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Abstract

Strawberries are profitable fruits, yet they have a short
shelf life. Therefore, it is crucial to anticipate their qual-
ity and harvest them at the best time, which is vital not
only for finding the appropriate market but also for minimiz-
ing food and economic waste. To this end, non-destructive
strawberry quality measurements are useful. Much research
is conducted on post-harvest strawberries: the fruits were
only analyzed after harvesting and thus, these methods can-
not be used to find a good time to harvest. Our research
targets pre-harvest analysis for supporting the timing deci-
sions of harvests. As such, we used an infield image dataset
that was collected during the cultivation of strawberries.
The images are labeled by quality assessments and mea-
surements from post-harvest destructive tests. We evaluated
deep learning for quality estimation and trained our algo-
rithms to predict the ripeness, firmness, and sweetness of
strawberries. Additionally, we applied depth estimation al-
gorithms and shape inpainting models to estimate the size
of strawberries using images. Our results demonstrate the
feasibility of infield quality attribute prediction.

1. Introduction

Strawberries are popular economic crops that are cul-
tivated worldwide. Since they are not protected by thick
or hard skin, they have a short shelf life and thus have
strict requirements for quality at harvest. Attributes such
as ripeness, firmness, and sweetness are important refer-
ences for categorizing and pricing a strawberry fruit. Under-
ripe or over-ripe strawberries are not desirable. Moreover,
strawberries placed in the wrong markets could also lead to
food loss or financial waste. Thus, for optimal quality and
profitability, they need to be harvested at the right time [27].
Accurate anticipation of fruit maturity and quality consti-
tutes an essential foundation for the advancement of preci-
sion agriculture and robotic harvesting techniques [3, 36].

However, many quality attributes are measured through
laboratory evaluations, which are labor-intensive and de-
structive. As such, the measurements can only be carried
out on physical samples. In practice, horticulturalists rate
the strawberries based on their observation of the fruit’s
color and texture and their experiences. The estimations
then become highly subjective and specialized [8, 37].

More recent non-destructive methods predict fruit quali-
ties by computer vision and machine learning. In most stud-
ies, strawberries were analyzed after harvesting [7, 12, 37].
Their results demonstrate accurate and automated quality
prediction with data-driven techniques. However, as quality
is only predicted after harvesting, the method does not help
with finding optimal timing to harvest, because strawberries
are non-climacteric fruits that do not continue to ripen af-
ter harvesting. To address this challenge, we explored deep
learning and computer vision techniques to estimate the rel-
evant quality attributes in the wild.

The main findings of the paper are: i) Infield predictions
of the annotated attribute (ripeness) and measured attributes
(firmness and sweetness) are decently feasible, for which
environment data contribute to enhance the performance;
ii) The size classes of strawberries infield can be estimated
by the cameras with a prime lens, in which shape inpaint-
ing models and stereo vision algorithms could involve and
slightly improve the accuracies.

2. Related work
2.1. Images in fruit quality predictions

While horticulturalists and customers estimate fruit by
their external qualities, such as shape and color, the internal
quality of fruits also influences customer appreciation [18].
Computer vision has been used extensively to imitate hu-
man judgments in estimating the quality attributes of fruits.
Moreover, deep learning models, serving as a more consis-
tent evaluator, have the potential to mitigate subjectivity in
assessments. Related research utilized images from the vi-
sual and hyper-spectrum in this task.
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Figure 1. The first two plots are picture examples taken by a pair of cameras at the same time. The pair of cameras consists of an RGB
camera and another one with the OCN color filter. As the OCN camera was placed to the right of the RGB camera with a fixed distance,
the strawberries are shifted to the left in the OCN image. An illustration of the calibration of the first two images is shown in the third plot.

