
Deep Hough-Transform Line Priors

Yancong Lin, Silvia L. Pintea, and Jan C. van Gemert

Computer Vision Lab
Delft University of Technology, the Netherlands

Abstract. Classical work on line segment detection is knowledge-based;
it uses carefully designed geometric priors using either image gradi-
ents, pixel groupings, or Hough transform variants. Instead, current deep
learning methods do away with all prior knowledge and replace priors
by training deep networks on large manually annotated datasets. Here,
we reduce the dependency on labeled data by building on the classic
knowledge-based priors while using deep networks to learn features. We
add line priors through a trainable Hough transform block into a deep
network. Hough transform provides the prior knowledge about global
line parameterizations, while the convolutional layers can learn the local
gradient-like line features. On the Wireframe (ShanghaiTech) and York
Urban datasets we show that adding prior knowledge improves data ef-
ficiency as line priors no longer need to be learned from data.

Keywords: Hough transform; global line prior, line segment detection.

1 Introduction

Line segment detection is a classic Computer Vision task, with applications such
as road-line detection for autonomous driving [17,22,30,36], wireframe detection
for design in architecture [18,54,55], horizon line detection for assisted flying
[12,32,39], image vectorization [41,56]. Such problems are currently solved by
state-of-the-art line detection methods [18,54,51] by relying on deep learning
models powered by huge, annotated, datasets.

Training deep networks demands large datasets [2,35], which are expensive
to annotate. The amount of needed training data can be significantly reduced
by adding prior knowledge to deep networks [5,19,21]. Priors encode inductive
solution biases: e.g. for image classification, objects can appear at any loca-
tion and size in the input image. The convolution operation adds a translation-
equivariance prior [21,43], and multi-scale filters add a scale-invariance prior
[37,40]. Such priors offer a strong reduction in the amount of required data: built-
in knowledge no longer has to be learned from data. Here, we study straight line
detection which allows us to exploit the line equation.

In this work we add geometric line priors into deep networks for improved
data efficiency by relying on the Hough transform. The Hough transform has a
long and successful history for line detection [10,20,26]. It parameterizes lines
in terms of two geometric terms: an offset and an angle, describing the line



2 Y. Lin, S.L. Pintea, and J.C. van Gemert

Ground truth Learned local features Added line priors Line predictions

Fig. 1. We add prior knowledge to deep networks for data efficient line detection. We
learn local deep features, which are combined with a global inductive line priors, using
the Hough transform. Adding prior knowledge saves valuable training data.

equation in polar coordinates. This gives a global representation for every line in
the image. As shown in figure 1, global information is essential to correctly locate
lines, when the initial detections are noisy. In this work we do not exclusively
rely on prior knowledge as in the classical approach [6,7,31,44] nor do we learn
everything in deep architectures [18,51,54]. Instead, we take the best of both: we
combine learned global shape priors with local learned appearance.

This paper makes the following contributions: (1) we add global geometric
line priors through Hough transform into deep networks; (2) we improve data
efficiency of deep line detection models; (3) we propose a well-founded man-
ner of adding the Hough transform into an end-to-end trainable deep network,
with convolutions performed in the Hough domain over the space of all pos-
sible image-line parameterizations; (4) we experimentally show improved data
efficiency and a reduction in parameters on two popular line segment detection
datasets, Wireframe (ShanghaiTech) [18] and York Urban [8].

2 Related work

Image Gradients. Lines are edges, therefore substantial work has focused on
line segment detection using local image gradients followed by pixel grouping
strategies such a region growing [31,44], connected components [6], probabilistic
graphical models [7]. Instead of knowledge-based approach for detecting local
line features, we use deep networks to learn local appearance-based features,
which we combine with a global Hough transform prior.

Hough transform. The Hough transform is the most popular algorithm for
image line detection where the offset-angle line parameterization was first used
in 1972 [10]. Given its simplicity and effectiveness, subsequent line-detection
work followed this approach [11,20,49], by focusing on analyzing peaks in Hough
space. To overcome the sensitivity to noise, previous work proposed statistical
analysis of Hough space [50], and segment-set selection based on hypothesis
testing [45]. Similarly, a probabilistic Hough transform for line detection, followed
by Markov Chain modelling of candidate lines is proposed in [1], while [26]
creates a progressive probabilistic Hough transform, which is both faster and



Deep Hough-Transform Line Priors 3

more robust to noise. An extension of Hough transform with edge orientation is
used in [13]. Though less common, the slope-intercept parameterization of Hough
transform for detecting lines is considered in [38]. In [29] Hough transform is
used for detecting page orientation for character recognition. In our work, we do
not use hand-designed features, but exploit the line prior knowledge given by
the Hough transform when included into a deep learning model, allowing it to
behave as a global line-pooling unit.

Deep learning for line detection The deep network in [18] uses two heads:
one for junction prediction and one for line detection. This is extended in [54],
by a line-proposal sub-network. A segmentation-network backbone combined
with an attraction field map, where pixels vote for their closest line is used in
[51]. Similarly, attraction field maps are also used in [52] for generating line
proposals in a deep architecture. Applications of line prediction using a deep
network include aircraft detection [46], and power-line detection [28]. Moving
from 2D to 3D, [55] predicts 3D wireframes from a single image by relying on
the assumption that image scenes have an underlying Cartesian grid. Another
variation of the wireframe-prediction task is proposed in [51] which creates a
fisheye-distorted wireframe dataset and proposes a method to rectify it. A graph
formulation [53] can learn the association between end-points. The need for
geometric priors for horizon line detection is investigated in [48], concluding that
CNNs (Convolutional Neural Networks) can learn without explicit geometric
information. However, as the availability of labeled data is a bottleneck, we
argue that prior geometric information offers improved data efficiency.

