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Abstract

In the face of current large-scale video libraries, the practical applicability of content-based
indexing algorithms is constrained by their efficiency. This paper strives for efficient large-scale
video indexing by comparing various visual-based concept categorization techniques. In visual
categorization, the popular codebook model has shown excellent categorization performance.
The codebook model represents continuous visual features by discrete prototypes predefined
in a vocabulary. The vocabulary size has a major impact on categorization efficiency, where a
more compact vocabulary is more efficient. However, smaller vocabularies typically score lower
on classification performance than larger vocabularies. This paper compares four approaches to
achieve a compact codebook vocabulary while retaining categorization performance. For these
four methods, we investigate the trade-off between codebook compactness and categorization
performance. We evaluate the methods on more than 200 hours of challenging video data with as
many as 101 semantic concepts. The results allow us to create a taxonomy of the four methods
based on their efficiency and categorization performance.

Key words: Concept categorization, video retrieval evaluation, efficient retrieval, content analysis and
indexing, benchmarking.

1. Introduction

Today, digital video is ubiquitous. This omnipresence of digital video material spurs research
in automatic content-based indexing. However, given the sheer quantity of available digital video,
the applicability and quality of current video indexing algorithms severly depends on their effi-
ciency [12,35]. One approach to achieve efficiency is by means of a compact, yet powerful represen-
tation of the visual data. To this end, this paper compares various methods which obtain compact
and expressive models for video indexing.

As an instantiation of video indexing, we focus on automatic concept categorization [18,28,38,39,49].
Applications are mainly found in content-based retrieval and browsing. The goal of concept catego-
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Figure 1. Example of an object that is ambiguous without context.

rization is to rank shots according to their relevance to a set of predetermined semantic concepts.
Some examples of these concepts are airplane, beach, explosion, George Bush, people walking, etc.

Many visual concepts are captured as a typical contextual arrangement of objects [2,15,20,27,30,42].
For example, consider an image of a beach, a city skyline, or a conference meeting. Such concepts
are portrayed by a composition of the image as a whole, rather than characterized by one spe-
cific part in the image. Moreover, the background context of an object may provide considerable
recognition cues. Consider figure 1 where an object is cut out of its surroundings. Without the
background information, recognition becomes ambiguous even for humans. Alternatively, in fig-
ure 2(a), a white patch is placed over the object, where the identity of a hidden object may be
derived with high accuracy from the context and nothing but the context. Hence, the background
context of an object can be more informative than the object itself. Therefore, in this paper we
model the whole image for concept categorization, purposely including the context provided by
the background.

We describe visual concepts in context with the codebook, or bag-of-visual-words, model. The
codebook model is inspired by a word-document representation as used in text retrieval [34]. An
schematic of the codebook model is given in figure 3. The codebook model treats an image as a
distribution of local features, where each feature is labeled as a discrete visual prototype. These
prototypes, or codewords, are defined beforehand in a given vocabulary, which may be obtained
by unsupervised clustering [4,7,17,21,31,33,36,41], or manual, supervised annotation [5,24,45,48].
Given a vocabulary, the codebook model allows visual categorization by representing an image by
a histogram of codeword counts. The codebook model yields a distribution over codewords that
models the whole image, making this model well-suited for describing context. This paper strives
towards efficient concept categorization by investigating qualitative and compact codebooks.

1.1. Contribution

In this paper, we experimentally evaluate various codebook methods to obtain a small, com-
pact, vocabulary that discriminates well between classes. The size of the vocabulary is linked to
the discriminative power of the model. A too small vocabulary does not discriminate well between
concept categories [47]. Hence, current state-of-the-art methods typically use several thousands
of codewords [44,22]. In a practical application, however, it may not be feasible to use such large
number of codewords. Practical objections to a large vocabulary are its storage requirements,
working memory usage, and the computation time to train a classifier. Moreover, it has recently
been shown that a too large vocabulary severely deteriorates the performance of the codebook
model [47]. Therefore, we selected four state-of-the-art methods that each individually focus on
improving performance and evaluate these algorithms under a compactness constraint. The com-
pactness constraint is typically ignored by systems who focus solely on performance. The four
compacting methods consist of 1) global vocabulary clustering; 2) concept-specific vocabulary
clustering; 3) annotating a semantic vocabulary and 4) soft-assignment of image features to code-
words. Methods 1-3 deal with vocabulary building, where method 2 is a variant of method 1.
Method 4 is a generic approach to increase the expressive power of the codebook vocabulary. We
evaluate each of these methods against each other, on a large shared dataset over two different
feature types, and two different classifiers.
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a b

Figure 2. Example showing the influence of context. (a) The surroundings of an object, (b) the whole image. Note
that the category of the hidden object in (a) can easily be inferred from the context.
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Figure 3. An example of the visual word, or codebook model. An image is represented as a bag-of-regions where

each region is represented by the best fitting codeword in the vocabulary. The distribution of the codeword-counts
yields the image model.

This paper is organized as follows. In the next section we give an overview of the related
literature. In section 3 we describe the four evaluated methods. We present our experimental
setup in section 4, whereas we highlight the results in section 5. Section 6 concludes the paper.

