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ABSTRACT

Implicit neural representations (INRs) encode signals in neural network weights as
a memory-efficient representation, decoupling sampling resolution from the associ-
ated resource costs. Current INR image classification methods are demonstrated on
low-resolution data and are sensitive to image-space transformations. We attribute
these issues to the global, fully-connected MLP neural network architecture encod-
ing of current INRs, which lack mechanisms for local representation: MLPs are
sensitive to absolute image location and struggle with high-frequency details. We
propose ARC: Anchored Representation Clouds, a novel INR architecture that ex-
plicitly anchors latent vectors locally in image-space. By introducing spatial struc-
ture to the latent vectors, ARC captures local image data which in our testing leads
to state-of-the-art implicit image classification of both low- and high-resolution im-
ages and increased robustness against image-space translation. Code can be found
at https://github.com/JLuij/anchored_representation_clouds.

1 INTRODUCTION

From novel view synthesis to inverse problems, implicit neural representations (INRs) have enabled
leaps in accuracy across a variety of problems and domains due to their unique data compression and
generalisation capabilities (Mildenhall et al., 2021; Essakine et al., 2024). As such, interest has grown
in whether INRs can similarly enrich conventional computer vision tasks like image classification;
the focus of this research.

Figure 1: ARC anchors latent vectors directly
in image coordinate space, preserving the lo-
cal spatial image structure within the INR
weight-space. Once trained, ARC can be pro-
cessed by a point cloud classifier.

An INR is a neural network (NN) that learns a map-
ping from coordinates in the signal’s domain to the
signal’s values, e.g. from 2D pixel coordinates to
RGB colours. After training, the INR can reconstruct
an approximation of the original signal when queried
on all signal coordinates, implying that the signal is
encoded inside the INR weights. INRs are able to
compress signals in a variety of domains (Dupont
et al., 2021; Strümpler et al., 2022; Schwarz et al.,
2023; Fons et al., 2022; Huang & Hoefler, 2022), and
exhibit excellent generalisation capabilities outside
of the signal’s domain (Mildenhall et al., 2021; Yu
et al., 2021; Chen et al., 2021).

Images are formed by sensor elements placed on a
grid. In a grid, elements of equal size are positioned
equidistantly over the domain, irrespective of the im-
age content. This uniform data representation results
in memory costs that scale exponentially with signal
dimensionality and resolution. To make training on
image datasets feasible, images are typically down-
sampled, which may eliminate relevant features (Hou
et al., 2016; Kong & Henao, 2022) or lead to de-
creased performance (Jiang et al., 2020b; Tan & Le, 2019). While these issues can be mitigated (Kong
& Henao, 2022; Hou et al., 2016), INRs offer a more efficient, content-based, image representation.
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Current INR classification methods (Kofinas et al., 2024; Kalogeropoulos et al., 2024; Zhou et al.,
2024a) face several shortcomings. First, these methods are only demonstrated on low-resolution
image datasets such as MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR10
(Krizhevsky et al., 2009). Second, the employed INR architecture learns entirely different representa-
tions under camera transformations such as translation. Translation equivariance is a fundamental
property in traditional image classifiers (Cohen & Welling, 2016; Zeiler & Fergus, 2014), especially
because higher-resolution image datasets allow for less restricted object positions and present chal-
lenges in terms of background noise (Szabó & Horváth, 2022). Third, INR classifiers typically suffer
from overfitting (Kofinas et al., 2024; Shamsian et al., 2024; Kalogeropoulos et al., 2024), with
restricted data augmentation methods to combat this (Navon et al., 2023; Shamsian et al., 2024),
resorting to the resource-intensive process of fitting several redundant INRs per image to improve
generalisation (Navon et al., 2023; Bauer et al., 2023; Shamsian et al., 2024; Zhou et al., 2024a).

In this paper, we introduce a novel type of INR named ARC: Anchored Representation Clouds,
along with a flexible classification pipeline and data augmentation methods (Figure 1). An ARC
consists of 1) an specific encoder which anchors a cloud of latent vectors in image coordinate space,
and 2) an MLP decoder that is shared among ARC instances. In querying a coordinate, ARC finds
the nearest latent vectors and decodes their content. This way, ARC retains local image features,
making it more robust against image translation and more performant in higher-complexity image
classification. Furthermore, as the latent vectors can be positioned freely, they can be anchored more
densely in high-frequency image regions, biasing model capacity towards complex regions rather
than encoding the image globally. By increasing the number of anchored latents, ARC can trivially
scale to larger image complexity. By converting images to a set of ARCs, each image is effectively
represented by a cloud of latent vectors, allowing point-cloud architectures for downstream use, along
with intuitive and effective point-cloud data augmentation methods which eliminate the need for
expensive redundant INR fitting. To our knowledge, this is the first work to utilise an INR’s entire
weight-space on a high-resolution dataset like Imagenette (Howard, 2019), achieving a classification
accuracy of 75.92%. We further demonstrate ARC’s robustness to image-space transformations and
its ability to capture high-resolution images.

Our contributions include the following. (1) A novel INR architecture that anchors latent vectors in
the image coordinate space, preserving spatial locality. (2) An accompanying classification pipeline
that enables effective and intuitive weight-space augmentation methods. (3) Enhanced robustness to
image-space translations in INR classification.

