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Abstract

This paper is concerned with recognizing realistic hu-
man actions in videos based on spatio-temporal interest
points (STIPs). Existing STIP-based action recognition ap-
proaches operate on intensity representations of the im-
age data. Because of this, these approaches are sensi-
tive to disturbing photometric phenomena such as high-
lights and shadows. Moreover, valuable information is ne-
glected by discarding chromaticity from the photometric
representation. These issues are addressed by Color STIPs.
Color STIPs are multi-channel reformulations of existing
intensity-based STIP detectors and descriptors, for which
we consider a number of chromatic representations derived
from the opponent color space. This enhanced modeling of
appearance improves the quality of subsequent STIP detec-
tion and description. Color STIPs are shown to substan-
tially outperform their intensity-based counterparts on the
challenging UCF sports, UCF11 and UCF50 action recog-
nition benchmarks. Moreover, the results show that color
STIPs are currently the single best low-level feature choice
for STIP-based approaches to human action recognition.

1. Introduction
Human activities play a central role in video data that is

abundantly available in archives and on the internet. Infor-
mation about the presence of human activities is therefore
valuable for video indexing, retrieval and security applica-
tions. However, these applications demand recognition sys-
tems that work in unconstrained scenarios. For this reason,
research has shifted from recognizing simple human actions
under controlled conditions to more complex activities and
events ‘in the wild’ [9]. This requires the methods to be
robust against disturbing effects of illumination, occlusion,
viewpoint, camera motion, compression and frame rates.

High-level approaches for unconstrained human activity
recognition aim at modeling image sequences based on the
detection of high level concepts [12], and may build on low-
level building blocks [18] which typically consider generic
video representations based on local photometric features
[6, 8, 23]. High-level approaches are based on complex,

computationally expensive video processing operations but
may be superior to low-level approaches in terms of recog-
nition rates. However, high-level approaches are sensitive
to local geometric disturbances such as occlusion and are
consequently less scalable [12]. Low-level approaches are
conceptually simple, easy to implement, sparse and effi-
cient. Due to the local nature of features on which low-
level approaches are based, they are naturally robust against
geometric disturbances such as occlusion and viewpoint
changes. Therefore, in this paper, we focus on low-level
representations for recognizing human actions in video.

Low-level action recognition approaches are typically
based on spatio-temporal interest points (STIPs) where im-
age sequences are represented by descriptors extracted lo-
cally around STIP detections. These spatio-temporal fea-
ture detectors and descriptors typically use intensity-only
representations of the video data and are therefore sensitive
to disturbing illumination conditions such as shadows and
highlights. More importantly, discriminative information is
ignored by discarding chromaticity from the representation.

In a variety of image matching and object recogni-
tion tasks color descriptors outperform intensity descriptors
[2, 19] in the spatial (non-temporal) domain. We identify
two benefits of adding color to the temporal domain. By
using color, our approach can extract more temporal vari-
ations, since pure chromatic temporal transitions such as
e.g., red-green, or yellow-blue motion may not be visible
in gray-scale. Further, because color is more discrimina-
tive, it allows for better estimation of motion and temporal
variation. Where motion of colored objects may be ambigu-
ous in gray-scale, color can be conclusive. Adding color to
the temporal domain thus gives more information and it im-
proves the quality of the estimations.

In this paper, we propose to incorporate chromatic rep-
resentations also in the spatio-temporal domain. This com-
prises a reformulation of STIP detectors and descriptors for
multi-channel video representations. For this, videos are
represented in a variety of color spaces exhibiting different
levels of photometric invariance. By this enhanced model-
ing of appearance, we aim to increase the quality (robust-
ness and discriminative power) of STIP detectors and de-
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scriptors for recognizing human activities in video. This
is validated through a set of repeatability and recognition
experiments on challenging video benchmarks. The re-
sults show that our color STIPs significantly outperform
their intensity-based counterparts. Compared to existing
work, color STIPs are favored over all other STIP-based ap-
proaches and perform competitively on the UCF50 dataset
in comparison to the state of the art.