2. Related Work

Several techniques exist for efficiently retrieving high-dimensional image features in large image
collections. Nistér and Stewénius [29] use hierarchical k-means clustering to quantize local image
features in a vocabulary tree. This vocabulary tree demonstrates efficient feature retrieval in as
many as 1 million images. A tree structure is also used by [23] who obtains efficiency gains by
reducing the dimensionality of the features by a truncated Mahalanobis metric. Moreover, novel
quantization method based on randomized trees is used by [32]. In contrast to a tree structure,
Grauman and Darrell [11] present an approximate hashing scheme based on pyramid matching.
The pyramid matching allows multi-resolution image matching while the hashing technique allows
sub-linear retrieval in large collections of features. Hashing is also used by Kise et al . [19] who
show that a simple binary representation of feature vectors can result in an efficient approximate
nearest neighbor algorithm. Tree and hashing algorithms are well-suited for assigning features
to extremely large vocabularies, with millions of centroids. These algorithms, however, do not
consider categorization. They focus on recognition of (close to) exact image and feature matches.
For categorization with the codebook model, a vocabulary of a million codewords is no longer
practical when training a classifier, and a tree-structure does not help out there. The classifier is
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still left with storing a feature vector of a million codewords for each image. Therefore, we focus
on compact vocabularies for efficiency.

A compact codebook model can be achieved by modeling codeword co-occurrence. Under the
assumption that frequent co-occurring codewords describe similar information, the vocabulary size
may be reduced by merging these codewords. Codeword co-occurrence is typically modeled by a
generative probabilistic model [3,14]. To this end, Fei-Fei and Perona [7] introduce a Bayesian
hierarchical model for scene categorization. Their goal is a generative model that best represents
the distribution of codewords in each concept category. They improve on latent dirichlet alloca-
tion [3] by introducing a category variable for classification. The proposed algorithm is tested on a
dataset of 13 natural concept categories where it outperforms the traditional codebook model by
nearly 30%. The work by Fei-Fei and Perona is extended by Quelhas et al . [33], who investigate
the influence of training data size. Moreover, Bosch et al . [4] show that probabilistic latent seman-
tic analysis improves upon latent dirichlet allocation. Further contributions using co-occurrence
codebook models are by [41]. Typically, a generative model is built on top of a codebook model.
Hence, the techniques proposed in this paper can easily be extended with co-occurrence model-
ing. The extra modeling step requires ample additional processing which is less practical for large
datasets. Moreover, an additional step makes it harder to evaluate which part of our algorithm
is responsible for what. Therefore, in this paper, we focus on compact codebook models, without
introducing additional co-occurrence modeling steps.

Apart from co-occurrence modeling, a compact codebook may be achieved directly by reducing
the vocabulary size or by carefully selecting the vocabulary elements. Such a careful selection can be
achieved with a semantic vocabulary [5,45,24,48] that describes an image in meaningful codewords.
A semantic vocabulary can be constructed by manually selecting image patches with meaningful
labels, for example sky, water or vegetation. The idea of meaningful codewords, is that they
allow a compact, discriminative, and semantic image representation. In contrast to annotating a
vocabulary, Jurie and Triggs [17] compare clustering techniques to obtain a vocabulary. Specifically,
they show that radius-based clustering outperforms the popular k-means clustering algorithm.
Furthermore, Winn et al . [50] concentrate on a global codebook vocabulary, whereas Perronnin et
al . [31] focus on concept-specific vocabularies.

In this paper, we concentrate on compact vocabulary construction while trying to retain the
ability to discriminate well between concept categories. Note that this is more general than vocabu-
laries that are built by a discriminative criterion [25]. Such methods assume that the discriminative
ability of a single feature carries over to the whole vocabulary. Hence, a vocabulary created by
discriminative criteria of single features also aims at a final vocabulary which is discriminative
between concept categories.

Instead of reducing the size of a vocabulary, the expressive power of the vocabulary may be
increased. With higher expressive power, a vocabulary needs less codewords to obtain similar
performance which in turn leads to a more compact vocabulary. The expressive power can be
increased by disposing of the hard-assignment of a single codeword to a single image features.
Instead of using hard-assignment, some weight may be given to related codewords. To this end,
Tuytelaars and Schmid [43] and Jiang et al . [16] assign weights to neighboring visual words.
Whereas a visual word weighting scheme based on feature similarity is used in Agarwal and
Triggs [1] and in our previous work [45,47]. This soft-assignment increases the expressiveness of a
vocabulary. We will test the influence of soft-assignment on vocabulary compactness. In the next
section we will present the details of the method.

3. Compact Codebook Models

In the codebook model, the vocabulary plays a central role. The expressive power of the vo-
cabulary determines the quality of the model, whereas the size of the vocabulary controls the
complexity of the model. Therefore, vocabulary construction directly influences model complexity.
We identify two methods for constructing a vocabulary: a data-driven approach characterized by
unsupervised clustering and a semantic approach which relies on annotation. Besides the construc-
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(a) Histogram (b) K-means (c) Radius-based

Figure 4. Three examples of continuous space partitioning, using (a) a uniform histogram, (b) k-means clustering,
and (c) radius-based clustering. Note the empty bins in the histogram, the cluster centers in densely populated areas

of k-means, and the uniform partitioning of radius-based clustering.

tion of the vocabulary, the expressive power may be increased. To this end, we consider replacing
the hard-assignment of codewords to image features with soft-assignment. This soft-assignment
aims for a more powerful vocabulary, which in turn leads to a more compact model.

