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Abstract

Frequency information lies at the base of discriminating between textures, and there-
fore between different objects. Classical CNN architectures limit the frequency learning
through fixed filter sizes, and lack a way of explicitly controlling it. Here, we build on
the structured receptive field filters with Gaussian derivative basis. Yet, rather than us-
ing predetermined derivative orders, which typically result in fixed frequency responses
for the basis functions, we learn these. We show that by learning the order of the ba-
sis we can accurately learn the frequency of the filters, and hence adapt to the optimal
frequencies for the underlying learning task. We investigate the well-founded mathemat-
ical formulation of fractional derivatives to adapt the filter frequencies during training.
Our formulation leads to parameter savings and data efficiency when compared to the
standard CNNs and the Gaussian derivative CNN filter networks that we build upon.

1 Introduction

Figure 1: Filter responses when using fractional
order Gaussian derivative filters (here x-order and
y-order are equal). Defining the filters using frac-
tional derivative orders adds flexibility in terms of
the peak response frequency, and enables the use of
standard gradient backpropagation for training.

The world comes in many frequencies, and
we rely on frequency as encoded in tex-
ture to differentiate between different ob-
ject types: a purple thistle flower versus a
purple tulip flower. What’s more, convolu-
tional neural networks (CNNs) additionally
use texture (e.g. ‘fur’ versus ‘skin’) for dis-
criminating between dissimilar object cate-
gories [6]. Therefore, CNNs can reap bene-
fits from an explicit lever for controlling the
frequencies extracted from the data.

Current acclaimed CNNs architectures
[11, 33, 36, 37] lack an explicit knob to
control the frequencies learned from the
data. These classical CNN architectures
hard-code the filter sizes thus limiting the frequency resolution contained in the filters.
Moreover, they learn each filter value separately at each featuremap location by treating
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the weights as independent, leading to data inefficiency. Here, we address both these issues,
by proposing a way to explicitly control the frequency learning in a data-efficient continuous
formulation using structured receptive fields with Gaussian basis.

We make the observation that the order of the Gaussian basis in the structured receptive
fields (SRFs) [16] explicitly controls the maximum frequency of the filters, and therefore
the maximum frequencies they can detect in the data. We, additionally, observe that when
using SRFs [16], typically a few Gaussian basis functions are sufficient to extract useful
information. However, while it may be adequate to use a single basis function out of the
whole basis to define each kernel, selecting from a large range of derivative orders may be
necessary. Putting together these observations, we aim to learn a single Gaussian derivative
per kernel where the order of the Gaussian derivative is adapted during training to better
represent the frequencies present in the data. Typically, the derivative order is an integer
(e.g. first order derivative or second order derivative) which makes backpropagation difficult.
However, the order of the Gaussian derivatives become differentiable when working within
the domain of fractional calculus. In this work, we make use of the fractional derivatives
of the Gaussian function to learn the derivative order. Fig. 1 shows examples of image
responses when using fractional order Gaussian derivatives. Fractional orders add flexibility
in terms of the frequencies that the model can encode and make the model easily trainable
using standard gradient backpropagation methods.

This article makes the following contributions: (i) We propose a well-founded method for
learning the filter frequencies from data, and demonstrate its effectiveness experimentally;
(ii) To that end, we describe a mathematically solid approach to learning fractional order
Gaussian derivatives; (iii) We demonstrate improved data efficiency and parameter savings
across 4 datasets when comparing with existing standard CNNs and baselines with structured
CNN filters.

2 Related Work

Structured filters in CNNs. Influential prior work has investigated the usefulness of struc-
tured filters for image analysis. Simoncelli et al. [32] define a steerbale pyramid using a set of
wavelets that encode orientation and scale, while Mallat defines complex wavelet basis filters
in [24]. These complex wavelets have been used in the Scattering transform [1, 25] which
is later extended in [5, 27, 31, 34]. Other works consider PCA basis [7], Gabors [22, 28],
circular harmonics [43], or simply learning the basis from the data [18]. A large amount of
work has been focused on Gaussian derivatives basis [16] used for controlling the scale in
deep networks [21, 29, 35] or for making the networks continuous over space and depth [39].
Here, we also build on the Gaussian derivative basis [16] because it allows us to easily control
the number of learnable parameters by directly learning the order of the Gaussian derivative
basis. The order parameter controls the complexity of the patterns the filters can respond
to, therefore by learning the order we learn how complex these filters need to be. While
wavelets, such as Gabor filters, can directly learn the frequency response of the filters, the
frequency parameter of the wavelet is coupled to its scale which relates to its spatial ex-
tent. Our representation decouples the frequency response and the scale/spatial extent of the
filters, via two independently trained parameters: derivative order and scale-parameter σ .

Parameter efficiency and data efficiency in CNNs. CNNs come with large computational
costs entailed by the large number of parameters to be learned on the training data. A new
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trend is emerging with focus on efficiency. Model compression has been the most intu-
itive manner of reducing computations and memory [10, 12, 45]. Alternatively, the use of
1×1 convolutions have significantly reduced the parameters in SqueezeNets [8, 15]. Depth-
wise separable convolutions combined with 1× 1 convolutions have shown parameter effi-
ciency [3, 13, 23, 47]. More recently EfficientNet [37] shows both accuracy improvement
and parameter reduction by carefully scaling network width, depth and resolution. Simi-
larly, here we also propose a model aimed at reduced parameters by learning how complex
the filters need to be. Moreover, our proposed fractional structured filters can be used in
combination with any efficient convolutional architecture.

