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Abstract

Objective: Myasthenia gravis (MG) is an autoimmune disease leading to fatiga-

ble muscle weakness. Extra-ocular and bulbar muscles are most commonly

affected. We aimed to investigate whether facial weakness can be quantified

automatically and used for diagnosis and disease monitoring. Methods: In this

cross-sectional study, we analyzed video recordings of 70 MG patients and 69

healthy controls (HC) with two different methods. Facial weakness was first

quantified with facial expression recognition software. Subsequently, a deep

learning (DL) computer model was trained for the classification of diagnosis

and disease severity using multiple cross-validations on videos of 50 patients

and 50 controls. Results were validated using unseen videos of 20 MG patients

and 19 HC. Results: Expression of anger (p= 0.026), fear (p= 0.003), and hap-

piness (p< 0.001) was significantly decreased in MG compared to HC. Specific

patterns of decreased facial movement were detectable in each emotion. Results

of the DL model for diagnosis were as follows: area under the curve (AUC) of

the receiver operator curve 0.75 (95% CI 0.65–0.85), sensitivity 0.76, specificity

0.76, and accuracy 76%. For disease severity: AUC 0.75 (95% CI 0.60–0.90),
sensitivity 0.93, specificity 0.63, and accuracy 80%. Results of validation, diag-

nosis: AUC 0.82 (95% CI: 0.67–0.97), sensitivity 1.0, specificity 0.74, and accu-

racy 87%. For disease severity: AUC 0.88 (95% CI: 0.67–1.0), sensitivity 1.0,

specificity 0.86, and accuracy 94%. Interpretation: Patterns of facial weakness

can be detected with facial recognition software. Second, this study delivers a

‘proof of concept’ for a DL model that can distinguish MG from HC and clas-

sifies disease severity.

Introduction

Myasthenia gravis (MG) is an autoimmune disease char-

acterized by fluctuating muscle fatigability.1 The preva-

lence of MG is low: approximately 1 to 2 per 10,000.1

Although all striated muscles can be involved, the extra-

ocular muscles are most commonly affected.1,2 Fluctuat-

ing asymmetric ptosis and diplopia are the first and pre-

dominant symptoms in a majority of patients, followed

by weakness of bulbar muscles, resulting in facial weak-

ness, amongst other symptoms.1,3 The diagnosis of MG is

based on typical clinical features in combination with the

presence of auto-antibodies against neuromuscular

junction proteins, abnormal clinical neurophysiological

tests or a positive neostigmine test.4 Despite its typical

semiology and a range of ancillary tests, diagnosing MG

can be challenging. Up to 46% of MG patients do not

receive the correct diagnosis within the first year of

onset.5

In addition, the fluctuating day-to-day severity of their

muscle weakness is an issue of great concern for all

patients with MG. Disease exacerbations, which can

involve impaired breathing, leading to life-threatening sit-

uations, are almost always preceded by increased bulbar

muscle weakness or worsening of primary symptoms.6

These concerns are compounded by the fact that care for
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rare diseases is increasingly clustered in expert centers,

leading to prolonged travel times to the hospital. A per-

sonal digital disease monitoring tool could improve out-

comes by tracking symptoms and quality of life.7 Such a

tool could potentially be used for early detection or even

prevention of exacerbations by allowing patients to make

timely adjustments to their immune suppressant

medication.8

Artificial intelligence (AI) applications are an area of

intense medical research, particularly to improve diagno-

sis and for home monitoring of disease severity.9 How-

ever, to our knowledge AI applications are relatively

scarce in the field of neuromuscular disorders so far and

appear to be restricted to muscle imaging and gene

profiling.10–14 Assessment of facial weakness has thus far

only been carried out in facial palsies and almost exclu-

sively on photographs.15–20 As the facial features of MG

patients are distinct from healthy subjects,21 we hypothe-

sized that a short video recording of MG patients con-

tains information that can be used both for diagnostic

and monitoring purposes.

We aimed to (1) quantify and map patterns of facial

weakness with the use of facial expression recognition

software and (2) to develop a deep learning (DL) com-

puter model for diagnosis and disease monitoring.