Visible spectral forms the fundamental basis for human
judgment [25]. Computer vision can get good accuracy on
quality prediction because chemical changes that occur dur-
ing fruit ripening are visible via RGB. For instance, the de-
struction of chlorophyll, a green pigment that is frequently
found in plants, plays a vital role in the ripening process [5].
Anthocyanin is a pigment that appears red in strawberries
and is synthesized during the ripening process [13]. Given
that the absorption peaks of anthocyanin and chlorophyll
occur at wavelengths of 535 nm and 680 nm, respectively
[20], the concentrations can be observed visually by the
naked human eye. Research using RGB images achieved an
accuracy of 85.6% on three classes of strawberry ripeness
[12]. RGB is highly correlated with total soluble solids
(TSS) [1]. TSS is a measure of soluble solids, primarily
sugar, within a substance. 79.2% accuracy was achieved on
six classes of TSS using a Support Vector Machine (SVM)
and an RGB camera [4]. CaffeNet reached 95% accuracy
on classifying whether strawberries were mature [16].

Hyperspectral imaging is a technique that combines
spatial and spectral information: each pixel contains an
entire wavelength spectrum [33]. Certain constituents in
strawberries absorb infrared light and reflect frequencies
that indicate quality attributes [8]. Our eyes only see a part
of the electromagnetic spectrum. Hyperspectral imaging
can observe ranges beyond what the human eyes can see,
which could improve quality predictions as it shows more
details of light absorbance. To determine ripeness, many
works first select optimal wavelengths and then use classi-
fiers to determine ripeness classes of strawberries [8, 37]
and other fruits such as persimmon [33]. For example,
98.6% accuracy on determining ripeness has been achieved
[8]. Hyperspectral imaging has also been shown to be effec-
tive to predict measurable quality parameters, such as firm-
ness [20], sweetness [2, 7, 26], and titratable acidity [2, 29].
A disadvantage of hyperspectral imaging is that devices to
acquire such images are often expensive and complicated
[38], making them unpractical for some farmers.

2.2. Environmental influence in fruit quality

Several environmental factors correlate significantly
with strawberry quality, and can thus be used to improve
quality predictions. Radiation, temperature, and relative hu-
midity are all correlated with Brix values [6, 34]. Optimal
temperature and light increase Brix values [30]. The tem-
perature of both greenhouse and soil influences growth [14].
Weather patterns, such as solar radiation and wind, can also
influence growth [19]. Hence, we consider the environmen-
tal data as a potential resource to enhance our quality pre-
diction accuracies.

2.3. Size estimation with cameras

Size information is crucial to categorize the strawberries
for marketing. As a type of soft fruit, it is noticed that hor-
ticulturalists need to limit the time of touching the delicate
skins. Hence size estimation is also of interest to horticul-
turalists. Depth information can help to estimate the true
size of an object on a picture because objects can have vary-
ing distances to a camera. When the fruit is monitored under
a binocular or certain monocular vision system, we can esti-
mate the size by the depth information [10, 21]. Particularly,
in a two-camera system, when we know the location and the
specified viewing angles of the object in the two views, we
could better estimate the depth of an object [22, 39].

However, infield images of fruits can be occluded by ob-
stacles such as other fruits and leaves. This makes it dif-
ficult to estimate their actual size. A possible solution is
image inpainting, which uses networks such as Convolu-
tional Neural Networks (CNN) and/or Generative Adver-
sarial Networks (GAN) to complete the missing parts of an
image. It has been performed both for specific tasks, such
as face completion [17], and for a wide variety of images
or shapes [23, 32]. For occlusions with limited data avail-
able, one approach has been to manually occlude part of the
dataset so as to train the inpainting models [9].



