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ABSTRACT

Literature on medical imaging segmentation claims that hybrid UNet models containing both Transformer and
convolutional blocks perform better than purely convolutional UNet models. This recently touted success of
hybrid Transformers warrants an investigation into which of its components contribute to its performance.
Also, previous work has a limitation of analysis only at fixed dataset scales as well as unfair comparisons with
other models where parameter counts are not equivalent. Here, we investigate the performance of a hybrid
Transformer network i.e. the nnFormer for organ segmentation in prostate CT scans. We do this in context
of replacing its various components and by constructing learning curves by plotting model performance at
different dataset scales. To compare with literature, the first experiment replaces all the shifted-window(swin)
Transformer blocks of the nnFormer with convolutions. Results show that the convolution prevails as the data
scale increases. In the second experiment, to reduce complexity, the self-attention mechanism within the swin-
Transformer block is replaced with an similar albeit simpler spatial mixing operation i.e. max-pooling. We
observe improved performance for max-pooling in smaller dataset scales, indicating that the window-based
Transformer may not be the best choice in both small and larger dataset scales. Finally, since convolution has an
inherent local inductive bias of positional information, we conduct a third experiment to imbibe such a property
to the Transformer by exploring two kinds of positional encodings. The results show that there are insignificant
improvements after adding positional encoding, indicating the hybrid swin-Transformers deficiency in capturing
positional information given our dataset at its various scales. Through this work, we hope to motivate the
community to use learning curves under fair experimental settings to evaluate the efficacy of newer architectures
like Transformers for their medical imaging tasks. Code is available on https://github.com/prerakmody/
window-transformer-prostate-segmentation.
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1. INTRODUCTION

Transformer networks are popular in both natural language processing™ ~ and vision domains.” " In the vision
domain, Vision Transformer” set the foundation by creating a general structure for applying the Transformer
blocks in image classification tasks. Others have broadened the use of the Transformer by addressing the
limitations in a Vanilla Vision Transformer by either reducing the complexity in the self-attention mechanism

or by introducing inductive biases from convolutions to improve performance.””>" =" Encouraged by these
successes in the vision domain, researchers are attempting to apply the Transformer to medical images.

Cancer treatment via radiotherapy requires the segmentation of tumors and organs-at-risk (OAR) on diag-
nostic scans like CT. Convolution-based UNet architectures'® have dominated this task for years. However, the
recent success of Transformers in the vision domain has raised the question whether they can replace convolutions
as the primary image processing operation in deep learning.'” " In particular, do they offer an alternative for
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the locality bias of convolutions which plays an important role in medical image segmentation where one needs
to precisely contour the borders of a region of interest (i.e. organs and tumors).

Specifically for 3D medical image segmentation, we investigate a popular shifted-window(swin)-based hybrid
Transformer i.e. nnFormer ~ which contains convolutional and transformer blocks in an interleaved manner.
We chose this model since it uses the shifted-windows'* concept in its transformer block. They were originally
proposed since the vanilla Transformer suffered from a computational complexity quadratic to the image size,
which is a major deterrent to processing 3D medical images. Also, unlike other hybrid-UNet models like UN-
ETR""Y which restrict the transformer blocks to the encoder, the nnFormer performs alternate convolutions and
transformer operations, hence taking advantages of both modules. However, due to the scarcity of medical data,
one of the issues with the proposals of existing hybrid-Transformers'”“" is that their training datasets could
potentially be insufficient for the task at hand, leading to overfitting. Moreover, previous work does not provide
any learning curves for their datasets to investigate the role of dataset scales. Learning curves help identify at
what point additional data provides diminishing returns. Our work remedies this by analyzing transformers in
a UNet-based architecture at six different data scales. In addition, we use a separate test set to evaluate the
generalization capability for compared models. Another deficiency of previous work is that the Transformer
and convolutions are compared in a different general neural structure without ensuring equivalent parameter
count. For example, the nnFormer model with 150M parameters is compared to a nnUNet with 30M
parameters. ~ Inspired by ConvNeXt~" we analyze different components of a transformer and replace them with
more traditional deep learning operations like convolutions and pooling while ensuring equivalent parameter
count and similar neural architectures. Our results indicate that hybrid swin-Transformers do not offer any
performance gains over the comparison models in all our data scales for 3D prostate CT segmentation. Perhaps,
Transformers need to evolve further to replace convolutions in the medical segmentation domain.