Hough transform hybrids Using a vote accumulator for detecting image
structure is used in [4] for curve detection. Deep Hough voting schemes are con-
sidered in [33] for detecting object centroids on 3D point clouds, and for finding
image correspondences [27]. In our work, we also propose a Hough-inspired block
that accumulates line votes from input featuremaps. The Radon transform is a
continuous version of the Hough transform [3,23,42]. Inverting the Radon trans-
form back to the image domain is considered in [14,34]. In [34] an exact inversion
from partial data is used, while [14] relies on a deep network for the inversion,
however the backprojection details are missing. Related to Radon transform,
the ridgelet transform [9] maps points to lines, and the Funnel transform detects
lines by accumulating votes using the slope-intercept line representation [47].
Similar to these works, we take inspiration from the Radon transform and its
inversion in defining our Hough transform block.

3 Hough transform block for global line priors

Typically, the Hough transform parameterizes lines in polar coordinates as an
offset ρ and an angle, θ. These two parameters are discretized in bins. Each pixel
in the image votes in all line-parameter bins to which that pixel can belong.
The binned parameter space is denoted the Hough space and its local extrema
correspond to lines in the image. For details, see figure 3.(a,b) and [10].



4 Y. Lin, S.L. Pintea, and J.C. van Gemert

Fig. 2. HT-IHT block: The input featuremap, F, coming from the previous convolu-
tional layer, learns local edge information, and is combined on a residual branch with
line candidates, detected in global Hough space. The input featuremap of 128×128×256
is transformed channel-wise to the Hough domain through the HT layer into multiple
183 × 60 maps. The result is filtered with 1D channel-wise convolutions. Two subse-
quent 1D convolutions are added for merging and reducing the channels. The output
is converted back to the image domain by the IHT layer. The two branches are con-
catenated together. Convolutional layers are shown in blue, and in red the HT and
IHT layers. Our proposed HT-IHT block can be used in any architecture.

We present a Hough transform and inverse Hough transform (HT-IHT block)
to combine local learned image features with global line priors. We allow the
network to combine information by defining the Hough transform on a separate
residual branch. The HT layer inside the HT-IHT block maps input featuremaps
to the Hough domain. This is followed by a set of local convolutions in the
Hough domain which are equivalent to global operations in the image domain.
The result is then inverted back to the image domain using the IHT layer, and
it is subsequently concatenated with the convolutional branch. Figure 2 depicts
our proposed HT-IHT block, which can be used in any architecture. To train the
HT-IHT block end-to-end, we must specify its forward and backward definitions.

3.1 HT : From image domain to Hough domain

Given an image line lρ,θ in polar coordinates, with an offset ρ and angle θ, as
depicted in figure 3.(a), for the point P = (Px, Py) located at the intersection of
the line with its normal, it holds that: (Px, Py) = (ρ cos θ, ρ sin θ). A point along
this line (x(i), y(i)) is given by:

(x(i), y(i)) = (ρ cos θ − i sin θ, ρ sin θ + i cos θ), (1)

where x(·) and y(·) define the infinite set of points along the line as functions of
the index of the current point, i, where i ∈ R can take both positive and negative
values. Since images are discrete, here (x(i), y(i)) refers to the pixel indexed by
i along an image direction.



Deep Hough-Transform Line Priors 5

0 10 20 30 40 50

0

10

20

30

40

50

60

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 10 20 30 40 50

0

10

20

30

40

50

60

(a) Input line (b) Line HT (c) Line IHT (d) Mask B(x′, y′)

Fig. 3. (a) A line together with its (ρ, θ) parameterization. (b) The Hough transform
(HT ) of the line. (c) The inverse Hough transform (IHT ) of the Hough map. (d) The
binary mask B, mapping the pixel location (x′, y′) highlighted in blue in (c) to its
corresponding set of bins in the Hough domain.

The traditional Hough transform [10,26] uses binary input where featuremaps
are real valued. Instead of binarizing the featuremaps, we define the Hough trans-
form similar to the Radon transform [3]. Therefore for a certain (ρ, θ) bin, our
Hough transform accumulates the featuremap activations F of the corresponding
pixels residing on that image direction:

HT (ρ, θ) =
∑
i

Fρ,θ(x(i), y(i)), (2)

where the relation between the pixel (x(i), y(i)) and bin (ρ, θ) is given in equa-
tion (1), and Fρ,θ(x(i), y(i)) is the featuremap value of the pixel indexed by i
along the (ρ, θ) line in the image. The HT is computed channel-wise, but for
simplicity, we ignore the channel dimension here. Figure 3.(b) shows the Hough
transform map for the input line in figure 3.(a), where we highlight in red the
bin corresponding to the line.

Note that in equation (2), there is a correspondence between the pixel (x(i), y(i))
and the bin (ρ, θ). We store this correspondence in a binary matrix, so we do
not need to recompute it. For each featuremap pixel, we remember in which HT
bins it votes, and generate a binary mask B of size: [W,H,Nρ, Nθ] where [W,H]
is the size of the input featuremap F, and [Nρ, Nθ] is the size of the HT map.
Thus, in practice when performing the Hough transform, we multiply the input
feature map F with B, channel-wise:

HT = FB. (3)

For gradient stability, we additionally normalize the HT by the width of the
input featuremap.