1.1. Related Work

In the spatial domain, multi-channel photometric invari-
ant feature detectors [16, 20, 21] increase repeatability, en-
tropy, and object categorization over intensity-based detec-
tions. For descriptors, multi-channel formulations [2, 19]
propose various color SIFT variants where OpponentSIFT
considerably improves performance. Based on this, we for-
mulate a family of increasingly invariant photometric repre-
sentations which are incorporated in multi-channel formu-
lations of spatio-temporal feature detectors and descriptors.
In contrast to other color-STIPS [15] we improve over stan-
dard baselines, use a well-founded representation model
and we evaluate detectors and descriptors separately.

1.1.1 Spatio-temporal Detectors

In the spatio-temporal domain, pioneering work by Laptev
[7] extends the Harris function to 3D. Alternatively, there is
the Gabor STIP detector of Dollàr et al. [4] which applies
a Gabor filter along the temporal axis and is not based on
differential image structure. The authors argue that differ-
ential based STIP detectors are incapable of detecting subtle
and periodic motion patterns. Gabor STIPs are therefore es-
sentially different from Harris STIPs and we develop multi-
channel formulations for both detectors to study differential
as well as raw spatio-temporal image data.

As an alternative to STIP-based sampling, local descrip-
tors may be extracted along motion trajectories [22]. Here,
densely sampled points are tracked from frame to frame
based on optical flow. As the method involves tracking and
multi-scale optical flow computation the associated compu-
tational complexity is typically higher than that of STIP-
based approaches, but may compare favorably in terms of
recognition rates. However, it is shown in [10] that motion-
based descriptors are not scalable with respect to the num-
ber of action categories, which can be reasonably assumed
to also hold for trajectory-based sampling of descriptors. In
this paper, we focus on the sparser and more scalable STIP-
based approach.

1.1.2 Spatio-temporal Descriptors

Among the local spatio-temporal descriptors available in lit-
erature, the HOG3D descriptor [6] is well-suited for large
scale video representation and multi-channel extensions. In

contrast to e.g. HOG/HOF [8], MoSIFT [3] or MBH [22]
descriptors, the HOG3D algorithm serves as an integrated
and efficient approach, as it excludes optical flow which
is computationally expensive [10]. Also, good results in
a STIP-based bag-of-features recognition framework using
the HOG3D descriptor have been achieved, especially in
combination with the Gabor STIP detector [23]. Therefore,
we derive several multi-channel variants of the HOG3D de-
scriptor and evaluate their performance for realistic human
action recognition.

Another recently proposed video descriptor for human
action recognition in web videos is Gist3D [14]. This is a
global descriptor based on a 3D filter bank, and describes
the spatio-temporal ‘gist’ of a video. Reasonable recog-
nition performance is achieved only in combination with
STIPs, whereas we compete with their results based on
color STIPs alone.

The works mentioned above comprise low/medium level
approaches to action recognition. Higher level approaches
such as Action Bank by Sadanand et al. [12] give ex-
cellent results on some datasets, however, such high-level
approaches are typically not scalable. In contrast, low-
level approaches are widely applicable, conceptually sim-
ple, sparse and exhibit reasonable computational complex-
ity. Moreover, they may serve as powerful building blocks
for higher level methods [18]. We contribute by considering
a variety of photometric representations for STIP detection
and description for enhancing low-level approaches to ac-
tion recognition.

2. Photometric Representations

We model image formation by the dichromatic reflection
model [13],

f = e(mbcb +mici), (1)

where an RGB vector f = (R,G,B)T is the sum of
the body reflectance color cb with the interface reflection
color ci. The contributions of these reflectance colors are
weighted by their respective magnitudes mb and mi, that
depend on surface orientation and illumination direction.
Additionally, the specular reflectionmi is viewpoint depen-
dent. The intensity of the light source is represented by e.

Invariance against highlights (shifts in the signal) can
be achieved by representations that cancel out the addi-
tive interface reflection term mici. Signal scalings, such
as those caused by shadows and shading, can be addressed
by dividing-out the light source intensity e. Here, we con-
sider the transformation of the RGB image to the opponent
color space [2, 5, 19, 20] O1

O2

O3

 =

 R−G
R+G− 2B
R+G+B

 . (2)



I-Harris C-Harris N-Harris H-Harris I-Gabor C-Gabor N-Gabor H-Gabor

Figure 1. Superimposed Harris and Gabor responses for Intensity, Chromatic, Normalized chromatic and Hue on three images of a rotating
object on which a strong highlight is present. The Harris energy function mainly responds to differential changes in the signal, whereas the
Gabor function fires on general spatio-temporal fluctuations. Note the dampened response to the highlight in the invariant channels.