2. RELATED WORK

In this section, we first review the UNet, which is the widely-used architecture in medical image segmenta-
tion. UNet,”” first applied in 2D slices and then extended to 3D CT scans and MRI images,”” is one of the
fundamental convolution-based architectures in medical image segmentation. After the success of the initial
UNet, several improved models that incorporated ideas from other domains based on the original UNet have
emerged. For instance, the success of ResNet”' and DenseNet”® stimulated the development of ResUNet,
ResUNet++,”Y Multi-ResUNet”" and DenseUNet.”* Additionally, the aggregation of the output from deep and
shallow layers inspired the UNet++."""" Besides, the combination of attention mechanisms and UNet resulted
in the Attention-UNet,”” Attention-UNet++,”° MA-UNet,”" SCAU-Net,”® and AA-UNet.”” All these methods
successfully incorporated novel ideas into UNet architecture and attained improvement, providing the intuition
for importing Transformer blocks into UNet.

The success of the Vision Transformer motivated researchers to apply the Transformer blocks to the UNet
structure. The Transformer blocks were used to extract the long-range dependencies in the image and were
placed at deep layers due to computational complexity, while convolution blocks were used to extract low-level
feature maps and were placed at shallow layers, such as UT-Net,”” TransUnet,” MCTrans~ and TransClaw
U-Net."” In the meanwhile, transferring the architecture directly from the vision domain has become a trend, for
example, Swin-Transformer * to Swin-UNet™" and LeVit™” to LeVit-UNet."” MedT"" and MBT-Net"“ adopted
the Axial-Attention ' block to reduce the computational complexity while taking advantage of the Self-Attention
mechanism. Despite the improvement in 2D medical segmentation brought by Transformer blocks, there is a
large gap between these 2D models and the 3D convolutional benchmark nnUNet.

Researchers have also recently applied the Transformer to 3D medical segmentation. However, this process
is still at the initial stage. TransBTS"’ used the Transformer block to fuse the feature maps from 3D Con-
vNets. Besides, UNETR" replaced the convolution blocks with Transformer blocks in the 3D-UNet encoder.
On top of that, Swin-UNETR"" changed the vanilla Transformer blocks with swin-Transformer blocks. Similarly,
nnFormer'” replaced convolutions with swin-Transformer blocks in both the encoder and the decoder and incor-
porated the model in the frame of the nnUNet. © In addition, D-Former”" was inspired by the dilated convolution
and restricted the Self-Attention in a dilated block to reduce the complexity and enlarge the receptive field. In
this paper, we also built our experiment based on the nnUNet'® that provides a general framework to handle
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Figure 1: This figure shows the network architecture of the nnFormer'’ along with modifications made for
our three experiments. The left part, the yellow tiles denote the sampled sub-volumes from the 3D CT scans
while the blue tiles denote the predicted masks for segmentation. On the right, we show the components of the
nnFormer and their replacements, which we evaluate in experiments EXP1, EXP2, and EXP3. In EXPI1, we
replace the Swin-tTransformer block with the convolution block. In EXP2 the orange blocks show that we only
replace the window-based self-attention with pooling. In EXP3 we use labels with black background to show
the place to insert these position encodings: the absolute position embeddings are added once to each position
on the feature map after patch embedding and the relative bias is added in computing self-attention matrix in
each Swin-Transformer block.

arbitrary medical image segmentation datasets by condensing and automating the segmentation pipeline. By
doing so, we simplified the experiment’s design of incorporating Transformers into the UNet.