We transform to the Hough domain for each featuremap channel by looping
over all input pixels, F, rather than only the pixels along a certain line, and we
consider a range of discrete line parameters, (ρ, θ) where the pixels can vote. The
(ρ, θ) pair is mapped into Hough bins by uniformly sampling 60 angles in the
range [0, π] and 183 offsets in the range [0, d], where d is the image diagonal, and
the computed offsets from θ are assigned to the closest sampled offset values.



6 Y. Lin, S.L. Pintea, and J.C. van Gemert

(a) Line (orange) (b) Bin in HT (c) Filter in HT (d) IHT

Fig. 4. Local filters in the Hough domain correspond to global structure in the image
domain. (a) An input line in orange. (b) The line becomes a point in Hough domain.
(c) A local [−1, 0, 1]ᵀ filter in Hough domain. (d) The inverse of the local Hough filter
corresponds to a global line filter in the image domain.

3.2 IHT : From Hough domain to image domain

The HT layer has no learnable parameters, and therefore the gradient is simply
a mapping from Hough bins to pixel locations in the input featuremap, F. Fol-
lowing [3], we define the IHT at pixel location (x, y) as the average of all the
bins in HT where the pixel has voted:

IHT (x, y) =
1

Nθ

∑
θ

HT (x cos θ + y sin θ, θ). (4)

In the backward pass, ∂HT
∂F (x,y) , we use equation (4) without the normalization

over the number of angles, Nθ.
Similar to the forward Hough transform pass, we store the correspondence

between the pixels in the input featuremap (x, y) and the Hough transform bins
(ρ, θ), in the binary matrix, B. We implement the inverse Hough transform as a
matrix multiplication of B with the learned HT map, for each channel:

IHT = B

(
1

Nθ
HT

)
. (5)

Figure 3.(c) shows the IHT of the Hough transform map in figure 3.(b), while
figure 3.(d) shows the binary mask B for the pixel (x′, y′) highlighted in blue in
figure 3.(c), mapping it to its corresponding set of bins in the Hough map.

3.3 Convolution in Hough Transform space

Local operations in Hough space correspond to global operations in the image
space, see figure 4. Therefore, local convolutions over Hough bins are global
convolutions over lines in the image. We learn filters in the Hough domain to take
advantage of the global structure, as done in the Radon transform literature [23].
The filtering in the Hough domain is done locally over the offsets, for each angle
direction [29,46]. We perform channel-wise 1D convolutions in the Hough space



Deep Hough-Transform Line Priors 7

(a) Input featuremap (b) HT (c) Filtered HT (d) IHT

Fig. 5. Noisy local features aggregated globally by learning filters in the Hough do-
main. (a) Input featuremap with noisy discontinuous lines. (b) The output of the HT
layer using 183 offsets and 60 angles. (c) The result after filtering in the Hough domain.
The Hough map contains only the bins corresponding to lines. (d) The output of IHT
layer which receives as input the filtered Hough map. The lines are now clearly visible.

over the offsets, ρ, as the Hough transform is also computed channel-wise over
the input featuremaps. In Figure 5 we show an example; note that the input
featuremap lines are noisy and discontinuous and after applying 1D convolutions
in Hough space the informative bins are kept and when transformed back to the
image domain by the IHT contains clean lines.

Inspired by the Radon literature [23,29,46] we initialize the channel-wise
filters, f , with sign-inverted Laplacians by using the second order derivative of
a 1D Gaussian with randomly sampled scale, σ:

f(ρ)
init
= −∂

2g(ρ, σ)

∂ρ2
, (6)

where g(ρ, σ) is a 1D Gaussian kernel. We normalize each filter to have unit
L1 norm and clip it to match the predefined spatial support. We, subsequently,
add two more 1D convolutional layers for reducing and merging the channels of
the Hough transform map. This lowers the computations needed in the inverse
Hough transform. Our block is visualized in Figure 2.

4 Experiments

We conduct experiments on three datasets: a controlled Line-Circle dataset, the
Wireframe (ShanghaiTech) [18] dataset and the York Urban [8] dataset. We
evaluate the added value of global Hough priors, convolutions in the Hough
domain, and data efficiency. We provide our source code online1.

4.1 Exp 1: Local and global information for line detection.

Experimental setup. We do a controlled experiment to evaluate the combination
of global Hough line priors with learned local features. We target a setting where

1 https://github.com/yanconglin/Deep-Hough-Transform-Line-Priors

https://github.com/yanconglin/Deep-Hough-Transform-Line-Priors


8 Y. Lin, S.L. Pintea, and J.C. van Gemert

AP: 24.97% AP: 38.57% AP: 56.33%

(a) Input (b) GT (c) Local-only (d) Global-only (e) Local+global

Fig. 6. Exp 1: Results in AP (average precision) and image examples of the Line-
Circle dataset. Using local+global information detects not only the direction of the
lines, as the global-only does, but also their extent.

local-only is difficult and create a Line-Circle dataset of 1,500 binary images of
size 100x100 px, split into 744 training, 256 validation, and 500 test images, see
figure 6. Each image contains 1 to 5 randomly positioned lines and circles of
varying sizes. The ground truth has only line segments and we optimize the L2

pixel difference. We follow the evaluation protocol described in [18,25,24] and
report AP (average precision) over a number of binarization thresholds varying
from 0.1 to 0.9, with a matching tolerance of 0.0075 of the diagonal length [25].