2 RELATED WORK

Implicit neural representations. An implicit neural representation (INR) (Sitzmann et al., 2020) is
a neural network trained to represent a signal. In the image domain, an INR aims to learn a mapping
between pixel coordinates and pixel values. After training, a forward pass of an INR produces a
reconstruction of the original image, which is now captured inside the INR’s weights. Alternative
names for implicit neural representations are neural fields (Xie et al., 2022; Papa et al., 2024; Wessels
et al., 2024), coordinate networks (Martel et al., 2021; Lindell et al., 2022; Zheng et al., 2022) and
coordinate-based neural representation (Tancik et al., 2021).

The premise of INRs does not prescribe any particular architecture, prompting early work to assess
the suitability of the simple MLP (Mildenhall et al., 2021; Park et al., 2019; Mescheder et al., 2019).
Such models struggle to capture the high-frequency components of the signal, due to the spectral
bias, which in INR-context results in blurry image reconstructions (Rahaman et al., 2019; Tancik
et al., 2020; Sitzmann et al., 2020). This issue inspired a large set of diverse solutions, such as
transforming the input using sinusoids (Tancik et al., 2020; Mildenhall et al., 2021; Zheng et al.,
2022), modifying the activation function (Sitzmann et al., 2020; Ramasinghe & Lucey, 2022; Chng
et al., 2022; Saragadam et al., 2023; Liu et al., 2024; Gao & Jaiman, 2024), or positioning learnable
elements in the signal coordinate space to represent local image regions (Liu et al., 2020; Peng et al.,
2020; Jiang et al., 2020a; Chen et al., 2023; Li et al., 2022; Giebenhain & Goldlücke, 2021; Martel
et al., 2021; Müller et al., 2022; Chabra et al., 2020).

We posit that positioning learnable elements in signal coordinate space can aid INR classification,
as by coupling latent information to local image regions, we retain image structure in the latent
space and the image features encoded therein. Other methods which position latents freely in image
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coordinate space focus on improving the signal reconstruction quality (Chen et al., 2023; Giebenhain
& Goldlücke, 2021). These methods hybridise INR methods (Chen et al., 2023), and require intricate
initialisation and latent decoding schemes (Chen et al., 2023; Giebenhain & Goldlücke, 2021). In
contrast, simplicity is a core design principle in ARC; reducing computational complexity ensures
that fitting an entire image dataset remains efficient.

INR classification. INR literature typically emphasises training and parameter efficiency whilst
optimising reconstruction quality (Chen et al., 2023; Müller et al., 2022; Dupont et al., 2021; Huang
& Hoefler, 2022; Essakine et al., 2024), or utilises INRs as a component in a broader method for
their compression and generalisation abilities (Cole et al., 2023; Dollinger et al., 2024). Here, we
investigate INRs in a classification setting.

Early works on INR classification studied flattened weight matrices (Unterthiner et al., 2020) or
their weights’ statistics (Eilertsen et al., 2020). Such flattened representations remain in use in
INR-context as low-dimensional embeddings that are trained along with (Dupont et al., 2022; Bauer
et al., 2023), or after (De Luigi et al., 2023), INR fitting. These methods do not generalise well to
image classification (De Luigi et al., 2023; Kalogeropoulos et al., 2024) or larger-scale classification
tasks (Bauer et al., 2023) however. Instead, a key insight to process whole INR weight-spaces was
to consider a neural network’s symmetries; transformations which alter the weights but preserve
the INR’s function (Godfrey et al., 2022). Architectures which incorporate equivariances to such
symmetries obtain a significant increase in INR classification accuracy (Navon et al., 2023; Zhou et al.,
2024b; Kofinas et al., 2024; Kalogeropoulos et al., 2024). With ARC, we propose an architecture that
anchors low-dimensional latent embeddings in image-space. This ties the learnt encodings directly to
local image content, effectively compressing an image into a latent point cloud. A similar observation
is made and implemented in a concurrent work with an attention-based architecture (Wessels et al.,
2024). Their method is demonstrated across various domains but does not address the shortcomings
of INR classification concerning image classification, such as confinement to low-resolution image
datasets and sensitivity to image-space translations.

Flexibility of INRs. The flexibility of NNs allows for wildly varying weight-spaces that faithfully
capture a signal. This variability makes it difficult for downstream models to capture consistent image
features across INR instances (Kofinas et al., 2024; Shamsian et al., 2024; Kalogeropoulos et al.,
2024). Previous work has shown that establishing a form of alignment or ‘common ground’ among
INRs improves classification accuracy. Such methods include sharing the INR weight initialisation
(Navon et al., 2023; Papa et al., 2024), introducing shared learnable elements to the fitting process
(Giebenhain & Goldlücke, 2021; Chen et al., 2023; Wessels et al., 2024), learning low-dimensional
shifts to an established INR base network (Dupont et al., 2022; Bauer et al., 2023) or sharing a part
of the INR over all instances (Vyas et al., 2024). In this spirit, ARC shares a decoder over the whole
dataset, which is jointly pretrained on a subset of the data and then frozen.

Even if INRs share a form of alignment, overfitting remains a persistent issue in INR classification
(Kofinas et al., 2024; Shamsian et al., 2024; Kalogeropoulos et al., 2024). A limited set of weight-
space augmentations are available to combat this (Navon et al., 2023; Shamsian et al., 2024). Hence,
INR classification methods fit redundant INRs for each image in the dataset, which is a resource-
intensive task (Zhou et al., 2024a; Kalogeropoulos et al., 2024; Navon et al., 2023; Bauer et al.,
2023; Zhao et al., 2024). Instead, we can leverage the unique weight-space of ARC to apply intuitive
data augmentation methods on-the-fly which we demonstrate to be competitive in regularisation
effectiveness to redundant INR fitting, at a fraction of the computational cost.

