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ABSTRACT

In this paper we propose an approach for automatically rec-
ognizing ancient Egyptian hieroglyph from photographs. To
this end we first manually annotated and segmented a large
collection of nearly 4,000 hieroglyphs. In our automatic ap-
proach we localize and segment each individual hieroglyph,
determine the reading order and subsequently evaluate 5
visual descriptors in 3 different matching schemes to evalu-
ate visual hieroglyph recognition. In addition to visual-only
cues, we use a corpus of Egyptian texts to learn language
models that help re-rank the visual output.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; 1.4 [Image Processing and Com-
puter Vision]: Features Measurement— Feature represen-
tation, size and shape

Keywords
Egyptian, Hieroglyphs, Automatic Recognition

1. INTRODUCTION

The ancient Egyptian hieroglyphs have always been a mys-
terious writing system as their meaning was completely lost
in the 4th century AD. The discovery of the Rosetta stone in
1799 allowed researchers to investigate the hieroglyphs, but
it wasn’t until 1822 when Jean-Francois Champollion discov-
ered that these hieroglyphs don’t resemble a word for each
symbol, but each hieroglyph resembles a sound and mul-
tiple hieroglyphs form a word. The ability to understand
hieroglyphs has uncovered much of the history, customs and
culture of Egypt’s ancient past.

In this paper we present a system that is able to auto-
matically recognize ancient Egyptian hieroglyphs from pho-
tographs. As illustrated in fig 4, a single photograph con-
tains several, often overlapping, hieroglyphs without proper
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Figure 1: The pyramid of Unas. (a) Location at red
triangle. (b) Schematic reconstruction. (c¢) Current

state. Images courtesy of Wikipedia, creative commons license.

segmentation or a-priori reading order. Moreover, the pass-
ing of 4 millennia has introduced noise, and broken or de-
stroyed the original symbols. These conditions present se-
vere challenges to automatic hieroglyph recognition. Auto-
matic hieroglyph recognition is useful for archaeology schol-
ars, the interested amateur, cultural heritage preservation
or as a smart-phone App for a tourist or museum visitor.

The paper has 3 contributions. First, we introduce a new
hieroglyph dataset where we manually segmented and la-
beled 3993 hieroglyphs of 10 photographs from the pyramid
of Unas. This pyramid is built in the fifth dynasty as a
burial place for the Pharaoh Unas and is located just south
of the city of Giza, see fig 1. We chose a single pyramid to
avoid issues with different dialectic writing styles. Second,
we show how to automatically locate, segment and recognize
hieroglyphs based on visual information. The third contri-
bution is a multimodal extension to the visual analysis with
statistical language models from hieroglyph texts. In fig 2
we show a schematic of our approach.

2. RELATED WORK

Multimedia tools have aided preservation, analysis and
study of cultural, historical and artistic content. For ex-
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Figure 2: Pipeline for hieroglyph recognition. The 3rd output hieroglyph from the top is corrected by the
language model in order to find the word ’Heliopolis’ (birth-city of Unas).

ample, the digital Michelangelo project [12] created high
quality 3D models of Michelangelo’s sculptures and archi-
tecture. Furthermore, wavelet analysis of brush strokes in
paintings can reveal artist identity [7], image composition
has shown to aid category labeling [17] and photographs
can be classified as memorable or not [6]. In this paper we
follow in these footsteps, and propose a new dataset, and
a multimodal (visual and textual) approach for automatic
Egyptian hieroglyphs recognition.

Related work on automatic hieroglyph recognition focuses
on Mesoamerican culture, and in particular on the ancient
Maya hieroglyphs [5, 14, 15]. To this end, the HOOSC
descriptor was developed [15], which is a combination of
HOG [2] and the Shape-Context [1]. Such descriptors can be
used for direct matching [14] or with a bag-of-words (BOW)
approach [15]. Other work extracts detailed line segments
for Maya hieroglyph matching [5]. In all these works the
hieroglyphs are typically manually extracted and individu-
ally digitized. In contrast, our photographs consists of noisy
plates, which each typically contain around 400 hieroglyphs
(see fig 4). Moreover, the Maya culture used a considerable
different type of hieroglyphs and we therefore evaluate the
HOOSC and other descriptors on Egyptian hieroglyphs.

Current work on automatic scene text detection and recog-
nition [4, 9, 10, 11] are typically hand-tuned to specific west-
ern or asian (e.g. Chinese or Hangul) characters which are
quite different from Egyptian hieroglyphs. In our work, we
will draw inspiration from text detection to localize the hi-
eroglyphs and use generic image descriptors for the recogni-
tion.