Materials and Methods

This study was conducted between May 2019 and Sep-

tember 2020 at the Department of Neurology of the Lei-

den University Medical Center (LUMC), Leiden, the

Netherlands, and the Technical University Delft, the

Netherlands.

Standard protocol approvals, registrations,
and patient consents

The ethics committee of the LUMC approved the study

protocol. Written consent was obtained from all partici-

pants according to the declaration of Helsinki. A signed

patient consent form has been obtained for the publica-

tion of recognizable photographs.

Participants

Seventy MG patients and 69 age- and gender-matched

healthy controls (HC) were recruited from the Neurology

outpatient clinic of the LUMC. Inclusion criteria were:

age≥ 18 years. Diagnosis of MG was based on clinical

signs or symptoms supportive of MG and at least one of

the following: a positive serologic test for AChR or MuSK

antibodies and/or a diagnostic electrophysiological investi-

gation supportive of the diagnosis myasthenia gravis and/

or a positive neostigmine test. Participants were excluded

if they were unable to give written informed consent or

read Dutch or English video instructions. Second, the

presence of other medical conditions affecting the facial

muscles was an exclusion criteria: e.g., active Graves’ dis-

ease or unilateral facial paralysis. The use of corticoste-

roids was an exclusion criteria in the healthy control

group.

All participants were included for quantification and

mapping of facial weakness with the use of facial expres-

sion recognition software.

For the development of a DL model, the first 50 MG

patients and 50 HC were selected for training of the

model. For external validation, the remaining 20 MG

patients and 19 HC were used.

Procedures

Videos were recorded with a 4K-camera in a standardized

setting with the assistance of the researcher, present dur-

ing the entire recording. The subject was seated in front

of a green screen with sufficient lighting. A computer

screen displayed a slideshow of a model portraying 24 dif-

ferent facial expressions, which participants were asked to

mimic with maximal intensity for the duration of each

slide. The slideshow was accompanied by written Dutch

instructions; verbal instructions were given when neces-

sary. The slideshow contained the following expressions:

neutral, eyes closed, right/left eye closed, eyes closed

firmly, anger, fear, happiness, surprise, disgust, sadness,

showing teeth, raising eyebrows, mouth open, whistling,

tongue protrusion (8 sec each) and sustained gaze in

eight directions (30 sec for left and right gaze, 4 sec for

the other directions). Disease severity was measured using

the quantitative MG score (QMG). All QMGs were per-

formed approximately 1 h before the recording by an

experienced nurse who was trained and certified to per-

form QMG assessments. A QMG score of 0–9 was classi-

fied as mild and a QMG score>9 as moderate–severe
disease.22 The first five items of the QMG score were used

as a degree of facial weakness (score 0–15). The current

MG Foundation of America (MGFA) A (limb predomi-

nant) or B (bulbar predominant) classification was

retrieved from patients’ medical files. The cumulative

prednisone dosage over the 6 months prior to participa-

tion was calculated because of the potential confounding

effect of facial changes due to corticosteroids.

Quantification and pattern mapping of
facial weakness

Quantification and mapping of facial weakness were

assessed using FaceReader facial expression recognition
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software version 8 (Noldus Information Technology

BV23) on the original video (resolution 3840 × 2160

pixels). This software classifies and quantifies the per-

ceived expression of six emotions: anger, fear, happiness,

surprise, disgust, and sadness, by generating a numeric

value between 0 and 1, every 80 ms throughout the video.

Higher values correspond with more pronounced expres-

sion. The software also quantifies 20 individual action

units (AUs, Table S1) in a similar manner. AUs are part

of the Facial Action Coding System (FACS),24 developed

for standardized assessment of facial behavior. Individual

AUs correspond with a specific facial movement, which is

related to the activation of a certain muscle (E.g. AU1,

movement: inner brow raiser, muscle: m. frontalis pars

medialis. Table S1). The AU represents both the left and

right sides of the face.

For this study, we compared mean scores between MG

patients and HC of all six emotions, when prompted to

mimic the corresponding emotion. Second, we compared

the median scores of all 20 individual AUs between the

two groups during the expression of these six emotions.

Both analyses were subsequently performed for disease

severity.