3.1. Codebook Compactness by a Clustered Vocabulary

A codebook vocabulary consists of discrete visual codewords, which are described by high-
dimensional features. In order to obtain discrete codewords, the continuous high-dimensional fea-
ture space needs to be discretized. A common approach to discretizing a continuous feature space
is by uniform histogram binning. However, in a high-dimensional feature space a histogram with
a fixed bin size for each dimension will create an exponentially large number of bins. Moreover,
since feature spaces are rarely uniformly distributed, many of these bins will be empty [43]. We
illustrate the partitioning of a continuous feature space with a uniform histogram in figure 4(a).

An alternative to a uniform partitioning of the high-dimensional feature space is unsupervised
clustering. The benefit of using clusters as codewords is a small vocabulary size without empty
bins. A popular clustering approach for finding codewords is k-means [4,7,17,21,31,33,41]. K-
means is an unsupervised clustering algorithm that tries to minimize the variance between k
clusters and the training data, where k is a parameter of the algorithm. The advantages of k-
means are its simple and efficient implementation. However, the disadvantage of k-means is that
the algorithm is variance-based. Thus, the algorithm will award more clusters to high-frequency
areas of the feature space, leaving less clusters for the remaining areas. Since frequently occurring
features are not necessarily informative, this over-sampling of dense regions is inappropriate. For
example, in analogy of text retrieval, the most frequent occurring words in English are the so
called function words like the, a, and it, despite their high frequency these function words convey
little information about the content of a document. Therefore a codebook vocabulary based on
variance-based clustering may not be as expressive as it could be.

In contrast to variance-based clustering, Jurie and Triggs [17] argue that the codewords for a
codebook vocabulary are better represented by radius-based clustering. Radius-based clustering
assigns all features within a fixed radius of similarity r to one cluster, where r is a parameter of the
algorithm. This radius denotes the maximum threshold between features that may be considered
similar. As such, the radius determines whether two patches describe the same codeword. Hence,
the influence of the radius parameter r on the codebook model is clear where the number of
clusters, k, in k-means clustering is typically chosen arbitrary. The difference between radius-based
clustering and k-means is illustrated in figure 4(b) and figure 4(c). Note that the codewords found
by k-means populate the densest part of the feature space, whereas the radius-based method finds
codewords that each represent a distinct part of the feature space. Hence, radius-based clustering
results in a non-empty, uniform sampling of a continuous feature space. Therefore, we will adopt
radius-based clustering for data-driven codebook vocabulary creation.

5



3.1.1. Concept-specific Vocabulary
A vocabulary formed by unsupervised clustering offers us the opportunity to construct a dif-

ferent, tuned, vocabulary for each concept [21,31]. This tuning endows each concept with its own
unique vocabulary. For example, it might be beneficial to model the concept boat with a dif-
ferent vocabulary than the concept office, since scenes with a boat will contain water and sky,
whereas office scenes hold tables and chairs. The idea behind concept-specific vocabularies is to
obtain a reduced vocabulary, while retaining expressive power. We will experimentally compare the
compactness and expressiveness of the concept-specific vocabularies against a global vocabulary
obtained by clustering the whole feature space.

3.2. Codebook Compactness by a Semantic Vocabulary

Whereas the previous section described a clustering approach for obtaining a codebook vocabu-
lary, this section will focus on a semantic vocabulary. The use of semantic codewords builds on the
principle of compositionality, stating that the meaning of an image can be derived from the mean-
ing of the constituent parts of the image [5,24,45,48]. For example, an outdoor image is likely to
contain vegetation, water, or sky. A semantic vocabulary consists of meaningful codewords. There-
fore, the creation of the vocabulary requires a human annotator. This annotation step typically
consists of drawing bounding boxes around a meaningful patch of pixels [45,48]. The rationale
behind meaningful codewords is that local image semantics will propagate to the global codebook
image model, leading to compact visual models

Both the semantic vocabulary and the clustered vocabulary have specific advantages and disad-
vantages. The semantic vocabulary approach is based on manual selection of visually meaningful
codewords. However, this approach has the underlying assumption that images can be decomposed
in these semantic codewords, which may not hold for all images. For example, an indoor image is
unlikely to contain any sky or buildings. In contrast to semantic labeling, clustering uses statistics
to determine descriptive codewords. However, these codewords lack any meaningful interpreta-
tion. Such an interpretation may be important since humans typically decompose complex scenes
into meaningful elements. Both approaches of acquiring a vocabulary of low-level descriptors have
their merits. We will experimentally compare both methods to determine their compactness and
expressiveness.

3.3. Codebook Compactness by Soft-Assignment

In order to take the continuous nature of image patches into account, we have proposed [45] to
base the codebook model on a degree of similarity between patches. Similarity between patches is
a more suitable representation than assigning only one visual word to an image patch. Labeling
an image patch with the single best visual word ignores all ambiguity regarding the meaning of
the image patch. In contrast, assigning a degree of similarity to an image patch will model the
inherent uncertainty of the image patch. For example, instead of labeling a blue pixel patch as
sky, the patch is better represented by saying that its similarity to sky is 0.9, and its similarity to
water is 0.8. By using soft-assignment to model the uncertainty of the meaning of an image patch,
we foresee improved expressive and discriminative power while maintaining a constant vocabulary
size [45]. To evaluate this claim we will test soft-assignment versus hard-assignment as used in the
traditional codebook model. If this claim is sound, the vocabulary size may be reduced, which in
turn yields a more compact codebook.