3. HIEROGLYPH RECOGNITION

Our approach has a visual component where the reading
order is determined, hieroglyphs are localized, pre-processed
and visually matched. The top-N visual matches are subse-
quently input to a textual component that re-ranks the hi-
eroglyphs according to a statistical language model trained
on other texts. In fig 2 we show a schematic of our approach.

3.1 Localization and Pre-Processing

We localize hieroglyphs with a saliency-based text-detection
algorithm [9] (software kindly provided by the authors). This
algorithm does not make assumptions on the shape of the
text, as done e.g. in [4]. The used algorithm creates a
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Figure 3: Removing unconnected hieroglyphs.

saliency map based on second order curvature statistics and
subsequently uses conditional dilation from border-seeds to
create a binary text/non-text mask. We group the noisy
masks by connected components after a dilation. The out-
put of the localization is an unordered list of bounding boxes
(BBs) fitted around each glyph. We experimentally evaluate
the localization performance in section 4.

From the unordered list the reading order is determined
to facilitate textual language modeling. The reading order
in Egyptian hieroglyphs is either from left to right, right to
left or from top to bottom. The only indication of the cor-
rect reading order is that glyphs will face the beginning of a
line, and top to bottom is indicated by columns separators.
Multiple horizontal hieroglyphs in a column should be read
as a single line. For the pyramid of Unas the reading order
is top-down, from right to left. We sort the unorderd list
accordingly to determine the sequence in which the hiero-
glyphs should be read.

The hieroglyphs BBs are often overlapping or they are
in contact with a ’cartouche’ (a frame around the name
of a royalty). To generate individual hieroglyph images
suitable for matching, we filled the overlapping parts with
background texture by a non-parametric texture synthesis
method [3]. This approach works well, however it is rather
slow. We therefore implemented a faster approximation. For
each pixel to generate we randomly sample from a search
window around the closest filled-in pixel. If the sampled
pixel is not part of the foreground mask it is kept, oth-
erwise the process is repeated with a larger window size.
After texture synthesis is complete, the final background is
smoothed to reduce noise. Our approximation is in the order
of 300 times faster, the results of both methods are shown in
fig 3. As a final step the patches are extended to 50x75 while
retaining their discriminative height/width ratio where the
background is again texture synthesized if necessary.



3.2 Image Descriptors

We evaluate five image descriptors, two based on shape,
one based on appearance, and the other two on a shape-
appearance combination. The Shape-Context (SC) [1] is a
shape descriptor originally designed for recognizing hand-
written symbols and therefore interesting for hieroglyphs.
The SC constructs a spatial log-polar histogram that counts
the frequency of edge pixels. Similar to the SC, the Self-
Similarity [16] (SS) descriptor was designed for shape match-
ing. Where the SC counts edge pixels, the SS computes the
pixel correlation between the central cell to the other cells
in a log-polar shaped region. The SC and the SS are shape
descriptors, but the hieroglyphs may also benefit from ap-
pearance matching. The Histogram of Oriented Gradients
(HOG) [2] is a popular appearance descriptor that computes
histograms of edge gradient orientations. A combination of
shape and appearance can be achieved by merging the HOG
and the SC. This combination is called the HOOSC [15]
and was developed for Maya hieroglyph matching. The
HOOSC replaces the edge pixels in the SC with a HOG.
As the fifth descriptor we add a straightforward combina-
tion of the SS with HOG which we dub HOOSS. For this
combination, the correlations in SS between pixels are re-
placed with similarities of HOGs. All similarities between
K-dimensional descriptors ¢ and j are computed with the
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3.3 Visual Matching

To recognize a hieroglyph we compare it to labeled patches
in the training set. To this end, we evaluate three common
image patch matching schemes. The first method is sim-
ply using a single centered descriptor for a full patch. The
second approach uses interest points with the popular bag-
of-words framework as also used for Maya hieroglyphs [15].
The third approach has also been used for Maya glyphs [14]
and uses pair-wise patch matching using interest points with
spatial verification. This method starts with a variant of the
Hungarian method [8] to assign each descriptor in one patch
to a descriptor in the other patch. After obtaining matches,
the final matching score s is obtained by fitting an affine
transformation between the patches by using Ransac and is
computed as s = m * Zf;lym) X2 (p1,p2)/|P|?, where m is
the number of matches, and (p1,p2) are matched pairs in
the set of Ransac inliers P.

3.4 Language Modeling

The visual ranking is based on a single hieroglyph and
does not take the neighboring hieroglyphs into account. The
neighborhood can give valuable information since hieroglyphs
often co-occur to form words and sentences. To take the con-
text into account we employ language models of hieroglyph
occurrences to improve the visual ranking. We compare two
strategies: (1) a lexicon lookup and (2) N-grams which rep-
resent statistics of N-neighboring hieroglyphs.