Researchers compared convolutions with Transformers in the medical domain.”"“° The method introduced
by Matsoukas™ was restricted to 2D segmentation. Both methods did not delve into the different components
of the Transformer, nor did they create different data scales in comparison. To dig deeper, we were inspired
by the Convnext”" which replaced the components of a ResNet step by step and surpasses the performance of
a Swin-Transformer. In addition, we have adopted the idea that the general architecture of the Transformer
plays a significant role in performance from MetaFormer,”” MLP-Mixer’””* and Conv-Mixer.”” They split the
Transformer block into two parts: the Self-Attention corresponds to the spatial-mixing and the feed-forward
net goes with the channel-mixing. Both parts can be replaced by other existent deep-learning operations while
maintaining the performance.

3. METHOD

3.1 Network Architecture

As shown in Figure 11, the hybrid-Transformer network in evaluation is the nnFormer,"” which employs Swin
(shifted-window)-Transformer blocks'*** interleaved with convolutions in the encoder and decoder of a UNet
architecture. Please note that the first two layers of this architecture are convolution-based patch-embedding
layers to extract low-level feature maps. As shown in the left part of Figure 11, we have three experimental settings
to examine the different components of the hybrid Swin-Transformer network. First, two Swin-Transformer blocks
in one layer are replaced by two 3 x 3 x 3 convolutions; second, the self-attention mechanism within the block is
replaced by the pooling operation; third, different position encodings are compared with the model without any
position encodings.



3.1.1 Method 1: Replacing Swin-Transformer block with convolution block

Literature on medical image segmentation has shown superior performance of window-based Transformers over
convolutions. >~ We test this notion by replacing the window-based Transformer blocks with a sequence of two
convolutions. We also ensure that their parameter counts are equivalent and proceed to compare these models
across multiple data scales. It is hypothesized that the Transformer will perform poorly in low-data regimes,
since its attention mechanism is incapable of understanding relative position information of voxels, a quality
important for precise tasks like segmentation and inherent to convolutions. Conversely, the lack of an inherent
prior for imaging data, may allow Transformers to learn complex dependencies in the large-data regime, hence
boosting performance.

3.1.2 Method 2: Replacing the Self-Attention with Pooling

In the spirit of further analyzing components of the Transformer block and inspired by the MetaFormer’* to
reduce computational complexity, we replace the attention mechanism with a much simpler spatial feature
mixing operation, i.e pooling. Replacing the complex attention mechanism with a simpler pooling operation
may also reduce the chance of overfitting in low-data regimes. We hypothesize that max-pooling will outperform
self-attention in small data scales while self-attention will prevail gradually with increased data scale. This is
because the complex nature of the attention mechanism when compared to max pooling might allow it to model
spatial features provided additional data.

3.1.3 Method 3: Evaluating Positional Encoding

Under the assumption that failures of window-based Transformers might be due to its inability to model positional
dependencies, we explore two different positional encoding methods and compare them to a model without any
positional encodings. The first is absolute positional embedding that is added to the feature map after the
convolutional patch-embedding as shown in Figure 1. Therefore, the added absolute position embedding has
the same dimension as the feature map input to the first Transformer block. Moreover, the absolute positional
embedding can be divided into learned and unlearned positional embedding. We can extend the original 1D
sinusoid" positional embedding to 3D case. The second method is the relative positional bias that is added when
computing the attention matrix in each Swin-Transformer block. Our base Transformer model uses relative
positional bias which we expect to perform better as per work done in literature.

4. EXPERIMENTS AND RESULTS
4.1 Data

We use prostate CT data containing annotations of four organs: bladder, prostate, rectum, and seminal vesicles.
The data is collected from three institutes, c.f. Haukeland Medical Center of Norway (HMC), Leiden University
Medical Center in the Netherlands (LUMC) and Erasmus Medical Center in the Netherlands (EMC), containing
179, 475 and 56 CT scans, respectively. EMC is used as the test data set, while HMC and LUMC are used
as the training datasets. Due to differences in clinical protocols for CT scan acquisition, the EMC dataset has
larger volumes of the prostate and bladder, which makes it a challenging test dataset. An argument can be made
that datasets of human body scans do not need to be as large as natural image datasets. Although there exists
differences across patients in the shape and size of individual organs, they are still very similar in context of
spatial arrangement of organs. Thus, we consider our dataset to be sufficient to analyze the learning curves of
the hybrid-Transformers and its variations.