Development of deep learning model

We used a three-dimensional (3D) convolutional neural

network (CNN). The convolutional kernel size in a two-

dimensional (2D) CNN is N ×N, corresponding to the

width and height (W ×H) of the image filter, where N

determines the perception field in 2D. These 2D kernels

can only capture spatial information in an image, which

can be sufficient for many large-scale action recognition

tasks.25,26 As muscle weakness temporally fluctuates in

MG, we added temporal information as a third dimen-

sion, yielding a 3D CNN. We adopted an commonly used

inflated 3D network (I3D)27,28 for capturing information

in the temporal dimension T. The original settings were

unaltered and available from the original sources.27,28 Dif-

ferent from a 2D CNN, the convolutional kernel in an

I3D network is inflated to be N ×N ×N, which matches

three dimensions: time, width, and height (T ×W ×H).

We evaluated three 2D CNN backbones into I3D archi-

tectures, namely ResNet-18, ResNet34, and ResNet-50.29

The numbers indicate the depth of the ResNet architec-

ture. Learned features of videos were flattened by a fully

connected layer and a Softmax activation function was

used to obtain the posterior probabilities P(ŷ|x) of an

input x. Posteriors are the output probabilities for each

class of the neural network. The Cross-entropy loss mea-

sured the quality of prediction ŷ by comparing it to the

ground truth label y. The model was optimized by

backpropagating the gradient of the Softmax loss func-

tion: L ŷ y=� ∑n
c yc log(P(ŷc|x)), where c indicates the

class label and n the number of classes. yc is the ground

truth binary indicator of class c for input x.

To prevent overfitting, the model was pretrained using

the Kinetics dataset.26 Videos were cut into clips contain-

ing one specific expression manually by human visual

assessment. Transition times between performed tasks

were deleted. Duration of individual clips varied from 2

to 33 sec, with a mean of 6 sec. Resolution of clips was

256 × 256 pixels and no cropping was applied. Clips were

processed per 16 batches (i.e., the gradients were aggre-

gated and updated over 16 batches) and each batch con-

tained 64 frames (frame rate video 32/sec), as the number

of frames that can be processed in a batch is limited

by the computational memory. Each batch contained

frames from a single clip. Patient-level prediction was

determined by the majority vote of all video clips per

patient. Performance of the network is sensitive to

hyperparameters30–32; we adopted the stochastic gradient

descent with momentum as optimizer with the learning

rate of 0.01 and weight decay of 0.0001. We set the

momentum parameter at 0.01.

For training, a threefold cross-validation with a 2:1

split was applied for the classification of diagnosis, with

MG patients as the true class. For disease severity, a four-

fold cross-validation with a 3:1 split was applied, with

patients with QMG 0–9 as the true class. After completing

the training phase, the model was applied to a completely

new and unseen dataset of videos without any further

modifications.

Comparison of the deep learning model and
neurologists

Four neurologists specialized in neuromuscular disorders

each rated 50 videos for diagnosis using a visual analog

scale, resulting in a probability score between zero and

one. They subsequently each rated 20 videos for disease

severity (mild or moderate–severe disease) in a similar

way. Videos were selected semi-randomized by the

researcher: at least 20 healthy controls were included in

the dataset for diagnosis. If a neurologist was familiar

with a subject, this specific video was excluded. Datasets,

therefore, differed between neurologists, as different

patients were excluded by each neurologist. The inter-

rater reliability (IRR) scores were calculated for videos

rated by two or all four neurologists. Mean scores

were calculated if subjects were rated by more than one

neurologist. The results of all four neurologists were

pooled for comparison with the results of the deep learn-

ing model.

ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 3

A. M. Ruiter et al. Facial Weakness in Myasthenia Gravis

 23289503, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acn3.51823 by T

u D
elft, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Statistical analysis

Quantification of six emotions and 20 different AUs every

80 ms with FaceReader resulted in 100 values between 0

and 1 for each individual AU and the emotion during the

8 sec that this expression was maintained. This data was

transcribed to an expression-based time-weighted table in

MATLAB (2020, MathWorks). To correct for potential

outliers, 95th percentile scores of emotions were calcu-

lated during the performance of the corresponding emo-

tion, e.g., during expression of happiness, we calculated

the 95th percentile score of the FaceReader-derived score

for “happiness.” Second, the 95th percentile score of each

individual AU was calculated during the performance of

each emotion. Per video, this resulted in one value for

each emotion and six values for each of the 20 individual

AU (one for each of the six emotions).