3 METHOD: ARC

ARC consists of an encoder and a decoder. The encoder is mainly a cloud of latent vectors and
retrieval logic to obtain the n nearest latent vectors for a given input coordinate. These vectors are
then concatenated and passed to the decoder, which maps the vector to a colour. More specifically,
given a coordinate x ∈ Rdin , an indexing function Un retrieves the n nearest anchored latents and
their relative positions to x from latent cloud P = {(pi,wi)}ki=1. These latents and their relative
positions are concatenated. The concatenated vector is then passed through the MLP decoder g,
mapping it to an RGB colour. Further details are in the Appendix.
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Encoder. The encoder consists of a cloud of learnable latent vectors and aggregation logic. The
latent vectors are anchored in the image coordinate space. The latent dimension z and the number of
latents k anchored in the image are hyperparameters.

Figure 2: Given an image coordinate x, ARC
finds the 4 nearest latent vectors, along with
their relative position to x. These are con-
catenated into a long descriptive vector which
the decoder maps to an RGB colour. The
reconstruction loss is computed between the
ground-truth and predicted colour.

Latent vector positions. We follow Chen et al.
(2023); Li et al. (2022), whereby learnable elements
are positioned in signal-space near high-frequency
content so as to bias the model capacity to more dif-
ficult to encode content. To this end, the latents’
positions are determined by sampling the image gra-
dient norm. The latents’ positions remain fixed. The
indexing function Un can therefore cache the index of
nearest latents upon ARC initialisation, significantly
decreasing training latency.

Indexing and aggregation. Given an input coor-
dinate x, an indexing function Un retrieves the n
nearest latent vectors along with their relative posi-
tion to x. n can be any value but we found 4 nearest
neighbours to be sufficiently expressive. In contrast
to other methods which predefine an interpolation
function to aggregate the latent vectors (Chen et al.,
2023; Giebenhain & Goldlücke, 2021), ARC defers
to the decoder to learn this from the latent vectors and relative positions, similar to (Chen et al., 2021).
The latent vectors and their relative positions are thus simply concatenated and fed to the decoder.
We found Fourier features (Tancik et al., 2020; Chen et al., 2023) to not improve results much so
these were omitted in favour of simplicity.

Decoder. The decoder is a simple MLP with ReLU activations, as opposed to more elaborate
activation functions (Chen et al., 2023). To align latent vectors across different ARC instances, we let
instances share the decoder. This shared decoder is pre-trained along with several ARCs on a subset
of the data and then frozen for the complete dataset. Consequently, the memory cost of the decoder
can be amortised across the whole dataset as only the anchored representation cloud is required for
classification.

Downstream processing. Due to its unique weight-space, ARC transforms the problem of INR
classification into point cloud classification. This allows us to leverage well-studied downstream
architectures for ARC classification. Contrary to SIREN classifiers, no further mechanisms against
weight-space equivariances are needed (Navon et al., 2023; Kofinas et al., 2024; Kalogeropoulos
et al., 2024).

Point Transformer v3. Any point cloud architecture that supports arbitrary point feature dimensions
can naturally process ARCs. However, since the anchored latent vectors encode local information, an
architecture that emphasises local interaction is preferred. To this end, we select Point Transformer
v3 (PTv3) (Wu et al., 2024), a state-of-the-art method that performs local attention. When using
PTv3, we provide it only the learnt latent vectors. The latent positions are used only for the relative
positional encoding and pooling operations. PTv3 allows for a varying number of points within a
batch, enabling ARCs to adjust the number of latents to the image complexity. Note however that in
this work we follow (Chen et al., 2023) by letting the number of latent vectors be proportional to
image size. Modifications made to PTv3 for ARC compatibility are discussed in Appendix A.4.

Data augmentation. We can leverage the unique weight space of ARC to apply intuitive data
augmentation methods which we show to be almost as effective as using redundant ARC instances in
our experiments. These data augmentations are applied ‘on-the-fly’ on the anchored representation
cloud. The augmentation methods are named Noise, Mask, Push, Rotate, Flip, and ARCmix (Figure 8).
Noise applies random Gaussian noise to the latent content, Masking omits a specified fraction of
the points, Push, Rotate and Flip only augment the latent vector coordinates within a single ARC
instance. Furthermore, ARCmix, a method inspired by CutMix (Yun et al., 2019; Zhang et al., 2022),
mixes two ARC by combining their latent clouds.
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4 EXPERIMENTS

In INR classification literature, the seminal SIREN architecture remains the most prominent and has
seen incremental classification improvements over recent years (Navon et al., 2023; Kofinas et al.,
2024; Zhou et al., 2024a;b; Kalogeropoulos et al., 2024). We focus on two representative baselines:
the foundational DWSnets (Navon et al., 2023) and the state-of-the-art ScaleGMN (Kalogeropoulos
et al., 2024). Additional experiments are presented in Appendix A.2, along with more details about
the experiments and implementation.

Experiment 1. High-resolution image classification. How well do ARCs and existing INR
classification pipelines perform as image resolution increases? To answer this question, we analyse
INR classification accuracy on Fashion-MNIST (FMNIST) (Xiao et al., 2017) whereby we pad the
images with zeroes to a 100× 100 and 1024× 1024 resolution (Figure 9). These datasets are then
converted into SIRENs and ARCs and classified by their respective methods. The test accuracy is
reported in Table 1.