To test a different modality, we also conduct experiments on two open datasets of prostate MR, c.f. Prosta-
teX”"” and PROMISE12"" containing 66 and 50 scans respectively. This public availability of this dataset shall
also allow the community to reproduce some of our experiments.
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Figure 2: Here we see line plots showing the mean and 95*" percentile confidence interval of Dice and HD95 for
(a)(b) experiment 1 wherein we replace the Swin-transformer block with the convolutional block and for (¢)(d)
experiment 2 where the attention mechanism within the Swin-transformer block is replaced with pooling: The
x-axis denotes the various training data scales with clinics A and B while A2, A1 denote the first and second
halves of clinic A. The subscript pretrain denotes that the model is pretrained on B and finetuned on given
dataset. * denotes a statistical difference in at least one organ and fdenotes a statistical difference on average
and for at least one organ.

4.2 Experiment Settings

This work uses two datasets for training, i.e. HMC (or clinic A) and LUMC (or clinic B). The HMC dataset is
split into two parts for 2-fold cross validation and also creating smaller data scales. They contain 94 and 85 CT
scans respectively and are henceforth referred to as Al and A2. We make 6 combinations of these datasets c.f.
Al, A2, A, A1+B, A2+B, A+B to create multiple data scales. Note, that the data from clinic B is not used
for pretraining, but rather as additional scans during training. In addition, we use the clinic B to pretrain the
models and then finetune on A1, A2, and A to test the compared models’ performance in pretraining context.
Three experiments are conducted to compare the window-based Transformer to its counterparts on two geometric
metrics, i.e. Dice and 95" percentile Hausdorff Distance (HD95) averaged over all scans of the test dataset.
In addition, we adopt Wilcoxon signed rank test with p value less than 0.5 to reveal the statistical significance
between the results of two compared models.

The models are trained using a combination of Dice and cross-entropy loss in deep supervision for 500 epochs.
The window-based Transformer and convolution contain 158.49M and 155.85M parameters, respectively, since
this is the count of parameters in the original nnFormer work.'” The CT scans are first resampled to the median
spacing of each dataset and then randomly sampled patches of size (128,128,64) are input to the network. Models
were trained with Pytorch 11.3 on a single Nvidia RTX6000 (24GB memory). In addition to the line plots in
Figure 2 and 3, detailed experimental results are reported in the Appendix.

4.3 Experiment 1: Replacing Swin-Transformer block with convolution block

Surprisingly, the results in Figure 2 (a) and contours in Figure 6 (a)(b) show that the Transformer performs
better on lower data scales and the convolution gradually surpasses it with the increase of data. Perhaps,
the convolution performs poorly in the lower-data regime since the lack of data coupled with its locality bias
may not allow it to learn sufficient global shape-based information, but only local textural information in the
neighborhood of a voxel (disconnected components of seminal vesicle in Figure 6 (a)). A lower supervision loss
during training and higher performance in cross-validation experiments on clinic A also are indicators of the
overfitting nature of convolutions in our smaller dataset regimes. The higher performance of convolutions in
our larger data scales may imply that the Transformer needs even more data than available in our dataset to
understand the local structure of the semantic content within the data (jagged nature of bladder in Figure 6 (a)).
Moreover, we observed that the stability of transformers is quite poor, with sudden drops in performance during
training.