We evaluate three settings: local-only, global-only, and local+global. The aim
is not fully solving the toy problem, but rather testing the added value of the
HT and IHT layers. Therefore, all networks have only 1 layer with 1 filter,
where the observed gain in AP cannot be attributed to the network complexity.
For local-only we use a a single 3× 3 convolutional layer followed by ReLU. For
global-only we use an HT layer followed by a 3 × 1 convolutional layer, ReLU,
and an IHT layer. For local+global we use the same setting as for global-only,
but multiply the output of the IHT layer with the input image, thus combining
global and local image information. All networks have only 1 filter and they are
trained from scratch with the same configuration.

Experimental analysis. In the caption of figure 6 we show the AP on the Line-
Circle dataset. The global-only model can correctly detect the line directions
thus it outperforms the local-only model. The global+local model can predict
both the line directions and their extent, by combining local and global image
information. Local information only is not enough, and indeed the HT and IHT
layers are effective.



Deep Hough-Transform Line Priors 9

Networks HT-IHT block AP

(0) w/o convolution 61.77 %
(1) [9× 1] 63.02 %
(2) [9× 1]-Laplacian 66.19 %
(3) [9× 1]-Laplacian + [9× 1] + [9× 1] 66.46 %
(4) [3× 3] + [3× 3] + [3× 3] 63.90 %

Table 1. Exp 2: The effect of convolution in the Hough domain, in terms of AP on a
subset of the Wireframe (ShanghaiTech) dataset [18]. No convolutions perform worst
(0). The channel-wise Laplacian-initialized filters (2) perform better than the standard
1D convolutions (1). Our proposed HT-IHT block (3) versus using [3× 3] convolutions
(4), shows the added value of following the Radon transform practices.

4.2 Exp 2: The effect of convolution in the Hough domain

Experimental setup. We evaluate our HT-IHT block design, specifically, the ef-
fect of convolutions in the Hough domain on a subset of the Wireframe (Shang-
haiTech) dataset [18]. The Wireframe dataset contains 5,462 images. We sample
from the training set 1,000 images for training, and 256 images for validation,
and use the official test split. As in [55], we resize all images to 512 × 512 px.
The goal is predicting pixels along line segments, where we report AP using the
same evaluation setup as in Exp 1, and we optimize a binary cross entropy loss.

We use a ResNet [16] backbone architecture, containing 2 convolutional layers
with ReLU, followed by 2 residual blocks, and another convolutional layer with a
sigmoid activation. The evaluation is done on predictions of 128×128 px, and the
ground truth are binary images with line segments. We insert our HT-IHT block
after every residual block. All layers are initialized with the He initialization [15].

We test the effect of convolutions in the Hough domain by considering in
our HT-IHT block: (0) not using any convolutions, (1) using a 1D convolution
over the offsets, (2) a channel-wise 1D convolution initialized with sign-inverted
Laplacian filters, (3) our complete HT-IHT block containing Laplacian-initialized
1D convolution and two additional 1D convolutions for merging and reducing
the channels, and (4) using three standard 3× 3 convolutions.

Experimental analysis. Table 1 shows that using convolutions in the Hough do-
main is beneficial. The channel-wise Laplacian-initialized convolution is more ef-
fective than the standard 1D convolution using the He initialization [15]. Adding
extra convolutions for merging and reducing the channels gives a small improve-
ment in AP, however we use these for practical reasons rather than improved
performance. When comparing option (3) with (4), we see clearly the added
value of performing 1D convolutions over the offsets instead of using standard
3× 3 convolutions. This experiment confirms that our choices, inspired from the
Radon transform practices, are indeed effective for line detection.



10 Y. Lin, S.L. Pintea, and J.C. van Gemert

100% 50% 25% 10% 5%
Percentage of training samples

4

2

0

2

4

6

St
ru

ct
ur

al
 A

P 
di

ffe
re

nc
e 

(%
)

61.5 58.1 53.7 46.1 38.1

Structural AP on Wireframe subsets 
HT-LCNN(9.3M)
HT-LCNN(5.9M)
LCNN(9.7M)
LCNN(6.2M)

100% 50% 25% 10% 5%
Percentage of training samples

4

2

0

2

4

6

Ju
nc

tio
n 

m
AP

 d
iff

er
en

ce
 (%

)

59.2 56.3 53.1 48.4 44.4

Junction mAP on Wireframe subsets
HT-LCNN(9.3M)
HT-LCNN(5.9M)

LCNN(9.7M)
LCNN(6.2M)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

PR curves for structural AP10

Dotted lines: L-CNN(9.7M)
Solid lines: HT-CNN(9.3M)

5%
10%
25%
50%
100%

100% 50% 25% 10% 5%
Percentage of training samples

1
0
1
2
3
4
5
6

St
ru

ct
ur

al
 A

P 
di

ffe
re

nc
e 

(%
)

65.2 59.8 52.9 47.0 40.8

Structural AP on Wireframe subsets 
HT-HAWP(10.5M)
HT-HAWP(6.5M)
HAWP(10.3M)
HAWP(6.5M)