While both SIREN and ARC classification pipelines show a degradation in classification accuracy,
ARC is demonstrably stronger. This difference can be attributed to how each method handles
increasing image resolution. A SIREN’s input domain is fixed to [−1, 1]din , regardless of image
size. On higher resolutions, the number of pixels mapped within [−1, 1]din grows, requiring SIRENs
to learn higher frequency mappings. Subsequently, spectral bias effects re-emerge, resulting in
overly smooth reconstructions. To mitigate this, the SIREN architecture is increased in width
and depth, yielding a ×33 increase in the parameters between 100 × 100 and 1024 × 1024. This
substantial increase significantly increased fitting time, requiring us to limit the SIREN dataset size
to approximately a third of that used for ARC. For ARC, the image resolution is decoupled from
the latent representation. Consequently, as image size grows but image complexity remains low, the
number of latent vectors does not have to be adapted.

We continue our investigation of high-resolution image INR classification with Imagenette (Howard,
2019), a subset of Imagenet (Krizhevsky et al., 2012). Imagenette is a dataset of natural images with
a median resolution of 375× 500 and a maximum of 4268× 2912. As image complexity increases,
INR capacity must increase proportionally. For ARC, we can increase the number of anchored latent
vectors. For SIRENs however, the scaling is performed in either the number of hidden layers or the
hidden dimension. Neither DWSnets nor ScaleGMN support variable SIREN architectures, so a
fixed architecture size must be picked. This invariably leads to undercapacity or overcapacity on a
subset of the image data. To decrease discrepancies that may arise from this, we use the prescaled
dataset variant Imagenette320 (Howard, 2019), and apply a centre-crop to standardise all images to
320× 320. These images are converted into SIRENs and ARCs and subsequently classified. This
procedure is additionally performed on the original, full-resolution Imagenette dataset with ARCs. As
no test set is provided, we report validation accuracy in Table 2. We were not able to train ScaleGMN
on this dataset due to instability issues, which we discuss further in Appendix A.5.

ARC demonstrates high classification accuracy on Imagenette. We hypothesise that this performance
is due to the higher resolution of Imagenette images, where relevant features are distributed across
larger regions of the image. With latent vectors anchored in these regions, ARC can represent the

Side Length 28 100 1024 INR #param
increase

DWSNets 67.06⋄ 67.60 53.28 ×33
ScaleGMN 80.78⋄ 74.50 48.77 ×33
Ours 80.42 79.36 73.57 ×1

Table 1: Exp. 1: Test accuracy (%↑) on the padded FMNIST datasets and the required increase in INR
parameters (↓) to produce recognisable reconstructions. The SIREN 1024× 1024 dataset is a third of
the size of the corresponding ARC dataset due to steep fitting costs as a consequence of the increased
number of parameters. Entries marked with ⋄ are taken from their original publication (Navon et al.,
2023; Kalogeropoulos et al., 2024). Next to being a more parameter efficient representation, our
method is more resilient against increasing image size.
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Imagenette 320x
CenterCrop

Imagenette full
resolution

DWSnets 41.05 -
Ours 71.71 75.92

Table 2: Exp. 1: Validation accuracy (%↑) on Imagenette. ARC sets a new watermark in classifying
full-resolution image data through their INR representation.

MNIST FMNIST CIFAR10

DWSnets (Navon et al., 2023) 85.71 ± 0.6 67.06 ± 0.3 -
NG-GNN (Kofinas et al., 2024) 91.40 ± 0.6 68.00 ± 0.2 36.04⋄ ± 0.44
NG-T (Kofinas et al., 2024) 92.40 ± 0.3 72.70 ± 0.6 -
ScaleGMN (Kalogeropoulos et al., 2024) 96.59 ± 0.2 80.78 ± 0.2 38.82 ± 0.1
Ours 92.69 ± 1.2 80.42 ± 0.4 58.47 ± 0.4

Table 3: Exp. 2: Test classification accuracy (%↑) on various image classification datasets. Entries
marked with ⋄ are taken from reproductions by (Kalogeropoulos et al., 2024). ARC classification
accuracy is similar to baselines on low-complexity datasets and outperforms them on the more
complex CIFAR10 dataset.

features with greater precision and redundancy, all while respecting the spatial integrity of these
features. This in turn enables PTv3 to infer meaningful image features. The additional accuracy
between the centre-crop and full-resolution sets can be attributed to the resolution bias present in
Imagenette, which may be exploited by the relative positional encoding and pooling in PTv3; in a
brief test we found that a simple ReLU-MLP of dimensions [2, 64, 64, 64, 10] can obtain a validation
accuracy of up to 23.46% on Imagenette when trained on image dimensions alone.

Experiment 2. Image classification benchmarks. How does ARC compare to established INR
classification benchmarks? We follow other INR literature in using MNIST (LeCun, 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009). The complete datasets are
used, along with data augmentation methods that are expanded upon in Experiment 3. Results are
gathered on 3 different seeds and summarised in Table 3. On low-complexity grey-scale datasets,
ARC performs similarly to current state-of-the-art methods. On the more complex CIFAR10 dataset,
ARC obtains state-of-the-art accuracy. CIFAR10 contains natural RGB images which inherently
contain background noise. It is therefore a more challenging benchmark than the gray-scale MNIST
and FMNIST datasets. We expect that image features are better represented among ARC instances
on these more complex images, leading to superior accuracy compared to SIRENs.