Intensity Chromatic N-Chromatic Hue

Representation O3 [O1, O2]
[

O1
O3

, O2
O3

] O1
O2

Invariant to - Highlights Shadows Hl. & Sh.
Reference I C N H

Table 1. Photometric image representations. Chromatic combina-
tions with the intensity channel yield IC, IN and IH.

The transformation approximately decorrelates the image
channels, resulting in intensity O3 and chromatic compo-
nents O1, O2. Based on these formulations, several photo-
metric properties can be derived.
Highlights. Due to subtraction of RGB components in
eq. (2), the reflection term from eq. (1) is canceled out in
the formulations of O1 and O2, making the chromatic op-
ponent components invariant to signal shifts such as those
caused by (white) highlights.
Shadow-shading. The chromatic components are normal-
ized by the intensity O3, canceling out the light source in-
tensity term from eq. (1). This yields the shadow and shad-
ing invariants

[
O1
O3
, O2

O3

]
.

Shadow-shading-highlights. Invariance against both scal-
ings and shifts in the signal is achieved by considering the
ratio of chromatic components: O1

O2
. This results in the

shadow-shading-highlight invariant hue representation.
We refer to these photometric image representations

as I(intensity), C(hromatic), N (ormalized chromatic) and
H(ue). These can be ordered with respect to their invariance
level: H � N � C � I . The intensity I preserves most
image structures, and is the most discriminative representa-
tion. Therefore the intensity-normalized representations N
andH have a higher level of photometric invariance thanC,
in which the light source intensity is preserved. We summa-
rize the representations and their properties in table (1).

The lack of discriminative power associated with the
chromatic representations C, N and H typically renders

them unsuitable for matching and recognition tasks. Com-
binations of intensity and chromatic channels result in IC,
IN and IH . Note that the three-channel representation
IC comprises the original opponent channels [O1, O2, O3].
These representations are established first, i.e., prior to any
subsequent processing. All channels are min-max normal-
ized so as to weight them equally a-priori.

3. Multi-Channel STIP Detection

Multi-channel Harris STIPs. Harris STIPs are lo-
cal maxima of the 3D Harris energy function based on
the structure tensor [7]. A multi-channel formulation of
the structure tensor has been developed in e.g. [21] which
prevents opposing color gradient directions to cancel each
other out. Here, we incorporate multiple channels in the
spatio-temporal structure tensor [7].

The multi-channel volume V consisting of nc channels is
denoted by V = (V 1, V 2, ..., V nc)T . The individual chan-
nels are represented in scale space V j = g(·;σo, τo)∗f j(·),
where g(·; ·, ·) is the 3D Gaussian kernel with equal scales
along the spatial dimensions, σo and τo are the spatial and
temporal observation scales and f j : R3 → R is the imag-
ing function of channel j.

Let Vd = (V 1
d , V

2
d , ..., V

nc

d )T , d ∈ {x, y, t} denote the
per-channel partial Gaussian derivatives of the volume. The
multi-channel spatio-temporal structure tensor is then de-
fined by

S = g(·;σi, τi) ∗

 Vx · Vx Vx · Vy Vx · Vt

Vy · Vx Vy · Vy Vy · Vt

Vt · Vx Vt · Vy Vt · Vt

 , (3)

where σi and τi denote the spatial and temporal integra-
tion scale respectively. In figure (1) we illustrate the re-
sponse per representation. Incorporating increasingly in-
variant photometric representations has a dramatic effect on
the Harris energy. The highlight on the shiny heart-shaped



object surface part triggers a strong response from the orig-
inal I-based energy functions. This effect is clearly damp-
ened in the C representation. However, the illumination re-
flected by the colored matte-shiny (left) object part still trig-
gers response, as this reflection causes signal changes that
are not explained by a simple shift. Intensity normalization
of the chromatic components (N ) then causes this response
to be dampened, while emphasizing colorful transitions on
the object surface. Finally, the scaling- and shift- invariant
H representation eliminates essentially all response except
salient color transitions.
Multi-channel Gabor STIPs. The Gabor STIP detector
is based on a Gabor filtering procedure along the tempo-
ral axis [4]. Invoking multiple channels is straightforward
because the energy function is positive definite by formula-
tion. Hence, no additional care has to be taken to account
for conflicting response signs between channels

R =

nc∑
j=1

(g(·;σo)∗hev(·; τo)∗V j)2+(g(·;σo)∗hod(·; τo)∗V j)2.