Statistical analyses were performed using IBM SPSS

Statistics version 25.0. Group data are described by mean

and standard deviation (�SD) for normally distributed

data or median and interquartile range [IQR] for all other

data. Unpaired T-tests or Mann–Whitney U tests were

used for comparison between two groups, one-way

ANOVA for >2 groups. Significance was accepted at p<

0.05. Performance was determined by creating a receiver-

operating characteristics (ROC) curve and determining

the area under the curve (AUC), sensitivity, specificity,

and accuracy. A logistic regression analysis with all Face-

Reader variables that showed significant differences in the

univariate analysis was performed to compare the overall

performance of FaceReader with the deep learning model.

The design of this study is exploratory, therefore we did

not apply post-hoc correction for multiple testing.

Results

Baseline characteristics

Baseline characteristics are presented in Table 1. Baseline

characteristics of participants did not differ between

Table 1. Baseline characteristics, grouped according to the groups used for the deep learning model.

Patients training Controls training Patients validation Controls validation Sig.

Participants, n (% male) 50 (38%) 50 (38%) 20 (35%) 19 (42%) –
Age, mean� SD 54.7� 18.6b 49.4� 15.1b 55.3� 14.6c 48.1� 11.8c 0.910a; 0.731a

Disease duration in years, median [IQR] 5.8 [2.4–18.8] – 4.5 [1.8–19.2] – 0.687

Antibodies, % – – –
AChR 72% 90%

MuSK 14% 5%

Seronegative 14% 5%

Total QMG score, mean� SD 9.0� 4.8 – 11.0� 6.7 – 0.274

Missing, n 1 2

Facial QMG score, mean� SD 2.8� 2.4 3.4� 3.4 0.493

Facial QMG score 0–1 points, % 38% 41%

Mild MG (QMG 0–9)
N, % 29 (59%) 10 (56%)

QMG, mean� SD 5.6� 2.3 6.0� 1.9 0.648

MGFA A/B, % 3%/34% 20%/10%

Moderate–severe MG (QMG >9)

N, % 20 (41%) 8 (44%)

QMG, mean� SD 13.8� 3.2 17.5� 4.2 0.019

MGFA A/B, % 20%/65% 25%/63%

Cumulative prednisone dosage (mg)

past 6months, median [IQR]

– –

Mild 827.5 [0–2151]d 0 [0–0]e 0.003

Moderate–severe 1471.6 [0–3758]d 1362.5 [0–3356]e 0.833

Bold values represent p-values <0.05.

MG, myasthenia gravis; MGFA, myasthenia gravis foundation of America (A = limb predominant, B= bulbar predominant) at the time of the video

recording; QMG, quantitative myasthenia gravis score.
aFirst value represents between patient sets, second value is between control sets.
bNo significant difference in age between patients vs controls in training set: p= 0.117.
cNo significant difference in age between patients vs controls in validation set: p= 0.099.
dNo significant difference in prednisone dosage between mild and moderate–severe patients in training set: p= 0.323.
eNo significant difference in prednisone dosage between mild and moderate–severe patients in the validation set: p= 0.079.
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videos assessed by the deep learning model and neurolo-

gists or between individual neurologists (Table S2).

Figure 1A–F shows screenshots of two expressions (neu-

tral and left gaze) of three different participants: an HC,

an MG patient with mild disease, and one with

moderate–severe disease.

Quantification and mapping of facial
weakness

The mean FaceReader-derived scores of the emotions

anger, fear, and happiness were significantly lower during

the expression of these specific emotions in patients with

MG, compared to HC (Table 2, Fig. 2).

