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Abstract

Transformers can generate predictions in two ap-
proaches: 1. auto-regressively by conditioning each se-
quence element on the previous ones, or 2. directly produce
an output sequences in parallel. While research has mostly
explored upon this difference on sequential tasks in NLP,
we study the difference between auto-regressive and paral-
lel prediction on visual set prediction tasks, and in partic-
ular on polygonal shapes in images because polygons are
representative of numerous types of objects, such as build-
ings or obstacles for aerial vehicles. This is challenging for
deep learning architectures as a polygon can consist of a
varying carnality of points. We provide evidence on the im-
portance of natural orders for Transformers, and show the
benefit of decomposing complex polygons into collections
of points in an auto-regressive manner.

1. Introduction

Predicting polygonal shapes in images is a high-level
task that is representative of many vision problems. One
example is to automatically extract vectorized building out-
lines from high-resolutions satellite images [11, 12, 16, 20].
Similarly, polygon detection can be beneficial for vision-
based flight control of unmanned aerial vehicles (UAVs), as
demonstrated in the Autonomous Drone Racing [17], where
drones fly autonomously through a sequence of polygon-
shaped gates purely relying on vision signals. The perfor-
mance of polygon detection is critical for UAVs as it di-
rectly affects the precision of navigation.

In this work, we treat polygonal shape prediction as a
collection prediction task such as sequences and sets . Many
kinds of data can be naturally represented using collection
and many machine learning tasks can be viewed as a collec-
tion prediction problem, such as predicting the collection
of points of a polygon [36], detecting objects in an image
[4, 35], estimating the pose of humans by detecting a set of

key-points [3, 29], or predicting multiple labels for the same
sample [26]. The difficulty in such problems arises for two
main reasons: because the cardinality (i.e. the number of
elements) of the collection is unknown and can vary among
different samples, and because collections when treated as a
set are permutation-invariant. However, canonical convolu-
tional neural networks are not able to tackle these problems
by design [19].

Transformers [30] have achieved impressive results on
numerous collection prediction tasks [4, 19], thanks to the
attention module [1], a solution capable of aggregating in-
formation from the entire collection while also satisfying
permutation invariance.

The work in [30] first presents Transformers as an auto-
regressive sequence-to-sequence model that generates a col-
lection of output tokens one by one. Numerous following
works [5, 10, 14] introduce new variants of Transformers to
reduce compute latency. However, the vast majority of auto-
regressive Transformers focuses on sequential tasks only,
such as machine translation [10, 14] or speech recognition
[5]. Recently, parallel Transformers have successfully been
applied into computer vision, especially in object detection
[4, 37], where the model outputs a set of bounding boxes
in parallel. However, parallel Transformers rely on com-
putationally intensive strategies, such as oversampling and
Hungarian matching [18].

The difference between auto-regressive and parallel
Transformers is fundamental. Let us consider an image
containing a collection of three objects (namely A,B and
C) which we are trying to detect. When asking a parallel
Transformer to learn this task, we are actually asking the
model to learn the joint probability of these three variables,
conditioned on the model parameters Θ, namely:

P (A,B,C | Θ) (1)

In contrast, when the auto-regressive approach is presented
with the same task, what it needs to learn is the chain of
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Figure 1: Examples of point collections used in our paper.

conditional probability distributions defined by:

P (A | Θ) · P (B | A,Θ) · P (C | A,B,Θ) (2)

In the second case, the Transformer is asked to produce
one element of the collection at a time, by exploiting in-
formation about the previous predictions. This is similar
to machine translation, in which the Transformer outputs
one word, conditioned on the previously generated output.
Eq. (1) and Eq. (2) are equal by definition of the general
product rule of probability, and Transformers are capable of
modelling both. However, using Eq. (2) with Transformers
imposes an order even when there might not be a natural
order present.

In this work, we study the difference between auto-
regressive and parallel Transformers on polygonal shape
prediction viewed as a collection of points, including indi-
vidual points, lines, gates and polygons, as shown in Fig. 1.
Our contributions are: (1) We test auto-regressive and par-
allel models on four collection prediction datasets and one
sequential dataset to provide the reader with a full picture of
the advantages and disadvantages of both approaches. (2)
We show that the conditional decomposition of the collec-
tion can be beneficial for Transformers when there is an ex-
plicit order in the elements of a set, such as predicting a
collection of points on a line. (3) we show empirically that
the conditional decomposition benefits from a particular or-

der than others on a polygon dataset.