Soft-assignment is easily incorporated in the codebook model. For each codeword, or bin, b in
the vocabulary V the traditional codebook model constructs the distribution of codewords over
an image by

H(b) =
∑

r∈R(im)


1 if b = arg max

v∈V
(S(v, r)).

0 otherwise,
(1)
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Figure 5. Two examples indicating the difference between hard-assignment and soft-assignment of codewords to
image features. The first row shows two images with each 5 samples (dots) around two codewords ’a’ and ’b’. The

second row displays the normalized occurence histograms of hard-assignment and soft-assignment for both images.

Note that hard-assignment is identical for both examples, whereas soft-assignment is sensitive to the position of
the samples.

Here, R(im) denotes the set of regions in image im, and S(v, r) is the similarity between a codeword
v and region r. The similarity S(b, r) is specific to the type of image features that are used. The
similarities are given with the image features in appendix A. The similarities allow replacing
hard-assignment with soft-assignment by

H(b) =
∑

r∈R(im)

S(b, r). (2)

This soft-assignment weights each codeword according to the similarity of an image region to
this codeword. Figure 5 illustrates this advantage.

4. Experimental Setup

The experiments focus on the relation between codebook compactness and codebook quality.
Codebook compactness is given by the size of the vocabulary, whereas codebook quality is mea-
sured by its categorization performance. To reduce dependency on a single visual feature, we
show results over two visual features (Wiccest features and Gabor features, see appendix A).
Furthermore, we investigate the effect of the linear and light-weight Fisher classifier against a
computationally more intensive non-linear SVM classifier. We identify three experiments:
– Experiment 1: Soft-Assignment versus Hard-Assignment;
– Experiment 2: Semantic Vocabulary versus Globally-clustered Vocabulary;
– Experiment 3: Semantic Vocabulary versus Concept-specific clustered Vocabulary;

The experiments are conduced on a large video dataset where each shot is annotated if a concept
is present. This fixed ground-truth allows repeatable experiments.

4.1. Video Datasets

The experiments are evaluated on the TREVID 2005 development set [37]. This video set con-
tains nearly 85 hours of English, Chinese and Arabic news video. In addition to the video data,
we use the standard ground truth provided by the MediaMill Challenge [40]. This ground truth
defines 101 semantic concepts with shot labels for each category, where the video data is split in
70% for training, and the remaining 30% for testing. In total there are 43,907 shots, where 30,630
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Figure 6. Some examples of the concepts defined by the MediaMill Challenge, which we use to evaluate categoriza-
tion performance.

are in the training set, and 13,277 in the testing set. The shots are indexed by their representative
keyframe, as defined by the MediaMill Challenge. We selected the MediaMill Challenge because
it is a realistic and challenging dataset with a shared ground truth, allowing repeatable exper-
iments. In figure 6 we show some concepts defined by the MediaMill Challenge. Note the wide
variety of concepts, i.e.: Graphics (Drawing, Maps, Weather), objects (Bird, Chair, Flag USA),
scenes (Duo-anchor, Meeting, Night fire, River, Sky, splitscreen, Studio, Tennis ), persons (An-
chor, Mr. Lahoud, Prisoner), and emotional (Entertainment). The video data is a realistic subset
of broadcast news, containing commercials, e.g . (Bird, River), and concepts with little variation
in their appearance for this set, e.g . (Night fire, Tennis, Chair, Weather, Anchor). In contrast to
simplified datasets recorded in a laboratory setting [26], the MediaMill Challenge allows a more
truthful extrapolation of our conclusions to other real-world datasets.

4.2. Visual Categorization Implementation

4.2.1. Image Features
To evaluate if a method generalizes over visual features, we conduct all experiments with two

different image features: Wiccest and Gabor. Wiccest features rely on natural image statistics
which makes them well suited to describe natural images. On the other hand, Gabor features
respond to regular textures and color planes, which is beneficial for man-made structures. Both
these image features measure colored texture, where the Gabor features also takes non-textured
color into account. Each feature is calculated on two scales, making them sensitive to differently
scaled textures. We selected texture features because of their ability to describe the foreground
as well as the contextual background of an image. More details about the image features are in
appendix A.

4.2.2. Image Sampling
The codebook model represent an image as a distribution over codewords. To build this distribu-

tion, several regions are sampled from an image. Since grid-based sampling is shown to outperform
interest points in scene categorization [7,17], we use a grid for region sampling. Specifically, this
grid is constructed by dividing an image in several overlapping rectangular regions. The regions
are uniformly sampled across the image, with a step size of half a region. We use two different
region sizes, with ratios of 1

2 and 1
6 of both the x-dimension and y-dimensions of the image.
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4.3. Compact Codebook Models Implementation

4.3.1. Semantic Vocabulary
A semantic vocabulary consists of meaningful elements, obtained by annotation. We use the

semantic vocabulary by [45]. This vocabulary consists of 15 different codewords, namely: building
(321), car (192), charts (52), crowd (270), sand/rock (82), fire (67), flag USA (98), maps (44),
mountain (41), road (143), sky (291), smoke (64), snow (24), vegetation (242), water (108), where
the number in brackets indicates the number of annotation samples of that concept. We use
the train set as a basis for selecting relevant shots containing the codewords. In those shots, we
annotate rectangular regions where the codeword is visible for at least 20 frames. Note that a
vocabulary of 15 codewords, evaluated for two scales and two region sizes will yield a descriptor
of 4× 15 = 60 elements.