In the pretraining context, Figure 2 (b) suggest that both the Transformer and the convolution benefit from
pretraining (e.g. A2 vs A2pretrain, Which is obvious due to more exposure to the data. Visual results also
indicate the same for e.g. the lower sections of prostate (red) in Figure 6 (e) vs Figure 6 (f). However, at
the same dataset scale for e.g. A2+B vs A2prctrain, the gaps between the Transformer and convolution are
eliminated after pretraining primarily due to lower score of convolutions. Since pretraining essentially breaks
supervision into two phases, the slightly lower performance due to pretraining makes sense. The visual results
in 6 (e),(f) indicate the same where the non-smooth boundaries of the prostate(red) are very different compared
to the ground truth for both transformers and convolutions.

We conduct additional experiments to verify the robustness in the trends of our learning curve results by
halving the parameters of both the Transformer and convolution models to 75M. Figure 5 (b) shows similar
results to that of Figure 2 (a) where we see that the Transformer performs better on lower dataset scales and
the convolution gradually surpasses it with increased data.

4.4 Experiment 2: Replacing the Self-Attention with Pooling

In line with our expectations, Figure 2 (c) suggest that max-pooling outperforms in smaller dataset scales
compared to the window-based self-attention mechanism, while the latter surpasses it with the increase of dataset
scale. Thus, both convolution and window-based Transformer overfit under small dataset scales in comparison
to pooling. These results indicate that the simplicity of pooling may be essential to high performance in small
dataset regimes. Visually, we can confirm this by observing the contours of the bladder (green) in Figure 6 (c)
and (d) for the smallest and largest dataset scale respectively.

Apart from that, Figure 2 (d) show that the Transformer model benefits from pretraining, while the pooling
operation fails to elevate the performance even with pretraining (e.g. A2 vs A2 etrain). This can be seen by the
poorer contour performance of bladder (green) in the 6 (h) for the pooling operation when compared to 6 (g).
This might further indicate that a larger dataset scale compared to our clinic A is desired for our Transformer
model.

In addition, we have compared the average-pooling and max-pooling in the smallest three data scales c.f.
A1, A2 and A. Figure 5(d) indicates that max-pooling has an advantage over the average-pooling. A possible
explanation for this is that the max-pooling extracts the important local features (e.g. edges) and highlights
them while average-pooling smooths them and hence attenuates the useful signals produced by the convolutional
filter preceding it.

4.5 Experiment 3: Evaluating Positional Encoding

Figure 3 (a), (b), (c), (d) shows that in spite of statistical differences, the gaps in performance across the different
positional encodings is not large in all experiment settings. The lack of a large difference between the models with
some form of positional encoding and those without, indicates that the current data scales are either insufficient
to train the positional encodings well or that a better positional encoding design is needed for medical image
segmentation. Contrary to Transformers, both convolutions and pooling have some form of positional inductive
bias (i.e. locality and neighborhood structure). This could be one reason that the window-based Transformer
does not offer any benefits over the comparison models in both our smaller and larger dataset scales, which is
contrary to claims in literature.

4.6 Ablation Experiments

Given the wide acceptance of the nnUNet ' ° model, we do a fair comparison of the nnFormer and its convolutional
version with it at its parameter count of 30M. Figure 5 (a) shows that nnUNet performs slightly worse in smaller
dataset scales, but being a fully convolutional model, it eventually surpasses it in larger dataset scales. This is
an important observation as literature often treats nnUNet as a baseline model but does not equalize parameter
count. Independent of the other experiments and in the spirit of the title of this work, we also investigate another
component of transformers c.f. layer normalization. Figure 5 (¢) shows that removing the layer normalization
from the Transformer model decreases the performance, and this effect is exacerbated in large dataset scales.
This is an expected result as it has been previously shown that a neural network requires normalization layers
as they help conserve the learning signal being backpropagated in deep neural networks.
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Figure 3: Experiment 3: Line plots showing the mean and 95" percentile confidence interval of Dice and HD95.