The AUC of the ROC curve of “anger” was 0.60 (95%

CI 0.51–0.70). Sensitivity was 0.66, specificity was 0.54,

and accuracy reached 58%. For “fear” the AUC of the

ROC curve was 0.64 (95% CI 0.55–0.74). Sensitivity was

0.62, specificity 0.62, and accuracy reached 54%. For

“happiness” the AUC was 0.71 (95% CI 0.62–0.79). Sen-
sitivity was 0.75, specificity was 0.65, and accuracy

reached 70%. There were no significant differences in

mean scores of expressed emotions between patients with

mild and moderate–severe disease (Table 2). There was,

however, a significant negative correlation between the

expression of “disgusted” and the QMG score (�0.28,

p= 0.045).

Figure 3 summarizes all AUs that differed significantly

between MG and HC during the expression of the six

emotions. Raw scores are available in Table S3.

The following differences were observed between MG

patients and HC. During the expression of anger, brows

were lowered less (AU4), lips were pressed, and tightened

less (AU23, 24) and eyelids were lowered more (AU43).

During the expression of fear: brows were lowered less

(AU4), eyelids were tightened more (AU7), the upper lip

was raised more (AU10) and eyelids were lowered more

(AU43). During the expression of happiness: cheeks were

raised less (AU6), lip corners were pulled up less (AU12)

and lips parted less (AU25). During the expression of sur-

prise: the outer parts of the brows were raised less (AU2),

cheeks were raised less (AU6), lip corners were pulled up

less (AU12), lips parted less (AU25), and the mouth was

stretched more (AU27). During the expression of disgust:

brows were lowered less (AU4) and eyelids were lowered

more (AU43). Sadness: eyelids were lowered more

(AU43). Logistic regression on the emotions and AUs

with a significant difference between MG and HC, yielded

Figure 1. Video screen shots of three different participants. (A and B) Healthy control; (C and D) MG patient with mild disease (total QMG score

9): slight right-sided ptosis; (E and F) MG patient with moderate–severe disease (total QMG score 24): severe bilateral ptosis, compensatory raising

of eyebrows, ophthalmoplegia, lower facial weakness.
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a accuracy of 77%. The extensive output table, including

individual odd ratios, is available as Table S4.

When comparing patients with moderate–severe disease

to mild disease (Table S3): during expression of happi-

ness: cheeks raised less (AU6) and lip corners pulled up

less (AU12). Disgust: lips parted less (AU25). Sadness:

cheeks raised less (AU6). A negative correlation with

QMG score was present for: anger AU6 (�0.274, p=
0.025), happiness AU6 (�0.326, p= 0.007), surprise AU6

(�0.293, p= 0.017), sadness AU6 (�0.306, p= 0.012).

Logistic regression on the AUs with a significant differ-

ence between the two severity groups, yielded an accuracy

of 77%. The extensive output table, including individual

odd ratios, is available as Table S5.

Deep learning model

Highest performance was achieved using a 3D ResNet-50

for diagnosis and a 3D ResNet-34 for disease severity.

Results of the multiple cross-validation on the training set

were as follows: for diagnosis, the AUC was 0.75 (95% CI

0.65–0.85). Sensitivity and specificity were both 0.76,

accuracy reached 76%. For disease severity, the AUC was

0.75 (95% CI 0.60–0.90). Sensitivity 0.93, specificity 0.63,

and accuracy reached 80%. Of the incorrect classifica-

tions, 78% were incorrectly classified as mild disease

severity. According to their MGFA classification: 1 (14%)

was class I (pure ocular), 29% class A and 57% was class

B (p= 0.828). The remaining 22% was incorrectly classi-

fied as moderate–severe disease severity. All were MGFA

class 0 (remission) according to their medical file. Overall,

44% of incorrect classifications occurred in MGFA class

B, 33% in class 0/1, and 22% in class B (p= 0.450).

Application of the trained model to an unseen valida-

tion set of MG patients and HC yielded the following

results (Fig. 4): for diagnosis, AUC was 0.82 (95% CI:

0.67–0.97). Sensitivity 1.0, specificity 0.74, and accuracy

reached 87%. AUC for disease severity was 0.88 (95% CI:

0.67–1.0); sensitivity was 1.0, specificity 0.86, and accu-

racy reached 94%. Only one incorrect classification

occurred in the moderate–severe disease severity group,

which was an MGFA class A patient.