4.3.2. Globally-clustered Vocabulary
A globally-clustered vocabulary is created on all image features in the train set. We build a such

a global vocabulary by radius-based clustering. Radius-based clustering aims to cover the feature
space with clusters of a fixed similarity radius. Hence, the algorithm yields an even distribution
of visual words over the feature space and has been shown to outperform the popular k-means
algorithm [17]. Whereas Jurie and Triggs [17] use mean-shift with a Gaussian kernel to find the
densest-point, we maximize the number of features within its radius r for efficiency reasons.

Since each image features is calculated at two scales for two region sizes there are 4 image
descriptors per feature. We cluster each descriptor separately, yielding 4 different clustering steps.
The final vocabulary consists of the resulting clusters for a single radius as found by all these four
clustering steps. Note that the number of clusters may vary per scale and region size combination.

4.3.3. Concept-Specific Clustered Vocabulary
A concept-specific vocabulary is designed for a single concept. Such a specific vocabulary may

be found by limiting the radius-based clustering algorithm to images in a single class only. This
makes the resulting clusters depend on only that subset of the feature space which is relevant
for the concept. Note that the images are labeled globally, whereas the clustering is based on
local codewords. The clustering step itself is identical to the globally-clustered vocabulary, and is
performed separately for each of the four feature scale and region size combinations.

4.4. Supervised Machine Learning Implementation

Automatic concept categorization in video requires machine learning techniques. For each se-
mantic concept, we aim for a ranking of shots relevant to this concept. To evaluate this ranking,
we employ two classifiers: a strong and computationally intensive SVM classifier and a weak but
fast Fisher classifier. Fisher’s linear discriminant [8] projects high-dimensional features to a one-
dimensional line that aims to maximize class separation.The most important reason why we use
Fisher’s linear discriminant is its fair categorization performance with high efficiency. This effi-
ciency is mostly due to its linearity and the benefit that this classifier has no parameters to tune.
The other classifier is the popular discriminative maximum-margin SVM classifier. The reason for
choosing an SVM is because it generally gives good results on this type of data [40]. For the SVM
we use a non-linear χ2 kernel, where we use episode constrained cross-validation [46] to tune the
best C-slack parameter.

4.5. Evaluation Criteria

We evaluate compactness and categorization performance. Compactness is measured in by the
size of the codebook vocabulary. For measuring categorization performance, we adopt average
precision from the Challenge framework. Average precision is a single-valued measure that sum-

9



0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

e
a
n
 A

v
e
ra

g
e
 P

re
ci

si
o
n

Wiccest SVM

Soft assignment
Hard assignment

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Gabor SVM

Soft assignment
Hard assignment

0 20 40 60 80 100

Concepts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 A

v
e
ra

g
e
 P

re
ci

si
o
n

Wiccest Fisher

Soft assignment
Hard assignment

0 20 40 60 80 100

Concepts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Gabor Fisher

Soft assignment
Hard assignment

Experiment 1 (Hard vs. Soft assignment)

Figure 7. Comparing hard-assignment versus soft-assignment for all 101 concepts, over two different visual features
with a semantic vocabulary.

marizes the recall-precision curve. If Lk = {s1, s2, . . . , sk} are the top k ranked elements from the
retrieved results set L, and let R denote the set of all relevant items, then average precision (AP)
is defined as

AP(L) =
1
|R|

|L|∑
k=1

|Lk ∩R|
k

IR(sk) , (3)

where | · | denotes set cardinality and IR(sk) = 1 if sk ∈ R and 0 otherwise. In our experiments
we compute AP over the whole result set.

Average precision measures the categorization performance for a single concept. The MediaMill
Challenge, however, defines 101 concepts. As the performance measure over multiple concepts,
we report the mean average precision (MAP), given by the average precision averaged over all
concepts.

5. Experimental Results

5.1. Experiment 1: Soft-Assignment vs. Hard-Assignment

The first experiment compares soft-assignment with hard-assignment in the codebook model
for a semantic vocabulary over two classifiers and over the two visual features. In appendix A we
detail both features and their respective soft assignment functions. In figure 7 we show the results
for the Wiccest and Gabor features. The figure illustrates that performance for nearly all concepts
improves by using soft-assignment. This improvement is in line with the expectations in [45]. In the
few cases where soft-assignment is outperformed by hard-assignment, the performance difference
is marginal. On average over the two features and two classifiers there are 92± 2.71 concepts that
increase and 8.75± 2.87 concepts that decrease. Over both features and both classifiers there are
78 of the 101 concepts that always improve. In contrast, there is no concept whose performance
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Experiment 1

Wiccest Gabor

SVM Fisher SVM Fisher

Hard-Assignment 0.120 0.113 0.100 0.097

Soft-Assignment 0.179 0.157 0.187 0.175

Table 1

The mean average precision over all 101 concepts in experiment 1. Results are shown for hard-assignment versus

soft-assignment for Wiccest features and Gabor features and the Fisher and SVM classifier, using a semantic
vocabulary. Note that soft-assignment outperforms hard-assignment for both feature types and for both classifiers.
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Figure 8. The difference between soft-assignment and hard-assignment for the top and bottom five concepts in
experiment 1.

always decreases. For the four feature-classifier combinations, there are 28 concepts that decrease
in performance for at least one of these combinations. Note that this is the absolute worst-case
performance. In contrast, all 101 concepts are found to increase at least once or more in the four
feature-classifier combinations. The average performance over all 101 concepts for the two visual
features is shown in table 1. The table shows that using soft-assignment improves performance for
both feature types and for both classifiers.