3. Method
We used a comprehensive dataset[35] in this research.

The dataset provides three types of data: pre-harvest in-
field images, post-harvest quality measurements and assess-
ments, and corresponding records about the cultivation en-
vironment. The images were collected under a dual-camera
setting: an RGB and an Orange-Cyan-Near-Infrared (OCN)
camera, which had the same fixed focal length and faced the
strawberry plants in parallel views. We used such a dataset
with both RGB and OCN images for two reasons. First, the
OCN data allowed us to observe more color bands, lead-
ing to possibly better quality predictions. Second, the ex-
tra camera allowed us to improve depth estimation, which
could lead to better size estimation. Two example im-
ages are shown in Figure 1. The dataset gives four qual-
ity attributes per assessed strawberry: ripeness, firmness
(kg/mm2), sweetness (°Brix, also called Brix), and size
classes. The quality attributes are connected with image
segments of strawberries as labels. In addition, the dataset
provides the environmental records in the greenhouse, in-
cluding temperatures at different locations, air humidity,
and radiation. Since previous research has demonstrated the
correlation between these environmental factors and fruit
quality [6, 14, 19, 30], we used them in improving the ac-
curacy of quality predictions.

3.1. Quality prediction

We used a dataset with ripeness values for 254 strawber-
ries and quality attributes for 184 strawberries [35]. The
ripeness was rated by horticulturalists through their obser-
vation, on a scale from 1 to 10. A higher score indicates
higher maturity, where 7-8 is the optimal range. Both firm-
ness and sweetness were measured using destructive instru-
ments in the laboratory: firmness is defined by the pressure
penetrating through the skin; and sweetness is a measure
of the soluble solids content of a substance, primarily the
sugar in the juice. The sizes of strawberries are described
by classes defined by the width of fruits: tiny (< 20mm),
small (20mm - 25mm), and coarse (> 25 mm). The dis-
tributions of labels are shown in Figure 2. The attributes
are labeled to the strawberry in the images. Since we have a
relatively low amount of images, we augmented the training
data by eight times by using all permutations of randomly
flipping, rotating, and cropping. We also tailored the loss
function to push the model to satisfy the relatively uncom-
mon values more, inspired by [24]. We did not change the
color of the strawberries in the images, so we increased the
volume of training data without changing the attributes that
would affect the quality prediction.

We trained two convolutional neural networks with clas-
sical architectures: LeNet-5 [15] and ResNet-18 [11] for
demonstrating quality prediction from images. Both the
networks in the experiments were trained from scratch.
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Figure 2. Distribution of quality attributes in our dataset. Each bar
plots the number of strawberry samples for each possible value of
the quality attribute. The corresponding attributes are indicated by
the x-axes.

When using the models, we added a second linear layer so
that the network can learn from the environmental data. We
ran on 100 epochs and use early stopping on the validation
set to select the model with the best performance on this set.
For each run, we randomly split the data into the training,
validation, and test set by 3:1:1 with a fixed random seed.

To assess the efficacy of introducing the environment
features in conjunction with tailored loss functions, we un-
dertook a comparative analysis of the outcomes of employ-
ing these strategies and their absence individually. The
experimental findings from each distinct experimental sce-
nario are discussed in the subsections following the main
quality-prediction results.

3.2. Size estimation

We considered the parallel camera setting as a quasi-
binocular positioning, hence we applied stereo vision algo-
rithms to estimate the size of the strawberries. Our method-
ology consisted of four steps: first, we calibrated the relative
position of the cameras by the images. Through translation,
scaling, and rotation, the vertical disparity is eliminated and
the horizontal disparity is similar among all images. A cal-
ibration example is shown in Figure 1. After that, we de-
fined a matching algorithm to match the strawberries from
the RGB and OCN images. By knowing the position of the
same strawberry in each image, we estimated the depth of
the strawberries to the camera hanger, similarly to [22]. Fi-
nally, we calculated the size of the strawberries based on the
focal information of the camera and the estimated depth.



3.2.1 Segment matching

The same strawberry appears on both the RGB and the OCN
images when it was in the overlapped view. In the first
step, we calibrated the image pairs by eliminating the verti-
cal disparity and averaging the horizontal disparity. To this
end, the OCN picture was translated, rotated, and scaled, as
demonstrated in the third plot of Figure 1.