100% 50% 25% 10% 5%
Percentage of training samples

2
1
0
1
2
3
4
5

Ju
nc

tio
n 

m
AP

 d
iff

er
en

ce
 (%

)
59.9 55.4 50.8 46.9 42.7

Junction mAP on Wireframe subsets
HT-HAWP(10.5M)
HT-HAWP(6.5M)
HAWP(10.3M)
HAWP(6.5M)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

PR curves for structural AP10

Dotted lines: HAWP(6.5M)
Solid lines: HT-HAWP(6.5M)

5%
10%
25%
50%
100%

(a) Structural-AP10 (b)Junction-mAP (c) PR for structural-AP10

Fig. 7. Exp 3.(a): Data efficiency on subsets of the Wireframe (ShanghaiTech)
dataset. We compare different sized variants of our HT-LCNNs and HT-HAWPs with
LCNNs [54] and HAWPs [52]. In (a) and (b) we show the absolute difference for
structural-AP and junction-mAP compared to the best baseline. In (c) we show PR
curves for structural-AP 10. Our HT-LCNN and HT-HAWP models are consistently
better than their counterparts. The benefit of our HT-IHT block is accentuated for
fewer training samples, where with half the number of parameters our models outper-
form the LCNN and HAWP baselines. Adding geometric priors improves data efficiency.

4.3 Exp 3: HT-IHT block for line segment detection

Experimental setup. We evaluate our HT-IHT block on the official splits of
the Wireframe (ShanghaiTech) [18] and York Urban [8] datasets. We report
structural-AP and junction-mAP. Structural-AP is evaluated at AP5, AP10

thresholds, and the junction-mAP is averaged over the thresholds 0.5, 1.0, and
2.0, as in [55]. We also report precision-recall, following [1], which penalizes both
under-segmentation and over-segmentation. We use the same distance threshold
of 2
√

2 px on full-resolution images, as in [1]. For precision-recall, all line seg-
ments are ranked by confidence, and the number of top ranking line segments is
varied from 10 to 500.

We build on the successful LCNN [54] and HAWP [52] models, where we
replace all the hourglass blocks with our HT-IHT block to create HT-LCNN and
HT-HAWP, respectively. The hourglass block has twice as many parameters as
our HT-IHT block, thus we vary the number of HT-IHT blocks to match the
number of parameters of LCNN, HAWP respectively. The networks are trained
by the procedure in [52,55]: optimizing binary cross-entropy loss for junction and
line prediction, and L1 loss for junction offsets. The training uses the ADAM



Deep Hough-Transform Line Priors 11

optimizer, with scheduled learning rate starting at 4e − 4, and 1e − 4 weight
decay, for a maximum of 30 epoch.

Exp 3.(a): Evaluating data efficiency. We evaluate data efficiency by re-
ducing the percentage of training samples to {50%, 25%, 10%, 5%} and train-
ing from scratch on each subset. We set aside 256 images for validation, and
train all the networks on the same training split and evaluate on the official
test split. We compare: LCNN(9.7M), LCNN(6.2M) with HT-LCNN(9.3M), HT-
LCNN(5.9M), and HAWP(10.3M), HAWP(6.5M) with HT-HAWP(10.5M) and
HT-HAWP(6.5M), where we show in brackets the number of parameters.

Figure 7 shows structural-AP 10, junction-mAP and the PR (precision recall)
curve of structural-AP 10 on the subsets of the Wireframe dataset. Results are
plotted relative to our strongest baselines: the LCNN(9.7M) and HAWP(10.3M)
models. The HT-LCNN and HT-HAWP models consistently outperform their
counterparts. Noteworthy, the HT-LCNN(5.9M) outperforms the LCNN(9.7M)
when training on fewer samples, while having 40% fewer parameters. This trend
becomes more pronounced with the decrease in training data. We also observe
similar improvement for HT-HAWP over HAWP. Figure 7(c) shows the PR curve
for the structural-AP 10. The continuous lines corresponding to HT-LCNN and
HT-HAWP are consistently above the dotted lines corresponding to their coun-
terparts, validating that the geometric priors of our HT-IHT block are effective
when the amount of training samples is reduced.

Figure 8 visualizes top 100 line-segment predictions of LCNN(9.7M) and HT-
LCNN(9.3M) trained on 100% and 10% subsets of the Wireframe dataset. When
comparing the LCNN and HT-LCNN in the top row, we notice that HT-LCNN
is more precise, especially when training on only 10% of the data. HT-LCNN
detects more lines and junctions than LCNN because it identifies lines as local
maxima in the Hough space. HT-LCNN relies less on contextual information,
and thus it predicts all possible lines as wireframes (e.g. shadows of objects
in the third row). In comparison, L-CNN correctly ignores those line segments.
Junctions benefit from more lines, as they are intersections of lines. These results
shows the added value of HT-LCNN when training on limited data.

Exp 3.(b): Comparison with state-of-the-art. We compare our HT-LCNN
and HT-HAWP, starting from LCNN [54] and HAWP [52] and using HT-IHT
blocks instead of the hourglass blocks, with five state-of-the-art models on the
Wireframe (ShanghaiTech) [18] and York Urban [8] datasets. The official training
split of the Wireframe dataset is used for training, and we evaluate on the respec-
tive test splits of the Wireframe/York Urban datasets. We consider three meth-
ods employing knowledge-based features: LSD [44], Linelet [7] and MCMLSD
[1], and four learning-based methods: AFM [51], WF-Parser (Wireframe Parser)
[18], LCNN [54], HAWP [52]. We use the pre-trained models provided by the
authors for AFM, LCNN and HAWP, while the WF-Parser, HT-LCNN, and
HT-HAWP are trained from scratch by us.