The difference per concept between soft-assignment and hard-assignment is given in figure 8.
Here we show the five most increasing concepts and the five most decreasing concepts by replacing
hard-assignment with soft-assignment. Note that the performance gain by the improving concepts
is several magnitudes higher than the decrease in performance. There are four concepts that con-
sistently decrease in the bottom five. The concepts PrisonerPerson, HassanNasrallah, Bicycle are
found in the bottom five of the Gabor features for both the Fisher as the SVM classifier. These
concepts are sensitive to exact color matching. The Bicycle concept is a sparse but repetitive com-
mercial, and the PrisonerPerson, HassanNasrallah concepts contain shots of highly discriminative
colors, like an orange prisoner uniform. Since the gabor features take the color of an image patch
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Figure 9. Comparing a semantic codebook vocabulary with a globally-clustered codebook vocabulary for hard-as-
signment and soft-assignment. Results are shown in mean average precision over 101 concepts. The semantic

vocabulary is the same as in experiment 1. Note that the Wiccest and the Gabor features have different vocabulary
sizes. This is the case, because the number of clusters depends on the similarity function of the visual features (see

appendix A).

into account, these features are more effected than the Wiccest features. The six concepts Bird,
River, DuoNewsAnchorPersons, GraphicalMap, EmileLahoud, SplitScreen consistently increase in
the top five. Of these six concepts the concepts GraphicalMap and EmileLahoud are found in
the Gabor features top 5 for both the Fisher as the SVM classifier. In this case the concepts are
again typically colorful, such as the many variations of a GraphicalMap, or a colorful flag in the
background of Mr. EmileLahoud. In this case, however, performance increases. We deem that this
is the case because there is significant variation in the colors. By using soft-assignment this varia-
tion is better modeled. The concept DuoNewsAnchorPersons increases for the Wiccest features in
both the SVM as in the Fisher classifier. Again, we attribute the gain of soft-assignment to slight
variation between the examples. With slight variation in the images, hard assignment may choose
complete different visual words, whereas soft-assignment proves robust. The concept SplitScreen is
found in the top five of three feature-classifier combinations. Only the Gabor-Fisher does not have
this concept in the top five. This concept is characterized by a strong artificial edge in the middle
of the screen. Besides this edge, there is some variation on the people present in the screens. Again,
soft-assignment seems to be able do deal better with this variation. The concept Bird improves
for Wiccest-Fisher and for Gabor-SVM. This concept is a repetitive commercial. We attribute the
reason why static or near-copies benefit most to the fact that minor changes in the image content
results in minor changes in the soft-assignment approach. In contrast, minor image content changes
in the traditional codebook model may give rise to completely different codewords stemming from
the hard-assignment in this method. In figure 6 we show example images for some concepts.
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5.2. Experiment 2: Semantic Vocabulary vs. Globally-clustered Vocabulary

As a second experiment, we focus on the difference between a semantic vocabulary and a clus-
tered vocabulary. In figure 9 we show the results with hard-assignment and soft-assignment over
the two features and over the two classifiers. This figure shows that increasing the number of
visual words increases the performance. Moreover, the figure shows a clear advantage of using an
SVM classifier over the Fisher classifier. Nevertheless, for Gabor features with a vocabulary of
1480 codewords the Fisher classifier proves competitive to an SVM classifier. Note that a larger
vocabulary not always yields the best results. For example, for the Fisher classifier with soft-
assignment, the largest vocabulary is not the best performing one. Furthermore, the figure shows
that for Wiccest features and a Fisher classifier the performance difference between a semantic
and a clustered vocabulary is only slightly in favor of the semantic vocabulary when both vocab-
ularies have an equal number of visual words (±60). In contrast, for Gabor features a semantic
vocabulary is more beneficial, yielding a higher performance for a lower number of codewords.
We credit this difference between the Wiccest and the Gabor features to the difference in dimen-
sionality between the features. The Wiccest features use only 12 numbers, whereas the Gabor
features consist of histograms of 101 bins. Since the feature-space of the Gabor descriptor is much
higher in dimensionality, it is harder to fill this space, let alone find discriminative visual words.
In contrast to clustering, a semantic vocabulary is given by manual annotation. This annotation
step introduces meaningful visual words without the need to partition a high-dimensional feature
space. Nevertheless, a fixed sized semantic vocabulary is outperformed by a clustered vocabulary
for both features. This performance gain comes at a price, paid by an exponentially growing vi-
sual word vocabulary, leading to a more complex, and therefore less compact model. Comparing
the results of a semantic vocabulary and a clustered vocabulary for the SVM classifier, shows a
clear advantage for a clustered vocabulary. The clustered vocabulary already outperforms a se-
mantic vocabulary with half the number of codewords in the case of Wiccest features. Moreover,
for the Wiccest features the hard-assignment method outperforms the soft-assignment method for
large vocabularies. In the case of the Gabor features, the hard-assignment performance equal to
soft-assignment for large vocabularies. Nevertheless, for an SVM classifier, soft-assignment proves
robust over the size of the vocabulary. Soft-assignment clearly outperforms hard-assignment for
compact vocabularies.