For depth estimation, we need to match each strawberry
from the RGB image to a strawberry in the OCN image,
i.e., finding the segment on the OCN camera that displays
the same strawberry for each RGB strawberry segment. We
proposed a simple loss function that involves two compo-
nents: the distance in location and the distance in size. The
intuition is that for each RGB strawberry segment, the fur-
ther away the OCN segment is, and the more different it is
in size, the less likely it is that they are matches.

We followed a method outlined in [31] to calculate the
distance in size between the strawberries:

ds =
|surfaceRGB − surfaceOCN|
surfaceRGB + surfaceOCN

, (1)

where surface is the number of pixels of a segment. The
formula calculates the difference in size and ds is in the
range [0, 1].

The formula we used for the distance in location is:

dl =
√
dx2 + dy2 · α, (2)

where dx is the distance between the x-coordinates, af-
ter subtracting the expected disparity in pixels; dy is the
distance between the y-coordinates; and α is a tunable pa-
rameter. α ≥ 1 increases the weight of vertical disparity in
the loss function: while the horizontal disparity depended
on the distance of a strawberry to the camera, and is thus
flexible, the vertical disparity should be near zero since the
cameras were at the same height.

We multiplied Equation 1 and Equation 2 to calculate a
loss between each strawberry in the RGB image and each
strawberry in the corresponding OCN image:

loss = dl · (ds+ β), (3)

where β is a tunable parameter that stabilizes the loss
value for low values of ds. As we targeted minimizing the
distances in location and size, we chose the strawberry seg-
ments with the smallest loss as a match. We used α = 10
and β = 0.01 empirically based on our fine-tuning tests.

3.2.2 Depth estimation

Given the matched OCN strawberry segment for each RGB
segment, we estimated the depth of a strawberry to the line
of the camera pairs. We followed a standard method to cal-
culate depth by using stereo vision as outlined in [22, 39],

as illustrated in Figure 3. We calculated the depth in mil-
limeters as follows:

D =
b · f
d

, where f =
wimg[px]

2 tan( θ2 )
(4)

where b is the baseline distance between the two cameras
in millimeters, f is the focal length in pixels, and d is the
disparity between the RGB and the OCN segments in pixels.
For each camera, wimg[px] = 4000px is the width in pixels
of the output and θ = 41◦ is the angle.

Figure 3. A triangulation method to find the width of the image
in millimeters at a given depth. The camera was located at a dis-
tance of D from the strawberry. We used an angle of 20.5◦ in this
illustration as the camera’s field of view (FOV) is 41◦. Using tri-
angulation, we find x; 2x is the width of the entire image.

3.2.3 Size estimation

We estimated the width of a strawberry by calculating the
depth and counting the width of the segment in pixels. Here,
we first calculated the width of the entire image at the depth
of the strawberry. We used a simple triangulation method,
as illustrated in Figure 3. Given the FOV of the camera,
we found the width of the image in millimeters at a given
depth. Then we multiplied the image width by the fraction
of how the strawberry occupied in the image, so as to find
the width of the strawberry in millimeters:

wstr[mm] =
wstr[px]

wimg[px]
· 2 tan(θ

2
) ·D (5)

where wstr[px] is the width of the segment of a strawberry
in pixels. The above formulas can be used to calculate the
width of a strawberry in millimeters.

3.3. Shape inpainting

In the infield images, some strawberries were occluded.
This degraded size estimation performance, as the width in
pixels might be less than it would be without occlusions. In
this section, we outline an image inpainting algorithm that
aims to recover the original strawberry shape. The inpaint-
ing model was applied as an additional data pre-processing
step before the actual size estimation.