The x-axis denotes the various training data scales with clinics A and B while A2, Al denote the first and
second part of clinic A. The subscript Pretrain denotes that the model is pretrained on B and finetuned on given
dataset. In (a)(b), f, I and * denote a statistical difference between the relative bias and no encoding, absolute
embedding and no encoding, and the two positional encoding respectively on the average of all organs. In (c¢)(d),
x denotes a statistical difference in at least one organ and T denotes a statistical difference on average and for at
least one organ.
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Figure 4: Here we see boxplots comparing the nnFormer and its convolutional version pertaining to experiments
on the open datasets — ProstateX and PROMISE12. In (a), (c), three-fold cross-validation is conducted on
PROMISE12 and ProstateX respectively and the validation fold results are shown. In (b) the models are trained
on all samples of ProstateX and then tested on all samples of PROMISE12, while in (d) the reverse is done. The
x-axis labels on (b) and (d) show the training dataset.

4.7 Open Dataset

In addition to the private dataset, we compare the nnFormer and its convolutional version with 30M parameters
on the public datasets - PROMISE12"" and ProstateX.”® We conduct three-fold cross-validation on both datasets
separately and also conduct another experiment where one is used a train and the other as a test dataset. The
results on Figure 4 (a), (b), (¢), (d) show that convolutional version with 30M parameters performs slightly
better on both datasets in our two experiment settings. We notice much poorer performance when trained on
ProstateX and tested on PROMISE12, since many of its scans were taken with the presence of rectal coil, a
scanning protocol not present in ProstateX. Thus, the results in 4 show that the Swin-Transformer block does
not provide any gains in our experiments.
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Figure 5: Ablation Experiments: Line plots showing the mean and 95*" percentile confidence interval of Dice
and HD95. The x-axis denotes the various training data scales with clinics A and B while A2, A1 denote the
first and second part of clinic A. In (a), f, I and * denote the statistical difference between the relative bias
and no encoding, absolute embedding and no encoding, and the two positional encoding respectively on the
average of all organs. In (b), The subscript and superscript denote the statistical difference of the Transformer-L
and Transformer-S respectively; f, T denote a statistical difference with the Transformer and convolution model
respectively. In (c¢)(d), fdenotes a statistical difference on average and for at least one organ.

5. DISCUSSION AND CONCLUSION

This study evaluates different components of a shifted-window(Swin)-based hybrid Transformer network, i.e.
nnFormer to understand their role in its performance. Unlike previous work that uses hybrid networks containing
both convolution and Transformer blocks,'”>?""?*°! we maintain a constant parameter count across models and
also create learning curves by analyzing the effect of the components under different dataset scales and pretraining
context. Our first experiments results show that the Swin-Transformer blocks do not offer any advantages over
their convolutional counterparts in the larger dataset scales of this work. We believe this behaviour of Swin-
Transformer blocks could be explained by their lack of understanding of positional information of voxels in our
dataset scales. Our second experiments results suggest that it may always be better to choose simpler operations
like pooling in small dataset regimes. Finally, in our third experiment, the comparable performance of models
with and without positional encodings further supports our claim about the Swin-Transformer blocks inability
to understand positional information given our dataset scales. Thus, we conclude that for our dataset, the Swin-
Transformer block is not the best choice in both small and larger dataset scales. Please note that our largest data
scale may not be sufficient for Transformers-based networks, which are well-known to be data hungry. However,
perhaps medical image segmentation of organs does not require large datasets as has been shown for natural
images. We hypothesize that the homogeneity in the 3D spatial positioning of regions of interest in human body
organs, may place less stringent requirements, in context of dataset sizes. Finally, future work could use our
learning curve approach under fair experimental settings to understand other network architecture for medical
image segmentation. Additionally, it may be worth exploring self-supervised methods, as they could potentially
benefit the data hungry Transformer.
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Figure 6: CT scans showing the prediction (dotted line) and ground truth (solid line) for the prostate (red),
bladder (green) and seminal vesicle (yellow). The left image of each image pair is the transformer’s prediction.
Here a) and b) compare transformers with convolutions in the smallest and largest dataset scale respectively.
Similarly, ¢) and d) compare transformers with pooling in the smallest and largest dataset scale, respectively.
e) and f) compare the regular and pretrained models for transformers and convolutions in the A2 dataset scale
respectively, while g) and h) do the same for transformers and pooling.
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