The lexicon-based approach tries to match N consequative
hieroglyphs to existing words in a dictionary. For each hier-
oglyph 7, we look at the top K=10 results (vi1,vs2,...,vik)
of the visual ranking. We re-rank each hieroglyph ¢ by word
length |w| and occurrence probability P(w) as (p(w) + Aw) -
|w] - Hji-(:l('l)il/’l}ij)2, where w is any exact word match that
is present in the Carthesian N x K space of possible words
where N is equal to the largest word in the corpus. To re-

he shall not write with
his little finger. How
beautiful is indeed the
sight, how good in-
deed to see, so say
they, so say the gods,
(when) this god ascends
to heaven, (when) Unas
ascends to heaven while
his power is over him

Figure 4: Part of a plate taken from the north wall
of the antechamber (column 476) and its translation.

duce the influence of non-existing words we use a standard
Laplace smoothing term ., which we set to 1/20. In sec-
tion 4 we give the details of the used corpus. We found the
best non-linear weighting of visual scores (in this case v?)
on a small hold-out set.

The N-gram approach uses the probability of hieroglyph
sub-sequences of length N occurring in a row. We re-rank
each hieroglyph i with [, H;il(vﬂ/vijf - (p(w) + An),
where w is a hieroglyph sequence of length N = 3. To re-
duce the influence of non-existing N-grams we use a Laplace
smoothing term A, of 1/2000. Again, we found the best
non-linear weighting of visual scores (v*) on a hold-out set.

4. EXPERIMENTS

We evaluate all descriptors, matching techniques and lan-
guage models on our new hieroglyph dataset.

4.1 Dataset

The dataset consist of two sets: one being photographs of
hieroglyphic texts, the other being the textual corpus that
is used for the language model. The visual set consists of
10 plate photographs with hieroglyphs [13], as illustrated in
fig 4. These photographs contain 161 unique hieroglyphs
with a total of 3993. We manually segmented all individual
hieroglyphs with a bounding box and annotated them with
their label. To record the label we use a form of translit-
eration which transforms the hieroglyphs into a character.
Many transliteration variations exist among Egyptologists,
which are rarely compatible with each other. In this research
we chose to use the transliteration used by the open-source
JSesh project! which also gave rise to the textual set of the
database, containing 158 pyramid texts (with a total size
of 640KB of text). This textual set is used to train the
language models and does not contain any texts from the
pyramid of Unas.

4.2 Implementation Details

To reduce differences between descriptors due to param-
eter setting we keep parameters as equal as possible over
the five variants. For HOG we use 8 angle bins, and 4x4
spatial binning. The HOG inside HOOSC and HOOSS also
use 8 angle bins. All log-polar histograms have 3 rings, and
8 segments. For the bag-of-words matching we found that
a vocabulary size of 200 visual words works well. In the
spatial matching we use 500 Ransac iterations. The interest

"http://jsesh.qenherkhopeshef .org/
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Figure 5: Results for manually cut-out hieroglyphs.
The average score is 74 = 1%.

points in the BOW and in the spatial matching are based
on the contour [14, 15] of a Canny edge detector.

To simulate taking a single photograph, we use one plate
for testing and the other plates for training. We repeat the
experiment to obtain standard deviations.

4.3 Results

We give results for manually cut-out hieroglyphs recog-
nition in fig 5 and for our automatic detection approach
in fig 6. The automatic detection method finds 83% of all
manually annotated hieroglyphs, and 85.5% of the detec-
tions are correct according to the Pascal VOC overlap crite-
ria. The matching performance trend between the automatic
and the manual annotated hieroglyphs is similar, although
the single-descriptor HOG seems slightly more sensitive to
localization errors.

From the 5 descriptors, the HOOSC and the HOG are the
best performers. HOOSC is best on manually annotated hi-
eroglyphs whereas HOG is more robust for automatically de-
tected regions. This seems to indicate that flexibility in spa-
tial structure is important, given the reduced performance of
single descriptor HOG on the automatically detected glyphs.

Between the three matching schemes, the spatial-matching
performs best. Only for the Self-Similarity the BOW is bet-
ter. Generally the Self-Similarity does not perform as well
on this dataset, which could be attributed to the lack of
discriminative features such as color. The slightly better
performance of the spatial matching scheme, however, is a
factor of 8,000 times slower compared to a single descriptor
and 1,000 times slower than the BOW.

Language modeling with a lexicon decreases results on
average with 5%. This is due to a bias for smaller words and
the lack of word-separators. The N-grams always improves
results, albeit slightly, with on average 1%.

5. CONCLUSION

We presented a new Egyptian hieroglyph set with a thor-
ough evaluation of five popular image descriptors, three com-
mon matching schemes and two types of language modeling.
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