3.3.1 Determining occlusions

For the purpose of size estimation, we aimed to only in-
paint occluded strawberries, as performing inpainting on a
non-occluded strawberry could decrease the performance of
size estimation. Hence, we created a simple method to es-
timate if a strawberry is occluded or not: by calculating the
circularity [28]. We calculated the circularity by dividing
the squared root of the surface area of a segment shape by
its circumference, as in Equation 6.

circularity =

√
surface

circumference
. (6)

Empirically, a circularity of 0.25 or less indicates an oc-
cluded strawberry. An example of detecting occlusions us-
ing circularity is illustrated in Figure 4. Sometimes, an
occluded strawberry’s circularity might still exceed the de-
fined threshold. Nonetheless, since the width difference in
such cases is likely to be small, this should not significantly
affect the performance of our size prediction requirement.

Figure 4. Two examples of strawberry segments. Left: strawberry
segment with a circularity of 0.263: not occluded; right: straw-
berry segment with a lower circularity of 0.245: occluded.

3.3.2 Inpainting models

Even with a perfect estimation of the depth of strawberries,
we still could not estimate the exact size of strawberries due
to the occlusion in the dense growth pattern. Therefore, we
introduced an inpainting algorithm to train models to re-
cover the actual shape of strawberries.

We gathered 279 strawberry segments to train the in-
painting models. We used 25% of the segments for the oc-
clusion set, which were used to artificially occlude the in-
put segment. Of the remaining part of the image segments,
75% went to the training set and the rest to the test set. The
strawberries kept their aspect ratio and were scaled down to
take up at most half the input image. We used two config-
urations: RGBA inputs (with a binary opacity channel A to
represent the polygon shape of the segment) and binary in-
puts, which are the opacity-channel values only. The binary

inputs made it easier for the network to focus on the shape,
rather than on the colors.

We used U-Net for the image inpainting task. The in-
puts and outputs were both 256x256. At every epoch, each
strawberry was occluded by overlapping it with a randomly
chosen transparent strawberry from the occlusion set. This
strawberry was also placed in the center but shifted in both
the x and y direction. To give a varying amount of occlusion
per training sample, a shift value of either 32 or 64 pixels
was chosen with a probability of 50%. After occluding, the
strawberry was re-centered, since the input would also be
centered on a truly occluded strawberry. To model occlu-
sions from more than one strawberry in the dense growing
pattern, 50% of the time, we placed two occlusions.

We used mean squared error (MSE) as the loss function
to train the inpainting model. Additionally, for indication
of performance, we calculated the Intersection over Union
(IoU) and the difference in width between the network out-
put and the ground truth.

4. Experiments

4.1. Quality prediction with image and climate data

We evaluated the firmness and sweetness prediction re-
sults by inputting either the RGB image, the OCN image,
or both. For ripeness, we only input the RGB images,
as the ripeness values were determined by experts subjec-
tively based on their observations. The OCN inputs were
the strawberry segments from the OCN images, which were
matched to the observations of the same strawberries in the
RGB image. They were found by using our matching algo-
rithm described in Section 3.2.1. To train the network on the
pair of RGB and the OCN images, the convolutional layers
were duplicated: the first part was used on the RGB image,
and the second part on the OCN image. The outputs were
concatenated and fed into a multi-layer perceptron (MLP).
It was possible that the matching strawberry was not visi-
ble on the OCN camera due to the disparity. In this case, for
the dual network, we inserted a black and transparent image
instead, i.e., using RGBA = (0, 0, 0, 0) for all the pixels.

To find the best performance on quality prediction, we
trained CNNs with both LeNet-5 and ResNet-18 architec-
tures on the RGB, the OCN, or the pair of images of individ-
ual strawberries. To reach the best model performances, we
add two means to enhance the model performances: i) we
tailored the loss function during model training; ii) the mod-
els from all the model-data configurations were trained with
both the image data and the relevant environmental data,
which were both the average of the past four days before
harvest and the average over the past four days in the week
before harvesting. To ensure a proper comparison, we per-
formed five runs for each setup, using fixed random seeds
that remained consistent across various configurations.