12 Y. Lin, S.L. Pintea, and J.C. van Gemert

Input image LCNN (100%) HT-LCNN (100%) LCNN (10%) HT-LCNN (10%)

Fig. 8. Exp 3.(a): Visualization of detected wireframes on the Wireframe (Shang-
haiTech) dataset, from LCNN(9.7M) and HT-LCNN(9.3M) trained on 100% and 10%
data subsets. HT-LCNN can more consistently detects the wireframes, when trained
on 10% subset, compared to LCNN. (See the supplementary material for more results).

Train/test Wireframe / Wireframe Wireframe / York Urban

Structural Junction Structural Junction

Metrics #Params FPS AP5 AP10 mAP AP5 AP10 mAP

LSD [44] — 15.3 7.1 9.3 16.5 7.5 9.2 14.9
Linelet [7] — 0.04 8.3 10.9 17.4 9.0 10.8 18.2
MCMLSD [1] — 0.2 7.6 10.4 13.8 7.2 9.2 14.8
WF-Parser [18] 31 M 1.7 6.9 9.0 36.1 2.8 3.9 22.5
AFM [51] 43 M 6.5 18.3 23.9 23.3 7.1 9.1 12.3
LCNN [54] 9.7 M 10.8 58.9 62.9 59.3 24.3 26.4 30.4
HT-LCNN (Our) 9.3 M 7.5 60.3 64.2 60.6 25.7 28.0 32.5
HAWP [52] 10.3 M 13.6 62.5 66.5 60.2 26.1 28.5 31.6
HT-HAWP (Our) 10.5 M 12.2 62.9 66.6 61.1 25.0 27.4 31.5

Table 2. Exp 3.(b): Comparing state-of-the-art line detection methods on the Wire-
frame (ShanghaiTech) and York Urban datasets. We report the number of parameters
and FPS timing for every method. Our HT-LCNN and HT-HAWP using HT-IHT
blocks, show competitive performance. HT-HAWP is similar to HAWP on the Wire-
frame dataset, while being less precise on the York Urban dataset. When compared
to LCNN, our HT-LCNN consistently outperforms the baseline, illustrating the added
value of the Hough priors.



Deep Hough-Transform Line Priors 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

Precision-Recall on Wireframe

LSD
Linelet
MCMLSD
AFM
WF-Parser

LCNN
HT-LCNN
HAWP
HT-HAWP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

isi
on

Precision-Recall on York

(a) Precision-recall on Wireframe (ShanghaiTech) (b) Precision-recall on York Urban

Fig. 9. Exp 3.(b): Comparing our HT-LCNN and HT-HAWP with seven existing
methods using precision-recall scores on the Wireframe (ShanghaiTech) and York Ur-
ban datasets. Traditional knowledge-based methods are outperformed by deep learning
methods. Among the learning-based methods, our proposed HT-LCNN and HT-HAWP
achieve state-of-the-art performance, even in the full-data regime.

Table 2 compares structural-AP 5, -AP 10 and junction-mAP for seven state-
of-the-art methods. We report the number of parameters for the learning-based
models as well as the frames per second (FPS) measured by using a single CPU
thread or a single GPU (GTX 1080 Ti) over the test set. Our models using the
HT-IHT block outperform existing methods on the Wireframe dataset, and show
rivaling performance on the York Urban dataset. HT-HAWP performs similar
to HAWP on the Wireframe dataset while being less competitive on the York
Urban dataset. HAWP uses a proposal refinement module, which further removes
unmatched line proposals. This dampens the advantage of our HT-IHT block.
Given that the York Urban dataset is not fully annotated, this may negatively
affect the performance of our HT-IHT block. However, adding HT-IHT block
improves the performance of HT-LCNN over LCNN on both datasets, which
shows the added value of the geometric line priors. Moreover, HAWP and LCNN
perform well when ample training data is available. When limiting the training
data, their performances decrease by a large margin compared with our models,
as exposed in Exp 3.(a).

Figure 9 shows precision-recall scores [1] on the Wireframe (ShanghaiTech)
and York Urban datasets. MCMLSD [1] shows good performance in the high-
recall zone on the York Urban dataset, but its performance is lacking in the
low-recall zone. AFM [51] predicts a limited number of line segments, and thus
it lacks in the high-recall zone. One advantage of (HT-)LCNN and (HT-)HAWP
over other models such as AFM, is their performance in the high-recall zone,
indicating that they can detect more ground truth line segments. However, they
predict more overlapping line segments due to co-linear junctions, which results
in a rapid decrease in precision. Our proposed HT-LCNN and HT-HAWP show



14 Y. Lin, S.L. Pintea, and J.C. van Gemert

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

f=0.2f=0.3
f=0.4
f=0.5
f=0.5
f=0.6
f=0.7
f=0.8

PR Curve for AP on Wireframe

LCNN (9.7M)
HT-LCNN (9.3M)
HAWP (10.3M)
HT-HAWP (10.5M)
PPGNet (68.5M)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

f=0.2f=0.3
f=0.4
f=0.5
f=0.5
f=0.6
f=0.7
f=0.8

PR Curve for APH on York

(a) AP on Wireframe (ShanghaiTech) (b) AP on York Urban

Fig. 10. Exp 3.(b): Comparing PPGNet[53] with (HT-)LCNN and (HT-)HAWP
on the Wireframe (ShanghaiTech) and York Urban datasets. PPGNet shows better
performance on the York Urban dataset, especially in high-recall region, while being
slightly less precise on the Wireframe dataset when compared to our HT-LCNN and
HT-HAWP methods. We show between brackets the number of parameters.

competitive performance when compared to state-of-the-art models, thus vali-
dating the usefulness of the HT-IHT block.