(4)
Here, the 2D Gaussian smoothing kernel g(·; ·) is applied

spatially, whereas the Gabor filter pair {hev(·; ·), hod(·; ·)}
measures the periodicity of the observed signal along the
temporal dimension. As illustrated in figure (1), the I-
Gabor energy is mainly clustered around an incidental high-
light, whereas the response-triggering local photometric
events become increasingly rare and colorful along with the
level of photometric invariance level of the representation.

4. Multi-Channel STIP Description

The HOG3D [6] descriptor is formulated as a discretized
approximation of the full range of continuous directions of
the 3D gradient in the video volume. That is, the unit sphere
centered at the gradient location is approximated by a reg-
ular n-sided polyhedron with congruent faces. Tracing the
gradient vector along its direction up to intersection with
any of the polyhedron faces identifies the dominant quan-
tized direction. Quantization proceeds by projecting the
gradient vector on the axes running through the gradient lo-
cation and the face centers with a matrix multiplication of
the 3D gradient vector g,

q = (q1, ..., qn)T =
P · g
||g||2

, (5)

where P is the n×3 matrix holding the face center loca-
tions and q is the projection result (i.e. the histogram of 3D
gradient directions). Note that the contribution is distributed
among nearby polyhedron faces. Descriptor dimensionality
may be reduced by allocating opposing gradient directions
to the same orientation bin. The descriptor algorithm pro-
ceeds by centering a cuboid at the STIP location, which is

Gradient Orientation Gradient Direction

Channel Integration C1,1 : D/2 C1,0 : 1D
Channel Concatenation C0,1 : ncD/2 C0,0 : ncD

Table 2. Multi-channel HOG3D variants. C denotes some photo-
metric representation comprising nc channels. The dimensional-
ity of an integrated direction-based descriptor is considered default
(1D, 360 in this paper), based on which we derive the dimension-
ality of the other descriptor variants.

tessellated into a spatio-temporal grid. Histograms are com-
puted over every grid cell and concatenated to form the final
descriptor [6].

Chromaticity is incorporated in the HOG3D descrip-
tor by considering the representations from section (2) in
a multi-channel formulation of the gradient vector g in
eq. (5). We evaluate the standard practice of concatenation
of the per-channel descriptors [2, 5, 19]:

g′ = {gj}, j = 1, ..., nc. (6)

We also evaluate a single gradient variant where we prevent
the effect of opposing color gradient directions canceling
each other by using tensor mathematics. In tensors, oppos-
ing directions reinforce each other by summing the gradient
orientations as opposed to their directions [21],

g′′ =
nc∑

j=1

gj · gj . (7)

This formulation of the gradient defines half of the full
sphere of directions which is one of the HOG3D flavors in
[6]. Here, it naturally follows from a tensor formulation of
the multi-channel 3D gradient.

We formulate another variation as the summation of per-
channel full direction descriptors. Together with the tensor-
based approach, we call this descriptor integration as op-
posed to concatenation. This variant benefits from the ex-
pressiveness associated with the full set of multi-channel
directions while maintaining the same dimensionality as a
single channel descriptor. Note that the differences between
integration or concatenation of channels do not apply to
single-channel descriptors. The descriptor variants and their
associated dimensionalities are summarized in table (2).

5. Experiments
We evaluate the multi-channel STIP detectors and de-

scriptors through a set of repeatability and action recogni-
tion datasets.

5.1. Implementation Details and Notation

We base our implementation of STIP detectors on the
activity recognition toolbox by Dollàr et al. [4] while re-
implementing the HOG3D descriptor of Kläser et al. [6].