The best performances on the estimation of ripeness,
firmness, and sweetness were obtained using LeNet-5 on
only the RGB inputs, as shown in Table 1, Table 2, and
Table 3 respectively. We use Mean Squared Error (MSE) as
the performance indicator of all tables. We discuss the influ-
ence of the two improvement measures after the reporting
of the best-performing models out of all configurations. Our
results demonstrate the feasibility of predicting the quality
attributes (i.e. ripeness, firmness, and sweetness) by the im-
ages of strawberries. The introduction of both the tailored
loss functions and the environmental data facilitated the per-
formances to various extents.

Table 1. Result comparison of ripeness estimation on the test
datasets. MSE is the average MSE loss over five experiments. We
also denote the standard deviation here. The best performance was
achieved on the model with a LeNet-5 architecture.

Color mode of
Image data

MSE·10−1

with LeNet-5
MSE·10−1

with ResNet-18

RGB 6.30 ± 0.74 7.84 ± 2.04

Table 2. Result comparison of firmness prediction on the test
datasets. MSE is the average MSE loss over five experiments. We
also denote the standard deviation here. The model with a LeNet-5
architecture and trained on RGB input had the best performance.

Color mode of
Image data

MSE·10−2

with LeNet-5
MSE·10−2

with ResNet-18

RGB 3.60 ± 0.55 4.27 ± 0.58
OCN 5.77 ± 1.74 5.78 ± 0.97
Dual 3.76 ± 0.22 4.84 ± 1.12

Table 3. Result comparison of sweetness prediction on the test
datasets. MSE is the average MSE loss over five experiments. We
also denote the standard deviation here. The model with a LeNet-5
architecture and trained on RGB input had the best performance.

Color mode of
Image data

MSE
with LeNet-5

MSE
with ResNet-18

RGB 1.39 ± 0.44 1.81 ± 0.58
OCN 1.69 ± 0.49 2.06 ± 0.78
Dual 1.51 ± 0.45 2.02 ± 0.62

4.1.1 Improvements by tailoring loss functions

As indicated by Figure 2, the quality attributes were not
uniformly distributed, where certain values had few occur-
rences. Thus, the network could be biased towards the most
common values, and never predict the lowest or highest val-
ues. We found that the performance was degraded when
the testing data split had more uncommon values. There-
fore, we proposed a solution by increasing the weight of the

loss on uncommon values. We applied a Weighted MSE
(WMSE) that multiplied the loss by how uncommon the
value was in the entire dataset. For example, on a binary
dataset that has two instances of X and one instance of Y, the
loss on the Y value will be weighted such that it is counted
twice as much. Furthermore, we added an exponent to our
weight values. We tried both exponents of 0.5 and 2 and
named them the Square Root WMSE (SQWMSE) and the
Squared WMSE (SWMSE), respectively.

When we kept our optimal data-model configurations,
we found that WMSE and SQWMSE improved the per-
formance of predicting firmness and ripeness of strawber-
ries, but degraded the performance of sweetness prediction.
Generally, the models trained by WMSE performed better
than those with SQWMSE in these experiments. We present
the MSE on the test datasets for each quality attribute in Ta-
ble 4 from the models trained with the specified loss func-
tions. Thus, for ripeness and firmness prediction tasks, we
reported the performances of the models trained on WMSE
in Table 1 and Table 2.

Table 4. Result comparison of models with various loss functions
and with the LeNet-5 architecture. The model performances are
indicated by MSE on the test datasets. The columns indicate the
loss function that the models were trained on. We could notice that
the MSE for ripeness and firmness on the test datasets was reduced
when increasing the weight of the loss on uncommon values.