2. Related work
Polygonal shape detection: The work in [12] views

satellite image mapping as a polygon prediction task and
makes use of a convolutional network to output the polygon
vertices directly. The work in [20] first detects bounding
boxes of buildings, and then uses recurrent networks to ex-
tract vectorized building footprints. The work in [11] pro-
poses to detect frame field for constructing building topol-
ogy via fully convolutional networks and is able to precisely
segment aerial images. Different from these works, we
study the effect of self-attentions or Transformers in polyg-
onal shape prediction.

Object detection as set prediction. DETR [4] first
presents object detection as a set prediction task, and re-
moves the need for non-maximal suppression on a large
amounts of anchor boxes. Similar to DETR, we also con-
sider polygonal shapes in an image as a set. Different from
DETR which only output bounding boxes, we produce vec-
torized polygons as a collection of vertices.

Transformers. Transformers were originally introduced
by [30] as a novel auto-regressive, sequence-to-sequence
model, and gained popularity thanks to their ability to dis-
pense entirely with recurrence and support parallel process-
ing of sequences. Their stunning results on machine trans-



Figure 2: The auto-regressive model for predicting polygons. This model exploits the sentences of tokens idea [30] which
generates tokens auto-regressively. There are only four possible tokens in its vocabulary: start, point, end-of-polygon and
end. The feed-forward network (FFN) at the end of the pipeline produces a class label and a pair of coordinates (x, y).

Figure 3: Token embeddings for predicting gates and
polygons. The first 2n elements (in blue) of the vector rep-
resent the (x, y) coordinates of the n vertices/points, nor-
malized by the image width and height. The following el-
ements (in red) represent the class label in one-hot format.
For gate detection, we have three red blocks because we
have two special tokens start and end, and an object token
gate. For polygon detection we have 4 red blocks because
all possible tokens are start, end, point and end-of-polygon,
as explained in 4.2. The vector is padded with zeros to reach
the required dimensionality of 256.

lation and other language tasks [2, 7, 21, 24] have recently
shed a light on employing Transformers for computer vi-
sion tasks, such as image recognition [8], object detection
[4], segmentation [33], set prediction [19, 31] and other vi-
sual tasks [6, 13, 28, 32]. Inspired by these works, we study
both auto-regressive and parallel Transformers on polygo-
nal shape prediction.

Transformers for set prediction. Deep Sets [34]
has proven that transforming all elements of an input set
into some latent representations and then combining them
through a permutation invariant function is a universal ap-
proximator of any set function. The work in [31] shows
that the attention layer of Transformers can also be viewed
as a generalization of the sum operation of Deep Sets
and is therefore also a universal approximator of set func-
tions. Moreover, Lee et al. [19] proposes an attention-based
permutation-invariant framework which demonstrates supe-
rior results on set-structured data. Inspired by these works,
we also study Transformers for set prediction task, but on a
particular type of set data - polygonal shapes.

3. Datasets
To illustrate our setting, we first show examples of our

datasets in Fig. 1. We use 4 toy datasets and 1 synthetic
dataset. The toy images are manually generated during
training and if not specified otherwise, we generate 3 mil-
lion images for training and 10,000 images for testing.

The point dataset contains images with n white points
randomly distributed over the image space. Each point’s
size is uniformly sampled from three possible values. The
task is to predict the x, y coordinates of all points in any
order. This dataset is an instance of a pure set prediction
problem, with points representing the set elements.

The line dataset contains images picturing a single white
line composed by 7 segments. A green point of fixed size is
placed on top of each end of a segment. The line is gener-
ated by first drawing a straight line going from the bottom
left corner of the image to the top right corner, and then ran-
domly shifting 8 equally distributed points perpendicularly
to the line direction by r ∈ [−15%, 15%] with respect to



the image size. The task is to predict the x, y coordinates
of the 8 points following the line order, starting from the
end on the bottom left of the image. The set elements are
represented in this case by the green points, and this dataset
is an example of a set prediction task where there exists an
explicit order in which we need to predict its elements.