Experiment 3. Data augmentation. In SIREN classification methods, an increasingly used
technique to reduce overfitting is to generate redundant INRs for each image in the dataset (Zhou
et al., 2024a; Kalogeropoulos et al., 2024; Navon et al., 2023; Bauer et al., 2023; Zhao et al., 2024),
demanding significantly more resources and time for the INR fitting process. To establish a baseline,
we fit 20 ARCs per image on a 10k subset of CIFAR10. Without any additional augmentations, PTv3
is trained on two conditions: using a single ARC per image and using all 20 ARCs. We report the test
accuracy per image in Table 4. ARC classification accuracy is on par with the state-of-the-art which
has the advantage of being trained on the full CIFAR10 dataset.

We now ask, are data augmentation methods that operate on the ARC weight-space as effective as
using redundant INRs during training? We convert the entire CIFAR10 dataset to ARC instances and
evaluate the different data augmentation methods in Table 5. When comparing the test accuracies
obtained under weight-space data augmentations to those obtained with redundant INR fitting Table 4,
we observe that our data augmentations do not fully close the gap. Moreover, the gap may be slightly
larger as we leverage the entire CIFAR10 in the weight-space augmentation experiments and just
a 10k subset in the redundant INR experiment. Regardless, our data augmentation methods offer a
compelling alternative that requires significantly less computational resources and time to execute.
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#INRs per image 1 20

NG-GNN 36.04⋄ 45.70⋄

ScaleGMN 38.82 56.95
Ours 38.12 55.87

Table 4: Exp. 3: CIFAR10 test accuracy
(%↑) after training on either 1 or 20 INRs per
CIFAR10 image. No further data augmen-
tation is employed. Similar to the baselines,
ARC classification accuracy improves signifi-
cantly when trained on redundant INRs. Base-
line data is taken from Kalogeropoulos et al.
(2024), where data marked with ⋄ denote their
reproduction of (Kofinas et al., 2024).

Latent
noise

Point
space

ARC
masking ARCmix Acc.

- - - - 38.12
✓ - - - 39.08
- ✓ - - 51.69
- - ✓ - 50.25
- - - ✓ 54.55
- - ✓ ✓ 54.56
- ✓ ✓ ✓ 50.34
✓ ✓ ✓ ✓ 51.03

Table 5: Exp. 3: Test accuracy (%↑) on different
ARC augmentation methods. The ‘Point space’ col-
umn applies the push, flip and rotation augmenta-
tion methods. Compared to fitting and training on
redundant INRs, these more efficient weight-space
augmentations yield competitive test accuracy.

Figure 3: Exp. 4: Image reconstruction quality when trained with various mini-batch ratios. Interest-
ingly, both SIREN and ARC show strong fitting performance when only using a subset of the pixels
at each optimization step. This allows for achieving a higher PSNR in less wall time.

Experiment 4. Mini-batch training. In INR context, training for an epoch entails having super-
vised all image coordinates. We ask whether mini-batches can be an alternative, whereby optimisation
steps are performed on a random subset of the image coordinates. To answer this question, we define
mini-batch ratio as the fraction of the full-batch size used in a single step. For several mini-batch
ratios, we train a SIREN and ARC instance three times on skimage’s astronaut image and average
them together. In Figure 3 we observe that, for both SIRENs and ARCs, mini-batch training is
stable for high enough ratios, and yields similar reconstruction quality as full-batch training in fewer
epochs and wall time. Encouraged by this finding, we leverage mini-batch training in all our ARC
experiments with a mini-batch ratio of 0.25 unless otherwise noted.

Experiment 5: Image translation robustness. For regular image classifiers, translation invariance
means that the classifier’s prediction is unaffected by a shift in pixels. This runs counter to INRs where
any change in pixels should be accurately reflected in the reconstruction, and consequently, in the
learnt INR weights. For an INR classifier to be robust against benign image shifts, it must distinguish
changes in INR weights that capture pixel shifts from changes that capture more meaningful semantic
changes.

As ARC captures local image features, we hypothesise that the weight-space remains largely intact
when fitting to a shifted image, making the ARC classification pipeline more robust to such transfor-
mations. To test this, we return to the 100× 100 padded Fashion-MNIST objects, where, alongside
centred FMNIST objects (named Centered ), we fit INRs to randomly displaced FMNIST images
(named Displaced ). A sample of these data can be found in Figure 11. SIRENs share the same
initialisation, while ARCs use the same decoder over all datasets. Both ScaleGMN and PTv3 are
trained on their respective INRs of the Centered dataset and subsequently evaluated on Displaced
INRs. Test accuracies are listed in Table 6.
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Method Test on
Centered

Test on
Displaced

ScaleGMN 74.50 13.00
Ours, PTv3 79.36 47.61

Table 6: Exp. 5: Test accuracy (%↑) when trained on INRs of Centered and evaluated on INRs of
Displaced . SIREN-based methods (ScaleGMN) experience a complete collapse in classification
accuracy due to significant differences in weight-space among the datasets. ARC paired with PTv3
demonstrates improved robustness but warrants further experimentation.

No shift Shift

PTv3 79.32 57.87
PTv1 76.37 76.46

Table 7: Exp. 5: Impact of absolute latent posi-
tion shifts on PTv3 and PTv1 test accuracy (↑%).
PTv3 shows a substantial drop in accuracy when
the latent cloud is shifted, demonstrating its sen-
sitivity to absolute latent positions. PTv1 shows
no noticeable accuracy degradation which is in
line with its relative position mechanisms.