Attribute Trained on MSE Trained on WMSE

Ripeness 6.76 ± 1.06 (·10−1) 6.30 ± 0.74 (·10−1)
Firmness 4.01 ± 0.94 (·10−2) 3.60 ± 0.55 (·10−2)
Sweetness 1.39 ± 0.44 2.02 ± 0.64

4.1.2 Climate data contributed to the performance

Previous research has demonstrated the feasibility of using
environmental data to estimate the qualities of batches of
fruits. Our experiments used such data to enhance the per-
formance of individual quality predictions. Specifically, to
find the effect of adding environmental data to the predic-
tions, we re-ran the models with the best-performing con-
figurations but without the environmental data.

Table 5. Result comparison of quality estimation with or with-
out environmental data (env.). The performances are described by
MSE on the test datasets. The columns indicate the input data that
the models were trained on. Notable performance decline occurs
in sweetness prediction, while firmness and ripeness estimations
show minor degradation when environmental data is omitted.

Attribute Trained with env. Trained without env.

Ripeness 6.30 ± 0.74 (·10−1) 6.65 ± 0.97 (·10−1)
Firmness 3.60 ± 0.55 (·10−2) 3.86 ± 0.46 (·10−2)
Sweetness 1.39 ± 0.44 2.53 ± 0.71



Figure 5. Example of matching of the images of Figure 1. Most
strawberries appear twice since both the segments from the RGB
and the OCN cameras are shown. We evaluated the matching per-
formances qualitatively according to these color-coded visualiza-
tions. Overall, the matching performance is decent on the dataset.
Such proper matching allowed us to calculate the disparity, depth,
and size of a strawberry accordingly.

As is shown by Table 5, all the accuracies of the tasks
decreased if the models did not learn from the climate data.
Notably, the performance of sweetness prediction was im-
pacted by the environmental data most strongly.

4.2. Size classification with images

By implementing Equation 5, we could estimate the size
of a strawberry according to its distance from the cam-
era. We used the distance from the RGB camera to its
projected point on the planting basket (i.e. D in Figure 3),
which was a constant number for the setup, as a baseline for
our size estimation. We compared the size estimation with
adding the depth calculation and/or the shape inpainting.
As the ground-truth labels are only classes of the width, we
mapped the calculated width into size classes and measured
the precision of the classification. Results are shown in Ta-
ble 6. We notice a slight accuracy improvement when depth
calculation was involved, yet the involvement of shape in-
painting did not help as we hypothesized.

Table 6. Effects of depth calculation and inpainting on the size
classification test. The “method” indicates the way of choosing the
variables in the implementation of Equation 5. The accuracy was
measured by the precision after discretizing the calculated width
into size classes.
Method Accuracy

With a fixed depth (Baseline) 63.1%
With depth calculation 64.5%
With shape inpainting 62.4%
With depth calculation and shape inpainting 63.8%

Figure 6. Example of depth estimations of Figure 1, shown as a
color-encoded mask of the RGB image. The more blue a segment
is, the closer it is; the more red, the further it is away. The depths
range roughly from 800mm to 1000mm. A close-up of three straw-
berry segments is depicted on the top left of the plot. The depth
estimation algorithm demonstrated promising local performance
as it tended to position occluded segments at a greater distance.

4.2.1 Segment matching and depth estimation

As there was no ground-truth information for segment
matching between RGB and OCN images, we only eval-
uated the matching algorithm manually and qualitatively.
We show an example of the matching results in Figure 5.
Most strawberries were matched correctly, with two major
exceptions. First were a few tiny strawberries. The perfor-
mance of those for this research was not relevant, as they
were not mature enough to be harvested soon. Second were
the large strawberries at the top of the images, which were
from the plant above the cameras. Nevertheless, the per-
formance would not be influenced by these fruits either, as
these strawberries were not part of the measurements.

Using the disparity, we calculated the depth. Figure 6
visualizes the depth estimation results. Still, due to the lack
of ground truth on object depths, we assessed the algorithm
performance empirically. In the visualization and the close-
up, we show that the algorithm generally performed well.
We observed that discerning depth differences in the images
was challenging for human eyes. For instance, in Figure 6,
certain strawberries appeared to have similar depths on both
the left and right sides of the view. However, we were un-
able to verify the accuracy of this perception.