The gate dataset contains images with n convex poly-
gons of 4 corners, called gates. Each gate is generated by
defining 4 equally spaced points on a circumference of ran-
dom radius r ∈ [5%, 40%] with respect to the image size.
Each point is then shifted randomly in the direction of the
radius and the four points are finally connected to define the
gate. All four edges of the gates are of the same thickness,
uniformly sampled out of 3 possible choices.

The synthetic gate dataset [9] contains realistic syn-
thetic images generated with a graphical engine, which sim-
ulate the flight of a drone in different environments con-
taining empty wireframe objects (EWFOs or gates). This
dataset is a simulation of the images that a UAV would face
in the IROS 2018 Autonomous Drone Race [17]. The train-
ing set contains 26,000 images from two different scenes,
with light coming from outside and inside the rooms. The
test set contains 3,000 images from two additional scenes
with light coming only from artificial sources placed inside
the rooms. For all scenes, different walls and pavement
textures are used, as well as different artificial shapes and
light intensities for internal lamps. All images contain 1 to
4 gates. For both synthetic and toy gate datasets, the task
is to predict the position of the four corners in the image
for each gate. These two datasets represent a set prediction
scenario closer to real-life problems, where the complexity
of the single set element prediction (the gate) is greater than
a simple point prediction. The synthetic gates dataset in-
creases the complexity even further by picturing gates with
different backgrounds and different lighting situations.

Finally, the polygon dataset contains images with n
polygons of m ∈ [3, 7] corners, generated using the same
technique as the gate dataset. As multiple non-convex poly-
gons can be represented by the same set of points, the task
is to predict the m corners of a polygon in clockwise or-
der. Any starting point is accepted, and distinct polygons
can be predicted in any order. This dataset represents the
hardest set prediction task in which we require our models
to predict a set of ordered sets.

For all datasets, n is a parameter varied for different ex-
perimental settings. All samples in the toy datasets are RGB
images of size 256x256, while images from the synthetic
gate dataset are of size 400x400. The coordinates of the la-
bels are represented as the relative height/width to the image
size with values in [0, 1].

4. Models
All of the models that we implemented and tested are

derived from DETR [4], an end-to-end Transformer which
achieves competitive results against Faster R-CNN [25] on
object detection. It takes advantage of a CNN backbone and
parallel encoding-decoding Transformers to solve object
detection as a set prediction task. In short, DETR is com-
posed of four modules: a CNN backbone, a Transformer
Encoder, a Transformer Decoder, and a feed-forward net-
work (FFN). An example of our models is shown in Fig. 2.
It pictures the auto-regressive variant used for the polygon
toy setting dataset.

DETR takes as input an RGB image and extracts a high-
level feature map of shape C×H ×W , where C is the size
of number of channels, and H and W are the spatial di-
mensions. The feature map is supplemented with fixed po-
sitional embeddings before the Transformer encoder. The
Transformer encoder is a stack of 6 self-attention mecha-
nisms, each of which consists of a standard self-attention
layer followed by a feed forward network, a residual con-
nection and layer normalization [4]. All of the models we
tested are identical up to this stage of the architecture, but
differ in the subsequent modules.

4.1. Parallel models

The design of parallel models is identical to DETR [4].
The N learned object queries are converted in parallel into
N output embeddings of size 256 by the Transformer de-
coder, which are subsequently fed into a simple feed for-
ward network (FFN) for classification and position regres-
sion.

Depending on the task, we modify the dimensionality of
the FFN for position regression accordingly. For example,
on the point and the line datasets, the output is a vector of
size 2 representing the (x, y) coordinates of a point nor-
malized by the image width and height, while the output on
the gate dataset is an 8-element vector indicating the four
vertices of a gate in clock-wise order. The class labels for
all datasets are the same, namely the object class and the
no-object class.

On the polygon dataset, the FFN is replaced by a simple
multi-layer Elman RNN [27], since the output dimension
is also a variable. The RNN model takes as input the em-
beddings from the object class and generates a sequence of
points one by one. The RNN is possibly the minimal mod-
ification we could make to the architecture to work with
polygons and have the smallest impact on the model’s prop-
erties and our experiments.