Neuromuscular neurologists

Mean probability scores were calculated from the results

of all four neurologists combined. For diagnosis, AUC

was 0.71 (95% CI: 0.61–0.82) (Fig. 4). Sensitivity and

Facial expression

Myasthenia gravis

patients (n= 70)

Healthy controls

(n= 69) p-value

Anger, mean� SD 0.33� 0.26 0.45� 0.32 0.026

Fear, mean� SD 0.12� 0.21 0.24� 0.27 0.003

Happiness, mean� SD 0.59� 0.35 0.80� 0.27 <0.001

Surprise, mean� SD 0.44� 0.34 0.40� 0.34 0.422

Disgust, mean� SD 0.42� 0.31 0.45� 0.35 0.604

Sadness, mean� SD 0.42� 0.34 0.49� 0.34 0.263

Facial expression

Mild disease

(n= 39)

Moderate severe

disease (n= 28) p-value

Anger, mean� SD 0.32� 0.24 0.33� 0.28 0.906

Fear, mean� SD 0.15� 0.25 0.09� 0.14 0.224

Happiness, mean� SD 0.65� 0.32 0.53� 0.37 0.160

Surprise, mean� SD 0.46� 0.35 0.43� 0.35 0.750

Disgust, mean� SD 0.49� 0.29 0.34� 0.32 0.054

Sadness, mean� SD 0.41� 0.33 0.43� 0.34 0.837

Bold values represent p-values <0.05.

Table 2. Quantification of six emotions in

myasthenia gravis patients versus healthy

controls (upper part table) and mild versus

moderate–severe disease (lower part

table).

Figure 2. Receiver-operating curves of emotions anger, fear, and

happiness in myasthenia gravis compared to healthy controls.
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specificity were 0.69 and 0.67, respectively; accuracy

reached 68%. AUC for disease severity was 0.63 (95% CI:

0.47–0.78). Sensitivity and specificity were 0.68 and 0.57,

respectively, and accuracy reached 63%. Of the incorrect

classifications, 71% were incorrectly classified as mild dis-

ease severity. According to their MGFA classification:

35% was class 0 or I, 20% was class A, and 45% was class

B (p= 0.368). The remaining 29% was incorrectly classi-

fied as moderate–severe disease severity. According to

their MGFA classification: 50% was class 0 or I, 13% was

class A, and 38% was class B (p= 0.461). Overall, 43% of

incorrect classification occurred in MGFA class B, 39% in

class 0/I, and 18% in class B (p= 0.125).

Performances of individual neurologists are displayed

in Figure 5 and Table S6. For the classification of diagno-

sis, only 18 videos were assessed by all four neurologists.

The IRR for this subset was 0.214. For disease severity, no

videos were rated by all four neurologists. IRR for videos

rated by two neurologists are displayed in Table 3.

Discussion

To our knowledge, this is the first study using advanced

computer analytics to quantify facial weakness in MG.

We show that in a large group of chronic MG patients

with relatively low QMG scores, the overall weakness of

Figure 3. Patterns of weakness in myasthenia gravis during the expression of six emotions. In red: decrease in AU compared to HC, and in blue:

an increase in AU compared to HC. Smaller images on the right of each emotion show the individual AU with the corresponding movement.
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Figure 5. ROC curves individual neurologists. (A) results for diagnosis, (B) results for disease severity. Neurologist 1 is not plotted in B because of

AUC <0.5.

Neurologist 1 Neurologist 2 Neurologist 3 Neurologist 4

Neurologist 1 NA 0.418 (n= 29) 0.138 (n= 21) 0.528 (n= 29)

Neurologist 2 NA (n= 1) NA 0.513 (n= 29) 0.592 (n= 50)

Neurologist 3 NA (n= 0) �0.244 (n= 4) NA 0.584 (n= 29)

Neurologist 4 NA (n= 1) 0.316 (n= 20) 0.239 (n= 4) NA

Abbreviation: NA, not applicable.

The upper right part is for classification of diagnosis, lower left part is for classification of disease

severity. N= the number of videos rated by both neurologists.