STIP scale. For the Gabor detector, we set the spatial scale
σo = 2 and the temporal scale τo =

√
8 in eq. (4). Note

that this setting for τo is in conflict with e.g. [23], but we
have found that the proposed default setting of τo = 4 is
too large for descriptor extraction in short sequences. For
the Harris detector, we consider a reduced set of spatial
scales with respect to prior work, as we have found this to
be satisfactory in terms of discriminative power and com-
putational load. Specifically, for computing Harris energy
based on eq. (3), we consider σo =

√
2i, i ∈ {2, 3, 4} and

τo =
√

2j , j ∈ {1, 2}. As in e.g. [23, 8], we do not perform
STIP scale selection because of its associated high compu-
tational costs and decreased recognition performance [7].
Cuboids. Descriptors are extracted from cuboids centered
at STIP locations. The spatio-temporal extent as well as the
grid layout of these cuboids may be discriminatively opti-
mized such as in [6]. In this paper, we refrain from such
an optimization scheme in order to maintain focus on the
integration of chromatic channels. Instead, we consider one
particular setting (from e.g. [23]) in which the extent of a
cuboid is defined as ∆x = ∆y = 18σo and ∆t = 8τo. For
feature aggregation, we employ a 3x3x2 spatio-temporal
pooling scheme. This grid layout is attractive due its com-
pactness, whereas we have not found significant dependen-
cies of our results on these settings for our purpose.
Descriptors. We consider the four variants of the multi-
channel HOG3D descriptor as summarized in table (2). The
variants are denoted by flagging the descriptor names. The
first flag denotes whether the descriptor channels are in-
tegrated (or otherwise concatenated), whereas the second
flag denotes the usage of gradient orientations (as opposed
to directions). For example, IC0,1 denotes the concate-
nated orientation-based Opponent-HOG3D descriptor. In-
tegrated, orientation-based descriptors such as IN1,1 follow
from the tensor-based approach in eq. (7). There is no dif-
ference between I0,· and I1,· as I is a single channel.

We use integral video histograms for aggregating fea-
tures over grid cells. We refrain from gradient approxima-
tion based on integral video representations of the partial
derivatives as in [6], because this affects the very informa-
tion that we wish to study. For descriptor normalization,
we adopt the method proposed by Brown et al. [1] in which
the normalization cut-off threshold is a discriminatively op-
timized function of the descriptor dimensionality. By this,
we discard the usually quite influential and time consuming
task of determining the optimal normalization parameters
per descriptor variant.

In summary, apart from the photometric representations,
our HOG3D implementation differs slightly from the origi-
nal [6] by 1) exact gradient computation, 2) descriptor nor-
malization and 3) spatio-temporal pooling.
Recognition. Based on the multi-channel STIP detectors
and descriptors, we perform action recognition in a standard

bag-of-features learning framework. Unless stated other-
wise, we closely follow the setup of [23]. Here, codebooks
are created by clustering 200K randomly sampled HOG3D
descriptors using k-means in 4000 clusters. A sequence is
then represented by quantizing the extracted HOG3D de-
scriptors based on the learned codebook. An SVM is trained
based on the χ2 distance between codebook descriptors.
Evaluation of the learned classifier is usually performed in a
leave-n-out cross validation setup. Every experiment is re-
peated three times for different codebooks, which produces
typical standard deviations between 0.2 and 1 percentage
point (depending on the amount of videos and the number
of STIPs).

5.2. Datasets

We measure STIP repeatability on videos from the FeE-
val dataset [17]. This dataset consists of 30 videos taken
from television series, movies and lab recordings. Every
video is artificially distorted by applying different types of
photometric and geometric transformations. Every transfor-
mation type is associated to a challenge, in which the distor-
tion is applied in increasingly severe steps. We consider the
videos from television series up to the first occurring shot
boundary. That is, we do not aim at studying STIP behavior
in controlled settings, cartoons or in typical movie settings
for which editing effects are frequent. We consider the full
set of challenges: blur, compression, darken, lighten, me-
dian filter, noise, sampling rate and scaling and rotation.