In figure 10 we show per concept the vocabulary size which gives the best performance. Moreover,
we show the contours of the areas that perform within 90% of the best score. When comparing
soft-assignment versus hard-assignment, it can be seen that for soft-assignment there are more
areas where the performance is within 90% of the best score. Hence, soft-assignment seems more
robust to the size of the vocabulary. Furthermore, the figure shows that soft- assignment has more
variation in the size of the best vocabulary than hard-assignment. Hence, soft-assignment seems
the better choice for compact vocabularies. Moreover, as the variation in the size of the best
vocabulary suggests, it may prove beneficial to tune a vocabulary per concept, instead of using a
global vocabulary. This tuning per concept is explored in the next section.

5.3. Experiment 3: Semantic Vocabulary vs. Concept-specific Clustered Vocabulary

In an attempt to create more compact vocabularies while keeping performance on par, we
evaluate individual vocabularies that are tuned to the specific concept at hand. These concept-
specific vocabularies are created by restricting the radius-based clustering algorithm to the positive
examples of a semantic concept. To constrain the computations, we limit this experiment to the
Fisher classifier only and to the 39 concepts that were used in the TRECVID 2006 benchmark.
Moreover, we select a fixed radius for the clustering algorithm: r = 1.2 for the Wiccest features
and r = 4.5 for the Gabor features. These radii are selected with the intention to closely match
the performance of the semantic vocabulary.

The performance differences between the semantic vocabulary and the concept-specific vocabu-
laries for the Wiccest and Gabor features using soft-assignment are shown in figure 11. Note that
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Figure 10. The red dots indicate the best performing vocabulary size for each concept. The contours highlight the
area within 90% of the best performance.
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Figure 11. Comparing a semantic vocabulary with a concept-specific vocabulary, both using soft-assignment.

the performance of both methods is closely aligned. Nevertheless, there are a few concepts that
perform better with a concept-specific vocabulary. The top ten of the concepts that increase most
are shown in figure 12. Some video frames containing these concepts are shown in figure 6. In the
top ten, there are three concepts (animal, weather, sky) that increase for both features. The other
features that improve per visual feature seem related to the feature type. The Wiccest features are
related to edge statistics as found in natural images, and the concepts that improve are related
to natural scenes (animal, mountain, waterbody, desert, sports, sky, crowd). Furthermore, it is
striking that seven concepts out of the top ten for the Wiccest features consist of elements that
are also used in the semantic vocabulary (mountain, waterbody, desert, charts, maps, sky, crowd).
We speculate that this is the case because the improved concepts for the Wiccest features focus on
natural images, and the semantic vocabulary consists mainly of naturally occurring codewords. In
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Figure 12. The 10 concepts that benefit most from a concept-specific vocabulary over a semantic vocabulary.

Experiment 1 Experiment 2 Experiment 3

Semantic Clustered Concept-Specific

Feature Size MAP Size MAP Size MAP

Wiccest 60 0.219 205 0.251 128.7 0.244

Gabor 60 0.235 249 0.270 118.5 0.254

Table 2

The number of codewords used to obtain the same performance over three types of vocabularies: semantic (Exper-
iment 1), clustered (Experiment 2), and concept-specific (Experiment 3). The size of the codeword vocabulary is

shown, with the mean average precision in brackets for Wiccest features and Gabor features using soft-assignment.

In the case of the concept-specific vocabulary, we show the average number of codewords, since this varies per
concept.

the case of Gabor features, that are more related to color and texture frequency, the concepts that
improve may rely on colored texture for discrimination (prisoner, flag USA, meeting, entertain-
ment, weather, studio). Nevertheless, disregarding those few outliers who outperform the semantic
vocabulary, both vocabulary types perform more or less equal, as intended.

In table 2 we show the number of codewords used to achieve more or less the same performance.
The number of codewords for the concept-specific vocabulary was found by increasing the radius
of the clustering algorithm, until the performance of the concept-specific clustered vocabulary
was reached. The results show that an annotated vocabulary has the most compact descriptor,
with only 60 visual words. In contrast, the globally-clustered vocabulary requires at least three
times more visual words than a semantic vocabulary. The individually clustered concept-specific
vocabularies require two times the number of codewords than a semantic vocabulary. However,
those concept-specific vocabularies are still only half the size of a globally clustered vocabulary.
Hence, while a semantic vocabulary proves the most descriptive, the concept-specific clustered
vocabularies yield a more powerful descriptor than a globally clustered vocabulary.

5.4. Summary of Experimental Results

The first observation we can make is that soft-assignment typically outperforms hard-assignment
in the codebook method. This improvement has been shown for two different visual features
and for both a semantic vocabulary and a clustered vocabulary over two classifiers. Only for a
very large vocabulary and an SVM classifier hard-assignment may improve over soft-assignment.
Furthermore, the semantic vocabulary which requires manual annotation work has been shown to
provide a competitive vocabulary when a weak classifier is used. In the case of the Fisher classifier
it yields excellent performance with a minimum number of visual words leading to compact and
expressive codebooks. For the Fisher classifier, a clustered vocabulary outperforms a semantic
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Method Manual Computational Compact Performance

Strong Weak StrongWeak StrongWeak

Semantic − ± + − + − ±

Globally clustered + − ± + − + +

Concept-specific clustered + − − + + + +

Table 3
Summary of the four evaluated methods to obtain a compact and expressive codebook. We indicate if a method

requires manual annotation effort, computation effort, and if the method yields compact models, with good perfor-

mance. We distinguish between a strong classifier such as an SVM and a weak classifier such as Fisher’s linear
discriminant. A + denotes good, − indicates bad, and ± is medium. Note that soft-assignment is performed after

vocabulary creation, thus it is not affected by annotation nor clustering.