Method Test on
Centered

Test on
Displaced

PTv3 78.58 62.78
PTv1 76.37 49.36

Table 8: Exp. 5: Test accuracy (↑%) when
training PTv3 on Centered with random la-
tent cloud shifts. Naturally, training with la-
tent cloud shifts improves PTv3’s robustness to
translation and allows us to analyse the accu-
racy gap due to latent content differences be-
tween Centered and Displaced . PTv1 has
this property built in but shows significantly
weaker generalisation across the datasets.

In SIREN-based methods, evaluating on Displaced is almost equivalent to random guessing, as the
displaced FMNIST images have induced a drastic change to the SIREN weight-space. For ARC, we
observe a much smaller, but still significant drop in generalising to Displaced ARCs. Like with
SIRENs, the shifted image content may have induced significant differences in the latent content.
However, an additional cause may be at play, where PTv3 is overfitting to the absolute positions of
the ARC latent vectors. Although PTv3 does not explicitly use absolute latent positions, its pooling
and local attention mechanisms do rely on them. We test the trained PTv3 model on Centered
ARCs where the entire latent cloud is shifted. In Table 7, this shift causes a significant drop in
accuracy degrades, confirming that PTv3 is not translation invariant. We therefore also consider
Point Transformer v1 (PTv1) which uses a simpler nearest neighbour mechanism relying on relative
position (Zhao et al., 2021). PTv1 shows no significant changes in accuracy drop under the same
conditions as PTv3.

To address the issue of translation sensitivity, we retrain PTv3 but randomly shift the ARCs during
training. This forces PTv3 to become more robust to absolute position differences. When evaluated
on Displaced , the accuracy drop is significantly reduced compared to the original setup, as shown in
Table 8. With the increased robustness against absolute position differences, the observed performance
gap can be attributed to latent content differences between Centered and Displaced . PTv1 is also
tested but shows significantly weaker generalisation properties.

5 CONCLUSION

In this paper, we introduced ARC: Anchored Representation Clouds, a novel type of INR that retains
image structure in its weight-space. ARC can leverage point cloud classification architectures to obtain
state-of-the-art classification results and process image datasets that were previously unattainable for
INR-based classification methods. Additionally, the unique weight-space of ARC provides efficient
data augmentation techniques. For future work, making ARC adapt its capacity dynamically to
the image’s complexity would be an interesting avenue. Additionally, a key advancement in INR
classification would entail the unification of the INR fitting and classification processes, which are
currently treated as distinct stages. End-to-end coupling could lead to more competitive classification
performance compared to image-space classification whilst being more memory-efficient.
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A APPENDIX

A.1 ARC DEFINITION

We interpret a sampled signal s as a set of equidistant discrete observations {(xi ∈ Ndin , s(xi) ∈
Ndout)}bi=1. For instance, an RGB image would be a set of pixel locations (din = 2) with corresponding
RGB colours (dout = 3). An INR learns parameters θ by supervising the mapping between the signal’s
domain and codomain fθ : Rdin 7→ Rdout , supervising on s(x), with mean squared error (MSE) loss.
ARC is defined as follows.

fθ(x) =gψ(e(x)) ARC (1)

Rdin 7→ Rdout (2)
e(x) =Concat(Un(x)) Encoder (3)

(Rz × Rdin)n 7→ Rn·(z+din) (4)
gψ(vx) =MLPψ(vx) Decoder (5)

Rn·(z+din) 7→ Rdout (6)

Un(x) ={(∆pi,wi)}ni=1 Indexing function (7)

Rdin 7→ (Rdin × Rz)n (8)

P ={(pi,wi)}ki=1 Latent cloud (9)

where pi ∈ Rdin , wi ∈ Rz (10)

θ ={ψ, {wi}ki=1} Learnable parameters (11)

A.2 FURTHER EXPERIMENTS.

ARC feature locality. In this experiment, we test our claim that the anchored latent vectors of ARC
represent local image features. If so, applying a transformation to the ARC coordinates should yield
a similarly transformed reconstruction. Furthermore, in classifying ARCs, the latent vector positions
should prove to be relevant. To remind the reader, the absolute position of the points is not given as a
feature to PTv3 to learn from.

Train

Intact Pushed

Te
st Intact 79.32 51.79

Pushed 17.39 69.06

Table 9: Feature locality exp.: FM-
NIST ARC test accuracy (%↑) if
the latent vectors are displaced at
either train or test time. Keeping
the latent vectors’ positions intact
yields the highest accuracy, demon-
strating their significance.

We first consider transformations on the ARC coordinates.
Given a trained ARC, we manipulate only the latent vector
positions. The index function cache is refreshed and a forward
pass is performed. In Figure 4, we perform several such trans-
formations and show the resulting reconstructions. We can
indeed verify that transforming latent vector positions yields
correspondingly transformed reconstructions. If the anchored
latents represent local image content, it is possible to mix ARCs.
We can e.g. select parts of different ARCs or simply stack them.
This is shown on the right in Figure 4, where two jointly trained
ARCs produce interesting reconstructions when mixed. In ar-
eas where the image gradient norm of either image is high,
we retain the original image features. As such, mixing ARCs
yields a reconstruction in which the original images are still
relatively well represented. This finding inspired our ARCmix
data augmentation method.

Let us investigate the local feature representations’ significance on ARC classification accuracy. We
reuse the FMNIST dataset that was padded to 100× 100 in Experiment 1. The latent vectors of this
dataset are pushed into a random direction once, and then used to 1) evaluate a normally trained PTv3
instance, and 2) train a PTv3 instance from scratch. In Table 9 we list the resulting test accuracies.
Unsurprisingly, keeping the latent vector positions intact leads to the highest test accuracy. The
regularly trained PTv3 instance shows a large drop in test accuracy when evaluated on the pushed
data, as the learned relative positional encoding within PTv3 becomes meaningless. Conversely,
when we train on pushed ARC data, the classifier still works relatively well. We hypothesise that the
latent features are descriptive enough that, through pooling and attention, PTv3 learns a relatively
informative global context. Accuracy drops when evaluated on intact ARCs, which we attribute to
PTv3 learning inconsistent or incorrect relative positional encodings from the displaced data.