For an in-depth evaluation of detector and descriptor set-
tings we use the UCF sports dataset [11]. The dataset
exhibits 10 sports action categories in 150 videos, all of
which are horizontally flipped to increase the dataset size.
Performance is evaluated in a leave-one-out cross validation
scheme, in which the flipped version of the considered test
video is removed from the training set. The authors of [23]
have kindly provided us with an exact copy of the dataset as
used in their experiments. The best performing experimen-
tal settings are applied to UCF11 [9] which has 11 human
actions in 1200 videos, and its superset UCF50 [10] with 50
human action classes in about 6700 videos. These challeng-
ing datasets comprise youtube videos exhibiting real human
activities. Here, performance is evaluated through a leave-
one-group-out cross validation scheme over 25 groups, in
which we exactly follow the authors’ guidelines1.

I IC IN IH C N H

Harris 61.3% 61.6% 61.3% 37.0% 45.6% 40.5% 28.7%
Gabor 43.6% 43.6% 43.6% 24.4% 25.4% 22.9% 19.3%

Table 3. STIP repeatability for multi-channel Harris and Gabor
detectors based on the considered photometric representations.

1http://crcv.ucf.edu/data/UCF50.php
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Figure 2. Recognition performance on the UCF sports dataset per photometric representation for varying amounts of Harris (a) and Gabor
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and IC1,0-descriptors for varying codebook sizes (d).

5.3. Color STIP Detector Repeatability

We poll the detectors for an average amount of 10 STIPs
per frame of the FeEval videos. A repeatability score is
obtained by considering the detections in the challenge se-
quence, and computing the relative overlap of the cuboid
around the detected STIP location with the correspond-
ing location in the original sequence. We take the spatio-
temporal extent of the cuboid to be equal to the observation
scale. The repeatability scores averaged over all sequences
and challenges are presented in table (3).

Harris STIPs are much more stable than Gabor STIPs.
Nonlinear differential spatio-temporal signal changes are
more distinctive than temporal fluctuations only. The be-
havior of the detector in different photometric represen-
tations are in line with figure (1). As the representation
becomes increasingly invariant, repeatability progressively
decreases. Also, combining the invariants with intensity
does not increase repeatability with respect to using inten-
sity only (save marginal improvements for the IC repre-
sentation). Moreover, the IH representation attains much
lower repeatability scores than I . The reason for this is that,
as disturbing conditions such as highlights and shadows are
effectively ignored, so is spatio-temporal image structure on
which stable STIPs are detected. Adding C or N to the in-
tensity I basically leaves the repeatabililty unaltered on this
dataset. However, the STIP discriminability experiments
will show that adopting these representations does result in
different recognition scores.

From here on, the pure chromatic representations are dis-
carded from the experimental batch due to the associated
lack of discriminative power and we focus only on I , IC,
IN , IH .

5.4. Color STIP Detector Discriminability

For evaluating action recognition performance on the
UCF sports dataset we consider the photometric variants of
both the Harris and Gabor detector. Direction-based inten-
sity HOG3D (I·,0) descriptors are extracted around multi-
channel STIP detections (i.e. the descriptor representation
is fixed). Recognition accuracy is computed for an aver-
age of {10, 20, 30, 40, 50} STIPs per frame by varying the
detection threshold. Results are given in figures (2a,b).

We first validate our implementation by comparing
recognition accuracies with the evaluations reported on in-
tensity in [23]. Here, the average number of Harris STIPs is
33, for which an accuracy of 79.9% is attained. We obtain
80.4% for 30 STIPs per frame. As for the Gabor detector,
[23] reports an accuracy of 82.9% for 44 STIPs. This is
comparable to our performance of 83.4% for 40 STIPs.

From figures (2a,b) it stands out that discriminative
power is severely hampered by integrating H in the energy
functions. This is expected because H is associated to the
highest level of photometric invariance. As more detections
are requested, however, performance converges to that of I-
STIPs. Harris STIPs appear more discriminative than Ga-
bor STIPs for relatively small amounts of detections. This
relative performance difference reverses as more STIPs are
considered. The reasons for this are related to sparsity, dis-
tinctiveness and scale.

Considering Harris STIPs in figure (2a), using the C
and N representations leads to marginal performance dif-
ferences compared to I . For small to moderate amounts
of STIPs, recognition accuracy is somewhat improved, in
particular by IN . The primary characterization of Harris
STIPs in terms of distinctiveness and sparseness is mainly
due to nonlinear fluctuations in the spatio-temporal inten-
sity signal. Adding chromatic components to the formu-
lation of the energy function does not drastically alter this
characterization.