In figure 10, we compare our HT-LCNN and HT-HAWP with PPGNet [53].
The PPGNet result is estimated from the original paper, since we are not able
to replicate the results using the author’s code 2. We follow the same protocol as
PPGNet to evaluate (HT-)LCNN and (HT-)HAWP. In general, PPGNet shows
superior performance on the York Urban dataset, especially in the high-recall
region, while using a lot more parameters. However, our HT-LCNN and HT-
HAWP methods are slightly more precise on the Wireframe dataset.

5 Conclusion

We propose adding geometric priors based on Hough transform, for improved
data efficiency. The Hough transform priors are added end-to-end in a deep net-
work, where we detail the forward and backward passes of our proposed HT-IHT
block. We additionally introduce the use of convolutions in the Hough domain,
which are effective at retaining only the line information. We demonstrate exper-
imentally on a toy Line-Circle dataset that ourHT (Hough transform) and IHT
(inverse Hough transform) layers, inside the HT-IHT block, help detect lines by
combining local and global image information. Furthermore, we validate on the
Wireframe (ShanghaiTech) and York Urban datasets that the Hough line priors,
included in our HT-IHT block, are effective when reducing the training data size.
Finally, we show that our proposed approach achieves competitive performance
when compared to state-of-the-art methods.

2 https://github.com/svip-lab/PPGNet

https://github.com/svip-lab/PPGNet


Deep Hough-Transform Line Priors 15

References

1. Almazan, E.J., Tal, R., Qian, Y., Elder, J.H.: Mcmlsd: A dynamic programming
approach to line segment detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2031–2039 (2017)

2. Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum,
J., Katz, B.: Objectnet: A large-scale bias-controlled dataset for pushing the lim-
its of object recognition models. In: Advances in Neural Information Processing
Systems. pp. 9448–9458 (2019)

3. Beatty, J.: The Radon Transform and the Mathematics of Medical Imaging. Honors
thesis, Digital Commons @ Colby (2012)

4. Beltrametti, M.C., Campi, C., Massone, A.M., Torrente, M.L.: Geometry of the
hough transforms with applications to synthetic data. CoRR (2019)

5. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE transactions
on pattern analysis and machine intelligence 35(8), 1872–1886 (2013)

6. Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE trans-
actions on pattern analysis and machine intelligence (4), 425–455 (1986)

7. Cho, N.G., Yuille, A., Lee, S.W.: A novel linelet-based representation for line seg-
ment detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
40(5), 1195–1208 (2017)

8. Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating
manhattan frames in urban imagery. In: European Conference on Computer Vision.
pp. 197–210. Springer (2008)

9. Do, M.N., Vetterli, M.: The finite ridgelet transform for image representation. IEEE
Transactions on image Processing 12(1), 16–28 (2003)

10. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Communications of the ACM 15(1), 11–15 (1972)

11. Furukawa, Y., Shinagawa, Y.: Accurate and robust line segment extraction by
analyzing distribution around peaks in hough space. Computer Vision and Image
Understanding 92(1), 1–25 (2003)

12. Gershikov, E., Libe, T., Kosolapov, S.: Horizon line detection in marine images:
which method to choose? International Journal on Advances in Intelligent Systems
6(1) (2013)

13. Guerreiro, R.F., Aguiar, P.M.: Connectivity-enforcing hough transform for the ro-
bust extraction of line segments. IEEE Transactions on Image Processing 21(12),
4819–4829 (2012)

14. He, J., Ma, J.: Radon inversion via deep learning. In: Medical Imaging (2018)
15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

17. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detec-
tion: a survey. Machine vision and applications 25(3), 727–745 (2014)

18. Huang, K., Wang, Y., Zhou, Z., Ding, T., Gao, S., Ma, Y.: Learning to parse
wireframes in images of man-made environments. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 626–635 (2018)

19. Jacobsen, J.H., van Gemert, J., Lou, Z., Smeulders, A.W.: Structured receptive
fields in cnns. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2610–2619 (2016)



16 Y. Lin, S.L. Pintea, and J.C. van Gemert

20. Kamat-Sadekar, V., Ganesan, S.: Complete description of multiple line segments
using the hough transform. Image and Vision Computing 16(9-10), 597–613 (1998)

21. Kayhan, O.S., van Gemert, J.C.: On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 14274–14285 (2020)

22. Lee, S., Kim, J., Shin Yoon, J., Shin, S., Bailo, O., Kim, N., Lee, T.H., Seok Hong,
H., Han, S.H., So Kweon, I.: Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition. In: Proceedings of the IEEE international
conference on computer vision. pp. 1947–1955 (2017)

23. Magnusson, M.: Linogram and Other Direct Fourier Methods for Tomographic
Reconstruction. Linköping studies in science and technology: Dissertations, De-
partment of Mechanical Engineering, Linköping University (1993)

24. Maire, M., Arbelaez, P., Fowlkes, C., Malik, J.: Using contours to detect and lo-
calize junctions in natural images. In: 2008 IEEE Conference on Computer Vision
and Pattern Recognition. pp. 1–8. IEEE (2008)

25. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image bound-
aries using local brightness, color, and texture cues. IEEE transactions on pattern
analysis and machine intelligence 26(5), 530–549 (2004)

26. Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive
probabilistic hough transform. Computer Vision and Image Understanding 78(1),
119–137 (2000)

27. Min, J., Lee, J., Ponce, J., Cho, M.: Hyperpixel flow: Semantic correspondence with
multi-layer neural features. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 3395–3404 (2019)

28. Nguyen, V.N., Jenssen, R., Roverso, D.: Ls-net: Fast single-shot line-segment de-
tector. CoRR (2019)

29. Nikolaev, D.P., Karpenko, S.M., Nikolaev, I.P., Nikolayev, P.P.: Hough transform:
underestimated tool in the computer vision field. In: Proceedings of the 22th Eu-
ropean Conference on Modelling and Simulation. vol. 238, p. 246 (2008)

30. Niu, J., Lu, J., Xu, M., Lv, P., Zhao, X.: Robust lane detection using two-stage
feature extraction with curve fitting. Pattern Recognition 59, 225–233 (2016)

31. Pătrăucean, V., Gurdjos, P., Von Gioi, R.G.: A parameterless line segment and
elliptical arc detector with enhanced ellipse fitting. In: European Conference on
Computer Vision. pp. 572–585 (2012)

32. Porzi, L., Rota Bulò, S., Ricci, E.: A deeply-supervised deconvolutional network for
horizon line detection. In: Proceedings of the 24th ACM international conference
on Multimedia. pp. 137–141 (2016)

33. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object de-
tection in point clouds. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 9277–9286 (2019)

34. Rim, D.: Exact and fast inversion of the approximate discrete radon transform
from partial data. Applied Mathematics Letters 102, 106159 (2020)

35. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

36. Satzoda, R.K., Trivedi, M.M.: Efficient lane and vehicle detection with integrated
synergies (elvis). In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops. pp. 708–713 (2014)

37. Shelhamer, E., Wang, D., Darrell, T.: Blurring the line between structure and
learning to optimize and adapt receptive fields. CoRR (2019)

https://doi.org/10.1007/s11263-015-0816-y


Deep Hough-Transform Line Priors 17

38. Sheshkus, A., Ingacheva, A., Arlazarov, V., Nikolaev, D.: Houghnet: neural network
architecture for vanishing points detection. International Conference on Document
Analysis and Recognition (ICDAR) (2019)

39. Simon, G., Fond, A., Berger, M.O.: A-contrario horizon-first vanishing point detec-
tion using second-order grouping laws. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 318–333 (2018)

40. Sosnovik, I., Szmaja, M., Smeulders, A.: Scale-equivariant steerable networks. In-
ternational Conference on Learning Representations (2020)

41. Sun, J., Liang, L., Wen, F., Shum, H.Y.: Image vectorization using optimized
gradient meshes. ACM Transactions on Graphics (TOG) 26(3), 11–es (2007)

42. Toft, P.: The Radon Transform: Theory and Implementation. Department of Math-
ematical Modelling, Section for Digital Signal Processing, Technical University of
Denmark (1996)

43. Urban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Caruana, R., Mohamed,
A., Philipose, M., Richardson, M.: Do deep convolutional nets really need to be
deep and convolutional? International Conference on Learning Representations
(2016)

44. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: A fast line segment
detector with a false detection control. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32(4), 722–732 (2008)

45. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: On straight line segment
detection. Journal of Mathematical Imaging and Vision 32(3), 313 (2008)

46. Wei, H., Bing, W., Yue, Z.: X-linenet: Detecting aircraft in remote sensing images
by a pair of intersecting line segments. CoRR (2019)

47. Wei, Q., Feng, D., Zheng, W.: Funnel transform for straight line detection. CoRR
(2019)

48. Workman, S., Zhai, M., Jacobs, N.: Horizon lines in the wild. British Machine
Vision Conference (2016)

49. Xu, Z., Shin, B.S., Klette, R.: Accurate and robust line segment extraction using
minimum entropy with hough transform. IEEE Transactions on Image Processing
24(3), 813–822 (2014)

50. Xu, Z., Shin, B.S., Klette, R.: A statistical method for line segment detection.
Computer Vision and Image Understanding 138, 61–73 (2015)

51. Xue, N., Bai, S., Wang, F., Xia, G.S., Wu, T., Zhang, L.: Learning attraction
field representation for robust line segment detection. In: The IEEE Conference on
Computer Vision and Pattern Recognition (June 2019)

52. Xue, N., Wu, T., Bai, S., Wang, F., Xia, G.S., Zhang, L., Torr, P.H.: Holistically-
attracted wireframe parsing. In: Conference on Computer Vision and Pattern
Recognition (2020)

53. Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., Gao,
S.: Ppgnet: Learning point-pair graph for line segment detection. In: Conference
on Computer Vision and Pattern Recognition (2019)

54. Zhou, Y., Qi, H., Ma, Y.: End-to-end wireframe parsing. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 962–971 (2019)

55. Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L.Y., Ma, Y.: Learning to
reconstruct 3d manhattan wireframes from a single image. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 7698–7707 (2019)

56. Zou, J.J., Yan, H.: Cartoon image vectorization based on shape subdivision. In:
Proceedings. Computer Graphics International 2001. pp. 225–231 (2001)


	Deep Hough-Transform Line Priors