ARC reconstruction quality. Obtaining a high parameter efficiency or high reconstruction quality
is not the primary objective of ARC. However, as it is commonplace in INR research, we will evaluate
ARC’s reconstruction capabilities and compare it to several baselines. Since reconstruction quality
scales with INR capacity, we investigate various configurations of each INR type and report the
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Original Shift Rotate Flip Mask Stack

Figure 4: Feature locality exp.: Each column depicts a transformation on the latent vector positions,
where the bottom row shows the resulting construction. No other changes are made to the ARC. The
correspondence between the latent cloud transformation and the new reconstructions demonstrates
how ARC encodes image features locally. In the rightmost two cases, two ARC, trained with a shared
decoder, are mixed by masking specific latents or by simply stacking them.

Figure 5: Image reconstruction results on the KODAK dataset. We compare ARC against SIREN and
FINER, reporting PSNR as a function of model capacity. The vertical line represents the parameter
count of a raw KODAK image, indicating the memory efficiency of different INR representations.
SIREN and FINER experiments were bounded by computation costs, whereas ARC was not. ARC
has a higher lower bound on memory than baselines but demonstrates superior scaling capabilities.

number of parameters alongside the obtained PSNR after 1000 training steps. Each configuration
is used to fit the KODAK image dataset (Franzen, 1999) three times, taking the mean over all three
runs and final reconstruction PSNRs. A mini-batch ratio of 1.0 is used except for ARC which uses a
mini-batch ratio of 0.5. Results for SIREN, FINER (Liu et al., 2024), and ARC, are shown in Figure 5.
For ARC, all combinations of {0.01, 0.05, 0.1, 0.25} · #pixels latent vectors and latent dimensions
{8, 16, 32, 64, 128} are used. For SIREN and FINER, combinations of {1, 2, 3, 4} hidden layers and
{32, 64, 128, 256, 512} hidden dimension are used. SIREN and FINER dimensions could not be
increased further due to the computation time increasing very steeply since all their weights must be
updated for each supervised coordinate. Contrastingly, ARC uses 4 neighbouring latents for each
coordinate, regardless of its capacity. ARC is therefore significantly faster to train and more scalable.

A vertical line denotes the number of values a KODAK image contains if it were loaded into memory
at 768 · 512 · 3 = 1.1e6 parameters. Any INR instance with fewer parameters is arguably more
memory-efficient than the original image. Larger INR representations show how PSNR increases if
more memory is available, though such representations would not directly yield memory benefits.
For ARC, the decoder’s parameters are not included as the decoder is shared across all instances of a
given architecture and its cost is thus amortised. ARC shows a generally higher parameter cost than
MLP-based INR methods.
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A.3 FURTHER ABLATIONS

Ablation vs. classification accuracy. In this ablation experiment, we ablate various aspects of
ARC and PTv3 to observe their impact on classification accuracy. For each ablation, ARCs are fit on
a subset of 10k CIFAR10 images.

First, we compare latent vector normalisation techniques and their impact on validation accuracy.
Three normalisation strategies are compared. None: where no normalisation is applied, Normalise
Whole: where the latent vectors are normalised using a scalar mean and standard deviation which
are precomputed on a subset of the ARCs, and Normalise Per-dim: where the mean and standard
deviation are precomputed per latent dimension on a subset of the ARCs. The effect of these
techniques on test accuracy is listed in Table 10. Generally, applying normalisation to the latent
vectors improves classification accuracy. This is in line with findings in other INR classification
literature (Navon et al., 2023; Zhou et al., 2024b;a; Kofinas et al., 2024). Furthermore, applying
normalisation across individual latent dimensions yields the highest improvement. This suggests
that capturing variations specific to each latent dimension provides a more robust representation
in classifying ARCs. We hypothesise that certain latent dimensions specialise in capturing distinct
image features. This type of alignment would be induced by sharing the decoder. A similar property
is introduced manually in Chen et al. (2023) using harmonics of different frequencies, which results
in better INR reconstructions.

Next, we explore the trade-off between the number of latent vectors and the latent dimensionality of
each latent vector in ARC, and aim to analyse their impact on classification accuracy. We fit a subset
of 10k CIFAR10 images to each combination. In Table 11 the validation accuracies which PTv3
converges to are listed. Accuracy improves significantly as we increase the number of latent vectors
in the image. Conversely, increasing the latent dimension yields diminishing returns on accuracy.

Latent normalisation Val. Acc.

None 52.67
Normalise Whole 54.58
Normalise Per-dim 58.68

Table 10: Validation accuracy (%↑) under dif-
ferent latent normalisation strategies. We show
how normalising each latent dimension inde-
pendently yields the highest increase in perfor-
mance.

Latent dimension

8 16 32

L
at

en
ts 10 30.95 32.91 29.01

25 41.12 40.05 41.43
50 49.14 48.62 48.02

Table 11: Validation accuracy (%↑) for differ-
ing number of latents and latent dimensions.
Increasing the number of latents has a clear pos-
itive impact on classification accuracy, whereas
high latent dimensions provide diminishing re-
sults, particularly when there are few latents.