4.2. Auto-regressive models

The auto-regressive models diverge from the parallel
ones on all set prediction tasks, because they work with sen-
tences of tokens that are generated one by one, by condition-
ing the next prediction on the previous ones. In particular,
each token is a vector of dimension 256 that represents an
element of the set, or acts as a special representation. Spe-
cial tokens can be:

• start or S: This token is at the beginning of all sen-
tences and defines the starts of the computation.

• end or E: This token is at the end of all sentences and
terminates the computation.

• end-of-polygon or EOP: This token separates poly-
gons from polygons inside the same image. It acts sim-
ilarly to the period token used in machine translation
to separate words belonging to different sentences.

Depending on the task, object tokens can be:

• point or P: On the point dataset and the line dataset,
each point is a 2-element vector representing the posi-
tion of the (x, y) coordinate normalized by the image
width and height.

• gate or G: On both toy and synthetic gate datasets, a
gate is represented as a vector of size 8, which defines
the normalized coordinates (x, y) of all 4 vertices.

To batch sequences of different lengths together, we pad
sentences with the end token up to the same length. For ex-
ample, given a batched sequences where the maximal length
is 8, we pad the shorter sequence with 4 visible points only
with two extra E:

S, P, P, P, P, E, E, E

We use the same Transformer decoder as the parallel
models, but adopt the masking technique for parallel train-
ing, which prevents each token from attending to subse-
quent positions [30]. The token embedding is a fixed length
vector of size 256 as shown in figure 3.

The auto-regressive approach predicts all polygons in a
certain order. If not specified otherwise, we always pre-
dict objects going from left to right in the image, splitting
ties with top-to-bottom order. We sort polygons and gates
accordingly by their centers, computed as the average of
their vertices. Particularly, for the polygon dataset, we also
impose an order on points such that the polygon is clock-
wisely defined by the points, otherwise the same set of the
points may result in several polygons of different shapes.

Figure 4: Results on the line dataset. The task is to predict
a series of ordered points. The auto-regressive model pro-
duces approximately perfect prediction, while the parallel
model fails.

5. Experiments
First, we validate that the auto-regressive approach is

preferable on the line dataset where there is an explicit nat-
ural order in the predictions, and that the parallel solution
is better on the point dataset for pure set prediction tasks
without orders. We then compare the two strategies on more
challenging gate datasets where the element is no longer a
single point and where data is scarce. Finally, we explore
deeper into the auto-regressive solution to study upon the
importance of the prediction order and the order of the con-
ditional variables.

On toy datasets, we train all models with 3,000,000 im-
ages. On the real gate datasets with 26,000 images, we train
all models for 300 epochs. We apply multiple data augmen-
tation techniques, including horizontal flip, vertical flip, hue
shift, Gaussian noising.

We train all models on a single NVIDIA GeForce RTX
2080 Ti GPU with AdamW [22], and set the Transformer’s
learning rate to 10−4, the backbone’s learning rate to 10−5,
and the weight decay to 10−4. The learning rate is dropped
by a factor of 10 after 200 epochs, or after 2,000,000 images
for the toy settings. Mask R-CNN [15] is also trained for
300 epochs with learning rate 5× 10−3, which is decreased
by 10 after 200 epochs.

5.1. Evaluation

The evaluation metric on the gate and polygon datasets
is mean Average Precision [4], averaged over different IoU
thresholds ([0.50, 0.55, . . . , 0.95]). On the point and line
datasets, we also evaluate mean Average Precision, but av-
eraged over different point-to-point L1 distance thresholds



Figure 5: Results on the point dataset. The auto-
regressive model shows marginally better performance than
the parallel one on collections of limited cardinality, but its
performance is lacking when the cardinality grows. The leg-
ends with n points represent results on images with exactly
n points while the others indicate that the number of points
in an image varies from 1 to n.

([0.10, 0.09, . . . , 0.01]), computed directly on the relative
coordinates.

5.2. Line and point detection

With this experiment we show that the conditional de-
composition of collections by auto-regressive Transformers
is beneficial when the elements in a collection adhere to a
natural order. Results on the line dataset are shown in figure
Fig. 4. For this task, a line prediction is considered as a false
positive if the sum of all L1 point distances is greater than
the given threshold. The experiment shows that in this set-
ting the auto-regressive solution is much more precise than
the parallel counterpart as it is able to achieve perfect mAP
up to a threshold of 0.02.