vocabulary when the number of visual words is high enough. However, this high number of visual
words leads to less compact models, which may be infeasible for large video datasets. In the case of
a strong classifier, the results show that clustered vocabularies outperform a semantic vocabulary.
However, an SVM classifier takes more effort to train, with additional complication with cross-
validation for parameter tuning [46]. Additional results indicate that the number of visual words
in a clustered vocabulary may be reduced by tuning this vocabulary to each concept. These
tuned vocabularies retain categorization performance while maintaining a reasonably compact
vocabulary.

6. Conclusions

Given the vast amount of visual information available today, the applicability of automatic visual
indexing algorithms is constrained by their efficiency. Accordingly, this paper focuses on compact,
and thus efficient, models for visual concept categorization. We considered the codebook algorithm
where model complexity is determined by the size of the vocabulary. We structurally compared
four approaches that lead to compact and expressive codebooks. Specifically, we compared three
methods to create a compact vocabulary: 1) global clustering, 2) concept-specific clustering and
3) a semantic vocabulary. The fourth approach increases expressive power by soft-assignment of
codewords to image features. We experimentally compared these four methods on a large and
standard video collection. The results show that soft-assignment improves the expressive power
of the vocabulary, leading to increased categorization performance without sacrificing vocabulary
compactness. Further experiments showed that a semantic vocabulary leads to compact vocabu-
laries, while retaining reasonable categorization performance. A concept-specific vocabulary leads
to reasonable compact vocabularies, while providing fair visual categorization performance. Given
these results, the best method depends at the application at hand. In this paper we presented
a guideline for selecting a method given the size of the video dataset, the desirability of manual
annotation, the amount of available computing power and the desired categorization performance.

Appendix A. Image Features

A.1. Wiccest Features

Wiccest features [9] utilize natural image statistics to effectively model texture information.
Texture may be described by the distribution of edges at a certain region in an image. Hence, a
histogram of a Gaussian derivative filter is used to represent the edge statistics. The histogram
describes image statistics in natural textures, which are well modeled with an integrated Weibull
distribution [9]. This distribution is given by

f(r) =
γ

2γ
1
γ βΓ( 1

γ )
exp

{
− 1
γ

∣∣∣∣r − µβ
∣∣∣∣γ} , (A.1)
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Figure A.1. Some examples of the integrated Weibull distribution for β = 1, µ = 0, varying values for

γ ∈ { 1
2
, 1, 2, 4} .

where r is the edge response to the Gaussian derivative filter and Γ(·) is the complete Gamma
function, Γ(x) =

∫∞
0
tx−1e−1dt. The parameter β denotes the width of the distribution, γ repre-

sents the ‘peakness’ of the distribution, and µ denotes the mode of the distribution. See figure A.1
for examples of the integrated Weibull distribution.

The Wiccest features for an image region consist of the Weibull parameters for the illumination
invariant edges in the region at σ = 1 and σ = 3 of the Gaussian filter [45]. The β and γ values
for the x-edges and y-edges of the three opponent color channels normalized by the intensity [10]
yields a 12-dimensional descriptor. The similarity, SW , between two Wiccest features is given by
the accumulated fraction between the respective β and γ parameters,

SW(F,G) =
∑(

min(βF , βG)
max(βF , βG)

min(γF , γG)
max(γF , γG)

)
, (A.2)

where F and G are Wiccest features.

A.2. Color Gabor Features

(a) Intensity channel (b) Red-Green channel (c) Blue-Yellow channel

Figure A.2. Some examples of the color Gabor filter with the chosen orientations, scales and frequencies.

As an alternative to Wiccest features, one may use the popular Gabor filters. Gabor filters may
be used to measure perceptual surface texture in an image [6]. Specifically, Gabor filters respond
to regular patterns in a given orientation on a given scale and frequency. A 2D Gabor filter is
given by

G̃(x, y) = Gσ(x, y) exp
{

2πi
(

Ωx0

Ωy0

)(
x

y

)}
, i2 = −1, (A.3)

where Gσ(x, y) is a Gaussian with a scale σ,
√

Ω2
x0

+ Ω2
y0 is the radial center frequency and

tan−1( Ωy0
Ωx0

) the orientation. Note that a zero-frequency Gabor filter reduces to a Gaussian filter.
An example of color Gabor filters is shown in figure A.2. Illumination invariance is obtained
by normalizing each Gabor filtered opponent-color channel by the intensity [13]. A histogram is
constructed for each Gabor filtered color channel, where the Gabor similarity measure, SG , is given
by histogram intersection,

SG(I,M) =
n∑
j=1

min(Ij ,Mj), (A.4)

where Ij is bin j of the n-dimensional histogram of image I.
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In the case of a Gabor filter, its parameters consist of orientation, scale and frequency. We follow
Hoang et al . [13] and use four orientations, 0◦, 45◦, 90◦, 135◦, and two fixed (scale, frequency) pairs:
(2.828, 0.720), (1.414, 2.094), where we append zero frequency color to each scale. Furthermore, the
histogram representation of the Gabor filters uses 101 bins for each Gabor filtered color channel.
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