Ablation vs. PSNR. In this ablation experiment, we investigate different ARC configurations and
observe their effect on image reconstruction quality. Given skimage’s astronaut image, we train an
ARC instance with various combinations of latent dimensions and number of latents, the latter being
expressed as a factor of the number of pixels in the image. Figure 6 shows the gradual increase in
reconstruction quality as either the number of latents or the latent dimensions increase. This plot is
generally in line with our expectations.

A.4 IMPLEMENTATION DETAILS

ARC implementation details. Provided with an image, the latent positions are determined by sam-
pling the image gradient norm. Like (Chen et al., 2023), the number of latent vectors is proportional
to the number of pixels in the image. We experimented with different combinations of the number of
latents and latent dimension and found that # latents = 0.05 ·# image pixels, combined with a feature
dimension of z = 32 works well for most cases. This configuration is used in all experiments, unless
otherwise noted. Like (Chen et al., 2023), the feature vectors are drawn from U(−1e−4, 1e−4).
Upon initialisation, the indexing function Un caches the index and relative position to the n nearest
latent vectors. In all our experiments, we use a decoder of size [n · (z + 2), n · (z + 2), dout]. The
decoder is pre-trained by jointly training 100 ARC instances, aggregating the loss over all instance
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for each step. All our ARC instances, as well as the pretrained decoder, are trained for 500 steps.
In fitting ARC we make use of mini-batching, whereby only 25% of the image coordinates are
supervised each iteration. We found that this makes qualitatively little difference in reconstruction
quality but makes fitting significantly faster. An ADAM optimiser is used with a learning rate of
0.005. We normalise images to [0,1] range.

Figure 6: PSNR for different ARC
configurations on skimage’s astro-
naut image. The vertical axis de-
notes the ratio of the image’s pixels
that contain a latent vector.

Point Transformer v3 implementation details. Point Trans-
former v3 (PTv3) (Wu et al., 2024) is not intended to be used
outside of point-cloud tasks, which typically contain a 3D coor-
dinate with optional features such as colours or normals. Hence,
PTv3 requires a few tweaks in order to be compatible with ARC.
For instance, the latent coordinates are made three-dimensional
by appending a 0 to them. To make PTv3 suitable for classifi-
cation tasks, we replace the standard upsampling blocks by a
global pooling layer, followed by a single linear layer that maps
the feature dimension to the number of classes.

SIREN implementation details. Several of our experiments
required custom SIREN datasets. We aimed to follow DWSnets
implementation but found it to be erroneous compared to the
regular SIREN specification (Sitzmann et al., 2020). Specif-
ically, a 0.5 offset is added to the network’s output, the first
layer does not follow the prescribed initialisation scheme, and
the bias layer is initialised to zero rather than the prescribed
weight initialisation. We found that these errors are not readily
apparent in low-resolution images such as the ones commonly
used in INR classification. In fitting our larger resolution im-
ages, we observe heavy blurring in the reconstruction Figure 7.
We opted to use a correct SIREN implementation instead.

We use default SIREN hyperparameters; ω0 = 30.0, no final
layer activation function, ADAM optimiser and learning rate of 0.0005. The SIRENs are trained for
1000 steps.

A.5 BASELINE DETAILS

ScaleGMN. In utilising the ScaleGMN baseline (Kalogeropoulos et al., 2024), it proved to be
rather unstable in training. The authors acknowledge this issue and take measures such as layer
normalisation and skip connections to mitigate it. ScaleGMN is designed to work on SIREN datasets
introduced by the DWSnets paper (Navon et al., 2023). We found that a faulty SIREN implementation
was used in creating these datasets (section A.4). The SIREN datasets that we created therefore
present an extra challenge as the provided ScaleGMN settings were created with DWSnet-SIRENs in
mind. To quantify this error, we train ScaleGMN using the provided MNIST settings on 10k SIRENs
that we fit ourselves. The resulting test accuracy is 88.89% after 71 epochs, which is 7.68% lower
than the test accuracy which the authors obtained 96.57% on the whole MNIST dataset. We proceed
to use ScaleGMN in our experiments where we use our own SIREN datasets, but are aware of the
possibly suboptimal performance.

Toy datasets. In most experiments with toy datasets FMNIST was chosen as a basis. FMNIST
poses a non-trivial classification challenge for current methods (Navon et al., 2023; Kofinas et al.,
2024; Kalogeropoulos et al., 2024) and can easily be padded to increase the image size.
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Ground Truth DWSnets SIREN Standard SIREN

Figure 7: Comparison of 1024 × 1024 FMNIST objects reconstructed using DWSnets’ SIREN
implementation and a corrected SIREN implementation. Rows depict (from top to bottom) the full
image, a zoomed-in view, and the FFT of the reconstruction. The left column shows the original
image, highlighting its increased frequency content. From the FFTs, it is clear that spectral bias
phenomena re-emerge in the SIREN INRs.

Figure 8: Data augmentation techniques for ARCs. Noise, Masking, and ARCmix manipulate the
latent cloud to enhance data diversity, while Push, Rotate, and Flip change just the latent vector
coordinates. These augmentations operate directly in the ARC weight-space.
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Figure 9: Left, a sample from the 1024× 1024 padded FMNIST dataset. Right, a zoomed in view
of the depicted object. The high-resolution of the image, transforms the relatively simple task of
FMNIST classification into a challenge for baseline INR classification methods.

Centered Displaced

Figure 11: Exp. 5: Samples from the Centered and Displaced datasets.
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