On the other hand, the experiments on the point dataset
study the behaviour of parallel and auto-regressive models
on a pure set prediction task. The models are now expected
to predict the n points in any order. The parallel Transform-
ers is order-insensitive because of the Hungarian matching,
but the auto-regressive Transformers are trained by always
feeding points in the left-to-right order. Results on this
dataset are shown in Fig. 5. In this experiment, we train
all models on images with 1 to n points. We present test
results on images with 1 to n points, as well as results on
images with exactly n points. Results show that on collec-
tion prediction tasks, the auto-regressive approach is effec-
tive when the cardinality is low, but quickly deteriorates as
the cardinality increases.

The two experiments on lines and points prove that the

Figure 6: Results on the gate dataset. Each point of the
plot is an experiment in which the model is trained and
tested on images with 1 to n gates. They show the neces-
sity of oversampling for parallel Transformers. The perfor-
mance of auto-regressive models deteriorates when collec-
tion cardinality increases.

presence of a natural order in the task is indeed an impor-
tant discriminative factor towards the performance of the
parallel and auto-regressive models in collection prediction.
Moreover, we show the advantage of the auto-regressive ap-
proach in low-cardinality prediction tasks. The parallel ones
show significant advantage in predicting high-cardinality
collections but at the cost of using redundant object queries
(100 object queries in this experiment).

5.3. Gate detection

The following experiments verify whether the observa-
tions on the line and point datasets generalize in compli-
cated scenarios where the collection element is a gate of
four vertices. First, we evaluate the performances of auto-
regressive approach and its parallel counterpart on the toy
gate dataset, as shown in Fig. 6. There are two parallel
models in comparison: one with oversampling where we
use 30 object queries which is several times more than the
total number of gates, and the other one without oversam-
pling where we use as many object queries as the maxi-
mal number of objects in the images. The parallel model
with oversampling outperforms the one without oversam-
pling substantially, validating the need for the parallel mod-
els to oversample the cardinality. Moreover, we show once
more the auto-regressive approach performs comparably to
the parallel one on low-cardinality collections, but suffers
from the growing cardinality.

In Fig. 7, we provide our findings on the generalization
capabilities of these models, where the number of gates in
test images is up to twice more than the number during



Figure 7: Generalization capability of the different mod-
els. We test both parallel and auto-regressive on images
with twice as many gates as the training images. The paral-
lel model is able to detect many more gates than the auto-
regressive one. We believe oversampling attributes to better
generalization.

training. The auto-regressive model struggles at detecting
more gates, while the parallel one only shows minor perfor-
mance decrease and achieves an mAP of 0.8 even on images
with twice the amount of gates. We believe this behavior is
a result of the oversampling strategy: each of the 30 ob-
ject queries is assigned to at least one gate during training,
which implicitly tells the model that there could be more
objects than the ones it sees in each image.

Finally, we numerically compare the general perfor-
mances of all models on both toy and synthetic gate datasets
with images containing 1 to 6 gates. We choose Mask R-
CNN as the baseline. Tab. 1 shows parallel Transformer
outperforms Mask R-CNN by 5 % mAP on the toy dataset
and by 4 % mAP on the synthetic gate dataset. The auto-
regressive approach is not able to achieve comparable re-
sults as there is no natural order in this task. However,
the auto-regressive model is approximately two times faster
than the parallel model as it does not require Hungarian al-
gorithm or oversampling.

5.4. Polygon detection

Results on the polygon toy setting dataset are shown in
table Tab. 2. This experiment explores an hybrid scenario
in which the collection elements we are trying to predict are
also collections with an imposed order, because a collec-
tion of points can represent multiple polygons if the order
of its points is not given. The auto-regressive approach is
the special one described at the end of section 4.2, which
predicts a polygon as a sequence of points followed by the
end-of-polygon token, and it outperforms the parallel model

substantially by over 20 % in terms of mAP. When using
the auto-regressive solution on polygons, we are predicting
each polygon individually by predicting its vertices and then
an end-of-polygon token. This means that we are splitting a
problem of directly predicting all points of all polygons into
multiple sub-problems of predicting each polygon and then
deciding when all points have been predicted. We speculate
that the advantage of the auto-regressive model could be a
direct consequence of the conditional decomposition of the
joint probability, as imposing the conditional order on these
models can serve as a strong inductive bias by reducing the
search space of the model. This behaviour might not show
up on the previous experiments because gates, points and
lines are simple collection elements which do not enlarge
the search space enough. As polygon detection is repre-
sentative of many common computer vision tasks, we leave
further exploration of this approach as future work.