For the multi-channel Gabor detector in figure (2b)
higher quality STIPs are detected for the C and especially
N channels as compared to using I alone. While I by itself
contains the most important information regarding spatio-
temporal signal fluctuations, invariants may prevent the de-
tector to fire on disturbing factors such as highlights and
shadows. Also, we assume the specific colorfulness of lo-
cal spatio-temporal events associated to certain actions to
be informative (e.g. ‘Diving’ (skin color, blue water) and
‘Riding-Horse’ (brown horse, green field and trees)).

5.5. Color STIP Descriptor Discriminability

For the following action recognition experiments on the
UCF sports dataset, descriptors are extracted around Ga-
bor STIPs as these have shown superior recognition per-



formance over Harris STIPs in figure (2a,b). The detector
representation is fixed to I . We adopt the detection thresh-
old that yields 50 STIPs per frame on average. Recognition
accuracies are reported in figure (2c).

General conclusions about photometric invariance relate
to the discriminative power of the descriptors. That is, the
IC-based descriptors typically outperform IN descriptors,
which in turn are favored over IH . Multi-channel descrip-
tors usually outperform the I-based descriptor. We observe
a general preference for direction-based descriptors over
orientation-based descriptors (table 2). This is due to the
associated wider range of expressiveness. Most apparent in
this respect is the IC representation, i.e. IC0,0 improves
over IC0,1 by almost 4 percentage points, whereas IC1,0

attains 2 percentage points more than IC1,1. Thus, every
channel exhibits discriminative power in the full range of
gradient directions. It may even be the case that the (im-
plicit) preservation of opposing gradient directions between
channels is informative. Furthermore, IC-based descrip-
tors favor channel integration over concatenation, which
is not the case for IN - and IH- based descriptors. In
fact, one would expect concatenation-based descriptors to
perform better in general due the enhanced expressiveness
associated to multiple channels and increased dimension-
ality. This is also the most widely spread approach to
multi-channel descriptors, e.g. [2, 19, 5]. However, we ob-
tain the positive side-effect of increased recognition perfor-
mance against reduced descriptor dimensionality. That is,
the multi-channel descriptor dimensionality remains equal
to that of a single channel. Although the difference with
IC0,0 is marginal, we report a top performance of 85.6%
for IC1,0 against 1) our I·,0 baseline of 83.4% and 2) 82.9%
reported in [23].

We conduct a final investigation on the codebook size.
We consider ‘OpponentSTIP’ combinations of I and IC
Gabor STIPs with I·,0 and IC1,0 HOG3D descriptors. We
drop the orientation-based descriptors for now. Recogni-
tion results for varying codebook sizes are depicted in fig-
ure (2d). We observe that the I-IC (detector-descriptor)
combination performs best up to a codebook size of 4000.
Top performance is marginally improved to 85.7% by the
IC-IC combination for a codebook size of 8000. The com-
putational load associated to such a vocabulary is not worth
the effort, considering the performance of 85.5% attained
by the I-IC combination for a much smaller codebook size
of 1000. We have not observed a relationship between de-
scriptor dimensionality and codebook size.

In contrast to these low/medium level action recognition
approaches, the high level Action Bank approach of [12]
reaches an accuracy of 95% on UCF sports. Here, we focus
on low-level approaches, and our best performance for 50
STIPs per frame is on par with the performance of 85.6%
for densely sampled I-HOG3D descriptors in [23], which

on average yields over 600 descriptors per frame. Based
on a combination of HOG, HOF and MBH descriptors ex-
tracted along dense motion trajectories, a performance of
88.2% is achieved in [22]. Compared to this, our STIP-
based approach does a good job considering that it outper-
forms all reported individual features on UCF sports.

5.6. UCF11 & UCF50

Based on the in-depth evaluations on UCF sports, we se-
lect the I , IC and IN representations for both STIP de-
tection and description for evaluation on the UCF11 and
UCF50 datasets. Results are presented in table (4).

Differences between performance in the detectors are
again small, but we observe a consistent top-performing
combination of IN -Gabor STIPs with IC-based HOG3D.
Thus, we conclude that a certain amount of invariance
against local photometric events is beneficial for STIP de-
tection, whereas the descriptor should be extracted from the
most discriminative representation.