4.2.2 Shape inpainting

We applied our inpainting methodology to two configura-
tions: using RGBA or solely the binary channel as the in-
puts. By calculating the circularity, we inpainted only the
occluded strawberries to avoid possible performance loss.



Figure 7. Example of results of the inpainting algorithm on a
strawberry. The first row used RGBA inputs, the second row used
binary inputs. The left column is the ground truth. The middle
column is the network input. The right column is the predicted
output. The performance on both configurations was good: the
original shape is reasonably recovered, allowing us to estimate the
strawberry width properly.

Results are listed in Table 7. Although metrics like MSE
and IoU are not designed to indicate shape similarity, they
could still give an indication of reconstruction quality. The
model with RGBA input images achieved a lower MSE loss,
while the model with binary input images achieved a higher
IoU and lower width difference.

The results indicated that the inpainting models could re-
cover part of the occlusion in the segments. Given artificial
occlusions, the models performed well, as illustrated in Fig-
ure 7. However, when the models met real occlusions, i.e.,
the occlusions presented in our data, the performances var-
ied. When comparing Figure 8 to Figure 7, it is implied
that the networks did not learn a general representation of
a strawberry, but rather, they learned how to inpaint cer-
tain occlusions, which were the typical situations that we
found of how strawberries could be occluded by others in
the wild. This also indicates that it was challenging to sim-
ulate a wide-enough variety of occlusions such that the net-
work learned a general way to inpaint the shape of a straw-
berry. As the inpainting models could not handle to all types
of real-life occlusions, they did not improve the accuracy of
the size classification task.

Table 7. Results of inpainting on the test set. Width diff is the
difference in width between the network output and the ground
truth. The models have roughly equal IoU, but the binary model
has a higher loss but a lower width difference. It is not immediately
clear which configuration is best.

Color mode MSE ·10−3 IoU Width diff

RGBA 5.46 0.871 2.00
Binary 7.21 0.874 1.70

Figure 8. Examples of results of the inpainting algorithm on real
occluded strawberries. The first row used RGBA inputs, the sec-
ond row used binary inputs. The left column is the network input.
The right column is the predicted output. There is no non-occluded
ground truth of the strawberries, as the strawberries are occluded
infield. The performance on the RGBA configuration is poor and
on the binary configuration is mediocre.

5. Conclusion

In this paper, we propose methods of using infield data
for quality prediction and size classification of strawberries,
such that analyses can be conducted before harvesting. Our
deep learning models achieved reasonable accuracy on pre-
dictions of ripeness, firmness, and sweetness. Our results
demonstrate that models trained under a tailored loss func-
tion were more robust against class imbalance. The envi-
ronmental data also facilitated the model performance. We
also achieved proper size classification using the infield im-
ages. Calculating depth through stereo-vision algorithms
improved the accuracy, but only slightly. The inpainting
models performed well on artificial occlusions, which fol-
lowed a similar methodology for generating the training
data. Nevertheless, the progress of the models in terms
of size classification differed when confronted with actual
real-world occlusions.

The performances of the quality prediction models are
relatively inferior to that of a few related works. The reason
could be the lack of controlled lighting conditions, as we
used solely infield data. Further, our work did not utilize
the OCN image data as expected. Considering the decent
performance of related works using hyperspectral imaging
[38], it is suggested to explore appropriate calibration meth-
ods to make the near-infrared spectrum a practical and ac-
cessible option for horticulturalists.

In terms of size classification, as the size information
was only provided by discrete labels, the precision did not
linearly represent the changes in the model performance
under different methods. Therefore, it is meaningful to
continue further research on datasets with better calibrated,
more detailed, or larger volumes of measurements.
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