Table 3. Interrater-reliability scores for

videos rated by two neurologists.

Figure 4. ROC curves deep learning model and neurologists. (A) results for diagnosis, (B) results for disease severity.
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facial muscles is a common occurrence. This is in accor-

dance with previous research, which showed that more

than 60% of MG patients reported facial weakness, dysar-

thria, and/or weakness with chewing or swallowing.3 This

weakness can be quantified with the use of facial expres-

sion recognition software23 and could potentially serve as

a diagnostic tool and a biomarker for disease severity. In

addition, a DL model trained on video data of facial

expressions was capable of recognizing patients with MG

and classifying disease severity with high accuracy.

Quantification of facial weakness

MG patients had a reduced expression of the emotions of

anger, fear, and happiness, most likely due to weakness of

the facial muscles. Facial expression is similarly affected in

facial palsies and facioscapulohumeral dystrophy and

affects social interaction.15,33,34 The effect of impaired

facial expression on non-verbal communication in MG

has not been previously studied. However, a negative

impact on daily interaction and communication is to be

expected. In five out of six emotions, activity was

decreased in one or more AUs necessary to maintain that

specific expression, e.g.: pulling of the lip corners was less

pronounced during the expression of happiness (AU12).

Typical MG facial weakness was present in two-thirds of

emotions: an increase in AU43 (eye closure), which was

likely affected by ptosis. Unfortunately, FaceReader was

not able to provide information on gaze deviations, which

typically occur during persistent gaze.35

FaceReader showed few differences between mild and

moderate–severe disease, but AU6, corresponding to

action of the cheek raiser or m. orbicularis oculi was sig-

nificantly lower during two emotions in moderate–severe
compared to mild patients and negatively correlated with

the QMG score in four emotions. Weakness of the m.

orbicularis oculi is common in MG2 and AU6 could

therefore be a potential biomarker for disease severity.

However, we did not correct for multiple testing in this

exploratory study and this would require further valida-

tion in a longitudinal study.

Comparison with previous studies on facial
weakness

Previous publications on facial imaging in neuromuscular

disorders have focused on facial palsies15–18,36 and com-

monly used photographs. Only one study used facial

expression analysis software on video data for the quanti-

fication of basic facial expressions.15 Facial imaging has

also been used for the diagnosis of genetic disorders.37–39

In these studies, photographs were used to identify spe-

cific disorders based on typical facial dysmorphias. To

our knowledge, no previous published study has made

use of the temporal dimension in videos for the develop-

ment of a DL model to assess facial movement and weak-

ness in neuromuscular disorders. The main benefit of

using videos over photos is the ability to capture typical

effort-dependent weakness of facial muscles in MG. Ptosis

is present in 66% of MG patients. It takes, on average, 28

seconds to develop35 and it is more likely to become

apparent in video recordings than in photographs.

For both diagnosis and classification of disease severity,

the DL model performed better than four specialized neu-

romuscular neurologists, combined or individually. It

should be noted that we asked both the model and the

neurologists to assess an isolated phenomenon without

any clinical context: a video of facial expressions. This

differs significantly from clinical practice, in which a

detailed history, physical examination, and ancillary tests

are essential elements for establishing the diagnosis. This

is both a strength and weakness of our study. On one

hand, it shows that assessment of a facial video alone

could potentially be sufficient to reach a diagnosis or esti-

mate disease severity, although this would likely require

an improved model, based on data from different popula-

tions and centers and a model trained to distinguish MG

patients from disease controls. On the other hand, the

inclusion of additional information would likely lead to

even better results and would result in a more relevant

comparison of the diagnostic performance of the DL

model and clinical experts.

Interestingly, the diagnostic accuracy of the neurologists

assessing facial videos was lower and showed more varia-

tion than expected. This may have been caused by the fact

that neurologists were asked to perform an unfamiliar task:

to assess an isolated phenomenon on a standardized video

with no sound without any clinical context such as the

patients history, physical examination, or results from

additional investigations. There were no differences in the

occurrence of incorrect classifications between patients with

a limb or bulbar predominant disease pattern, not for the

DL model as well as the clinical experts.

