are observed running along the vessel axls ©
p . electrodes of control rats (A) and rats killed a hafter ‘The probes used for tissue (3) in (b) was Internal ethmoidal artery. Markedly thick ner
stimulation (Bi are shown. Marked synapsin | mRNA complementary to those used for the other tissues, and bundles (arrowheads) are seen. (d) The nerve llhels
‘expression in the dentate gyrus after LTP-inducing did not produce a Ivyhndlzatmn signal. KA indicates with SPR IR dlsappeared in the absorption test
stimulation, mainly localized over the granule cell from (inter Arrowheads indicate thick
layer (B). is evmem ‘whereas only a few grains can be ‘Some dendritic stainings m labeled with arrows. nerve hunﬂles scnle w 100 pm.
seen in the control tissues (A).
o -
o ) < - @
Pixels: . . & T
-

Figure 4.15: Example of image and text searching in the combined images and text space. The
10 most relevant terms are shown, the score of the retrieved image with caption, the image itself
with its caption, and the 50 most relevant image labels are displayed. Non-relevant pixels are left
white.
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CHAPTER 4. EXPERIMENTS

Combining both image and text incorporates results relevant to both modalities. Figure [£.15]
shows the results when searching with the query 'blood vessel’ and with the selected relevant
part of an image found by searching with text only. The results show that images relevant to both
the image as the text query are retrieved. Edges are given high weights in the weighing scheme, as
they are more informative than uniform image patches. This high weighting is in accordance with
work on salient point retrieval [28], where corners and edges are considered highly representative

of an image and therefore salient.
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Chapter 5

Conclusions and Future Research

This paper presents a new image retrieval scheme and combines text and images for information
retrieval. The image retrieval method uses Latent Semantic Indexing on the words in an image.
We define the words in an image as a bag of words where each pixel is assigned a label describing
the behavior of the image in the pixel. A label stands for a discretized signature of the color
N-jet, making up the local spatial and spectral structure of the image in the pixel. Our method
solves the problems occurring with blocks of pixels and salient point detection. Blocks of pixels are
highly sensitive to specific image conditions. We use rotational invariance and intensity invariants
to deal with these problems. Translational invariance is provided by the use of a histogram, and
frequently co-occurring structures are mapped to the same concept by the use of LSI. As all pixels
are used, this method does not suffer from misdetection of salient points, nor of the sensitivity to
a background change. Saliency of pixels is still used, as more informative pixels are given a higher
weight than less informative pixels. Furthermore, we use invariant color information, providing
powerful clues for image similarity. Local features provide robustness to object occlusion and
background changes. As image information is represented in words, the integration of text and
image is achieved by adding the words in an image to the words in a text. Using LSI on this
combined space learns relationships between image and image, text and text and image and text.
Some examples demonstrate the capabilities of the presented approach. When both modalities
are presented, one modality tends to describe what the other is missing. Linking images to text

can help visualize a concept. Linking text to images adds semantics to images.

More experimental evidence for this method of image retrieval needs to be collected by system-
atically testing the quality of the proposed method on different datasets. Datasets where images
with different and similar shape, texture, size and color are combined provide a richer test environ-
ment. Experimental evidence for the link between image and text is needed. Similar to Barnard
et al. [I] the words for a given image can be generated and evaluated. Like in Barnard et al. the
actual correspondence between which part of an image is linked to which word is much harder to

evaluate. For such an evaluation, a specific manual test set needs to be constructed.

Some fine-tuning of the method could be achieved by varying the order of the Taylor series. We
use a constant order when using a spatial Taylor approximation. This could change to a variable
order approximation depending on the quality of the approximation in a small neighborhood. As

we have the original image at hand, we can calculate the precise error of the Taylor series. It
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CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

could be useful to approximate an image patch until the approximation error drops below e.g.
10%. This method will use zero or first order approximations for simple uniform patches and use
higher order where complex image structures need to be described. Currently the scale o of the
method is fixed, whereas a better performance may be achieved by fine-tuning to a multi-scale
approach.

Estimating the LSI dimension remains a problem. Methods as MDL and other measures of model
fitting could be used to make an educated guess of a proper dimension. An iterative SVD [6]
is a useful extension to our implementation LSI. Our current implementation stores all values in
a huge sparse matrix, limiting the vocabulary size to about 70.000 words. Iterative SVD makes
much higher vocabulary sizes possible, thus increasing the expressive power of the words in an
image. Moreover, evaluating LSI to other learning models will give more insight in the choice of

using LSI over other models.

We foresee that the method is easily extendable to include other modalities as audio and video.
Any modality can in principle be included, as long as they can be decomposed in *words’ describing
the modality locally.

This thesis just scratches the surface of the combination of text and images. It makes some
practical relation between words and images. The true relation is much deeper. Humans integrate
language and visual information effortless. Small children can already draw a prototypical picture
of a concept. Annotating a picture with words is achieved at a very early age. In the very
near future, artificial intelligence systems will beat the human chess champion. However, the real

challenges of artificial intelligence are the ones we perform so easily.
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