We achieve a baseline result of 73.8% on the UCF11
dataset for the intensity-based STIP variant. This compares
to the trajectory-based harvesting of HOG and HOF fea-
tures in [22], for which 74.5% and 72.8% is achieved re-
spectively. However, they report a superior performance of
83.9% for MBH. In our case, adding chromaticity increases
the recognition accuracies substantially where best perfor-
mance is achieved by the direction-based IC descriptors:
78.4% for IC1,0 on IC-Gabor STIPs and 78.6% for IC0,0

on IN -Gabor STIPs. The representation of the detector ap-
pears to be more influential on this dataset, although its con-
tribution is marginal on average.

Interestingly, best performance on UCF50 is achieved by
orientation-based descriptors. As the number of categories
increases, descriptor robustness becomes more important.
We observe a baseline result of 68.8% for I·,1. This is sub-
stantially higher than the results reported in [12] for Action
Bank (57.9%) and Harris STIP + HOG/HOF (47.9%) (see
table (5) for an overview of recent results on UCF50). We
conclude from this that the Action Bank method is not scal-
able, and probably suffers from increased amounts of ge-
ometric variations. As for Harris STIP + HOG/HOF, we
conclude that the high degree of distinctiveness of spatio-
temporal corners limits generalization capacity. A perfor-
mance of 76.9% is reported in [10] for a combination of
scene context and spatio-temporal descriptors. Here, the
best performing single spatio-temporal descriptor is MBH
[22], which achieves 71.9%. This shows the generalization
capacity of differential optical flow descriptors. In [14], a
recognition accuracy of 73.7% is reported for a combina-
tion of Gist3D and STIP (HOG/HOF) descriptors. How-
ever, their performance of the individual descriptors are at
most 65.3%.

We report a top performance of 72.9% for IC1,1-



I·,0 IC1,0 IC0,0 IN1,0 IN0,0 I·,1 IC1,1 IC0,1 IN1,1 IN0,1
U

C
F1

1 I −Gabor 73.8% 77.5% 78.2% 76.0% 76.4% 71.6% 75.8% 74.2% 73.8% 74.6%
IC −Gabor 73.8% 78.4% 78.1% 76.6% 76.3% 71.5% 75.4% 73.7% 73.9% 74.3%
IN −Gabor 74.5% 77.5% 78.6% 76.7% 76.4% 72.4% 76.0% 74.6% 74.2% 74.0%

U
C

F5
0 I −Gabor 68.3% 71.7% 70.9% 71.2% 72.1% 68.8% 72.6% 69.7% 71.8% 72.0%

IC −Gabor 68.5% 71.8% 70.8% 71.2% 71.9% 68.8% 72.4% 69.8% 71.5% 72.4%
IN −Gabor 68.4% 71.8% 71.1% 71.0% 71.8% 68.5% 72.9% 69.9% 71.6% 72.5%

Table 4. Color STIP action recognition results on UCF11 and UCF50 datasets. The first 5 columns show results for direction-based
descriptors, whereas results for orientation-based descriptors are shown in the remaining columns.

Ref. Description %

[10] Scene context + STIP(MBH) 76.9%
Scene Context 47.6%
STIP(MBH) 71.9%

[14] Gist3D + STIP(HOG/HOF) 73.7%
Gist3D 65.3%
STIP(HOG/HOF) 54.3%

[12] Action Bank 57.9%
STIP(HOG/HOF) 47.9%

Here Color STIP(HOG3D) 72.9%
Table 5. Recent UCF50 results available in literature.

HOG3D extracted around IN -Gabor STIPs. This result is
highly competitive compared to the state of the art, consid-
ering that it involves only a single descriptor type.

6. Conclusion
We have reformulated existing STIP detectors and de-

scriptors to incorporate multiple photometric channels, re-
sulting in Color STIPs. This enhanced modeling of appear-
ance results in higher quality detections and descriptions.
Color STIPs are thoroughly evaluated and shown to signifi-
cantly outperform their intensity-based counterparts for rec-
ognizing human actions on a number of challenging video
benchmarks. In general, best results are obtained based on
unnormalized opponent color representations.
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