5.5. Orders of conditional decomposition

We conclude our experiments by providing insights on
the importance of orders imposed on conditional decompo-
sition of a collection by the auto-regressive Transformers.
Moreover, we also study the influence of positional endcod-
ings. We run experiments on the toy gate dataset, synthetic
gate and the polygon datasets multiple times, by using two
different object orderings and by adding or removing the
positional encodings of the attention layer. Without the po-
sitional encodings, the Transformer decoder is unaware of
the index of the previous predictions in the sequence. When
predicting a new point, it only knows which points were
predicted before, but not their orders. The two orderings are
the left-to-right, top-to-bottom order and the small-to-large
order in terms of the size of the objects. Experiment results
are shown in table Tab. 3. Using the left-to-right, top-to-
bottom order and removing the positional encodings lead to
the best performance in all experiments. We show the mean
absolute difference of other models compared to best one.
The result shows that the artificial order matters for auto-
regressive models. Moreover, we show that fixed positional
encodings are not beneficial in this setting, in contrast to the
original Transformer architectures. This is expected as dif-
ferent orders of the same words in NLP can have different
meaning, while this does not matter in our setting, as know-
ing the location of a point can already prevent our model to
predict the same point twice.

6. Conclusion
We studied two important variants of the Transformer ar-

chitecture: the parallel one and the auto-regressive one on
the polygonal shape prediction task cast as a collection pre-
diction problem. We find that the ordering of objects is a
strong factor towards the performance of these models on
point, line, gate and polygon datasets. The auto-regressive



Models Toy gates Training time [min/10k images] Synthetic gates Training time [min/10k images]

Mask R-CNN 90.67% 23.6 61.30% 13.85
Parallel 95.45% 2.2 65.00% 3.85
Auto-regressive 87.67% 1.5 59.03% 1.85

Table 1: Numerical results on gate datasets. We evaluate the overall performance in mAP averaged over 10 IoU thresholds
[0.50, 0.55, . . . , 0.95]. The parallel model outperforms Mask R-CNN. The performance of auto-regressive model is lacking
due to the absence of natural order in this task.

Models Polygons dataset Training time [min/10k images]

Parallel 53.55% 5.1
Auto-regressive 76.41% 2.15

Table 2: Numerical results on the polygon dataset. Scores are represented as mAP averaged over 10 IoU thresholds [0.50,
0.55, . . . , 0.95]. The auto-regressive approach outperforms the parallel one by over 20% absolute mAP. We speculate that
this could be a direct consequence of conditional decomposition of the collection.

With positional encodings W/o positional encodings

Order based on polygon positions −1.90%± 1.07% –
Order based on the size of polygons −7.68%± 4.53% −2.95%± 1.30%

Table 3: Ablation studies on position encodings and condition orders. This tables shows results of adding positional
encodings and imposing orders. The top performing model is spatially ordered (left-to-right and top-to-bottom) and has no
positional encoding. Our observations are that: (1) changing the imposed order on auto-regressive Transformers has a great
impact on the performance as shown in the first column; (2) adding position encodings decreases the performance.

model benefits collections of small cardinality or on collec-
tion prediction problems that can be easily split into multi-
ple easier tasks.

One limitation of this research is that most experiments
are conducted on toy datasets only, and it is unclear whether
the observations and conclusions on toy datasets generalize
on challenging real-world datasets. A task that would be
suitable to expand our research is polygonal building seg-
mentation from satellite images, as in [11, 23].

As future work, we find it important to further explore
on the polygon detection task as it is a fundamental prob-
lem that is representative in computer vision. Testing the
effect of fixed or learned token embeddings would also be
of interest.
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