Applying a multivariate logistic regression analysis on

all emotions and AUs with a significant difference, yielded

similar results as the DL model during training: 77% ver-

sus 76% for diagnosis and 77% versus 80% for disease

severity. However, validation of the DL model on unseen

videos achieved higher accuracies. It would be of interest

if the FaceReader software could detect differences in

weakness over time.

Potential clinical applications

For diagnostic purposes, the results of the DL model

should be considered a ‘proof of concept’ as we included
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a relatively small number of MG patients from one center

and no patients with other causes of facial weakness or

‘MG-mimics’, with and without steroids, such as facial

nerve palsy, oculopharyngeal muscular dystrophy, motor

neuron disease, and chronic progressive external ophthal-

moplegia. These limitations preclude the use of the cur-

rent model in clinical practice.

For monitoring purposes, automated classification of

disease severity that could be used by patients themselves

in addition to standard care, could potentially lead to an

improvement of clinical care. It could reduce the need to

travel long distances for control visits, assist patients in

adapting the dose of their maintenance medication

according to prespecified personalized rules and poten-

tially avoid hospitalization by immediately starting emer-

gency treatment in case of an alarming deterioration. In

this exploratory study has demonstrated that facial weak-

ness is quantifiable in videos using facial expression rec-

ognition software. In addition, the results of the DL

model show that binary classification of disease severity is

possible with high accuracy. Our results suggest that the

degree of facial movements, as a reflection of facial weak-

ness, is a good predictor for overall muscular weakness.

This supports the use of facial weakness to assess disease

severity in MG. However, two important limitations

remain: our results were obtained on a dichotomous clas-

sification instead of the continuous QMG score. Further-

more, these results should be validated in a longitudinal

study to investigate the ability to detect changes within

individuals.

Limitations

Identifying the elements in the data used by convolutional

neural networks for classification is not straightforward.

Although techniques such as class activation mapping

have been developed to identify areas of interest in still

images,40 class activation mapping algorithms for video

data were not available at the time of these experiments.

However, as all external factors (lighting, green screen,

camera angle) were standardized, classification could not

have been based on anything other than the face and its

movement. In addition, automated analyses with FaceRea-

der demonstrated quantifiable differences in facial expres-

sions on which a deep learning could be trained.

Unexpectedly, the performance of the current DL

model was better on the unseen validation set than on

the original training set. This is a surprising finding

because the purpose of the additional validation set was

to test whether training results could be reproduced with

unseen data, not to further improve the model. There are

two possible explanations for this finding. The QMG

score of patients with moderate–severe disease was

significantly higher in the dataset used for validation

compared to the training set. This potentially made it

more easy to detect a difference in disease severity or to

discriminate patients from HC in this dataset. Alterna-

tively, the observed higher diagnostic yield may have been

a spurious result caused by the relatively small sample size

of the validation set. Given the rarity of MG, this was the

maximum number of patients we were able to include

within a reasonable time frame.

Finally, because of the exploratory nature and relatively

small sample size of this study, no covariates were used in

the analysis. However, several covariates that affect the

performance of facial recognition algorithms have been

identified.41 These covariates include age, sex, and ethnic-

ity. In short, older people are easier to recognize by facial

recognition software than younger people41. There is also

an effect of sex on the accuracy of facial recognition soft-

ware but there is disagreement whether men or women

are more easily recognized, and this effect decreases with

increasing age.41 Ethnicity can affect the performance of

facial recognition software as ethnic differences in facial

characteristics may lead to different results. Furthermore,

an algorithm trained on a specific ethnic group may yield

incorrect results when applied to people of a different

background.41 Participants included in this study were a

reflection of the Dutch population and therefore mostly

of European descent, although this was not formally

assessed. Therefore, caution is advised when extrapolating

these results to patients groups of other ethnicities.

Due to the exploratory nature of this study, we did not

apply a post-hoc correction. A post hoc Bonferroni cor-

rection on the quantification of facial weakness (FaceRea-

der) would have resulted in significant levels of 0.0004 for

the AUs and 0.008 for the six emotions.
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Moreno MG, Flores-Rı́os BL, Ibarra-Esquer JE, López-
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