Frequency learning in CNNs. Analyzing the deep networks in frequency domain has
brought insights into how they work. Deep networks can fit, barely perceivable, high-
frequency signals, thus leading to vulnerability to adversarial attacks [38, 40, 46]. However
they tend to learn low frequency signals first [30]. Rather than using frequency domain to an-
alyze deep networks, the networks can actually be trained in the frequency domain [9, 41] or
over inputs transformed to the frequency domain [44]. Here, we also analyze which frequen-
cies our model can fit well and where it makes errors. Our proposal learns the appropriate
frequency of the filters by learning the order of the Gaussian basis.

3 Fractional structured filters

3.1 Review of Gaussian basis filters
Rather than representing filters as a discrete set of pixel values, the use of Scale-space the-
ory [20, 42] enables the definition of filters as continuous functions [16, 35, 39]. And instead
of learning the values of the individual pixels, one only needs to learn the parameters of
these functions. The underlying idea is that a filter F(x) can be approximated with a Taylor
expansion around a point a, up to a certain order N:

F(x)≈
N

∑
i=0

F i(a)
i!

(x−a)i. (1)

Scale-space theory [20, 42] defines the filter derivatives F i as the convolution (∗) of the filter
F with Gaussian derivatives, Gi:

F(x)≈
N

∑
i=0

(Gi(.;σ)∗F)(a)
i!

(x−a)i (2)

where σ is the standard deviation of the Gaussian representing the scale parameter [20]. The
recursive formulation relying on Hermite polynomials [26] allows to effectively compute the
ith Gaussian derivative Gi as a point-wise multiplication (◦) between the Gaussian G and the
ith Hermite polynomial, Hi:

Gi(x;σ) =

(
−1

σ
√

2

)i

Hi

(
x

σ
√

2

)
◦G(x;σ), (3)

where the recursive definition of the Hermite polynomials is: H0(x)= 1; H1(x)= 2x; Hi(x)=
2xHi−1(x)−2(i−1)Hi−2(x).
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Figure 2: Top: Gaussian derivatives computed using Caputo-Fabrizio [2] fractional derivative form.
Bottom: Fractional Gaussian derivatives computed via interpolation between integer orders. The error
introduced by using the interpolation is small relative to the Caputo-Fabrizio form.

By simplifying Eq. (2) and incorporating the polynomial coefficients in a set of weights
α , previous work [16, 39] defines the filter approximation F as a linear combination of
Gaussian derivatives up to order N:

F(x,σ)≈
N

∑
i=0

αiGi(x;σ), (4)

where both the weights α and the scale parameter σ are can be learned from data [29, 39].

3.2 Fractional structured filters: Learning the basis order
We propose to learn the frequency of the filters by making the order of the Gaussian basis
a learnable parameter. Instead of defining the filter as a linear combination of Gaussian
derivatives up to order N, as previously done [16], we approximate the filter with only one
weighted Gaussian derivative, where the order of the derivative ν is a learnable parameter:

F(x;σ)≈ αGν(x;σ). (5)

When using this filter definition in a deep network, we can obtain the gradients of the loss
function with respect to ν through the standard network backpropagation. One caveat of
learning the order of the Gaussian derivative is that a gradient descent step will always re-
sult in real (fractional) order updates. Since the Gaussian derivatives are traditionally only
defined for integer orders, we need to account for orders in between two integers.

One possible way of dealing with fractional derivatives is the Caputo-Fabrizio [2] form,
which in the 1D case is:

Gν
CF(x;σ) =

1
1−ν

· 1√
2πσ3

exp
(
− 1

1−ν

(
x− σ2

2
· 1

1−ν

))
ζσ ,ν(x) (6)

where ζσ ,ν(x) is an integral of the form:

ζσ ,ν(x) =
∫ t

0
(µ− x)exp

(
−
(
τ + 1

1−ν
σ2
)2

2σ2

)
dτ (7)

However, when using this formulation, we observed exploding gradients due to the non-
linear terms. A more straight-forward approach is to interpolate between the two closest
integers of the fractional order:

Gν
Iter(x;σ) = (dνe−ν)Gbνc(x;σ)+(ν−bνc)Gdνe(x;σ), (8)
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Figure 3: (a) The distribution of α weights (color bar) learned in a layer of the original SRF-NiN
[16] model on CIFAR-10. (b) The distribution of α-s when minimizing their entropy. (c) Training/test
accuracies for the original SRF-NiN and the entropy-minimized version. We can safely reduce the
number of Gaussian derivatives defining the filters (i.e. set most basis coefficients α to zero), at no cost
to validation accuracy.

where d·e and b·c are the ceil and floor roundings of ν . This formulation permits us to keep
the gradients in check, due to linear nature of interpolation used. Fig. 2 shows a number of
fractional order Gaussian derivatives when going from order 0 to 1, 1 to 2, 2 to 3, and 3 to 4.
On the top row the Caputo-Fabrizio form (Eq. (6)) is used for computing the 1D derivatives,
while on the bottom row the interpolation method (Eq. (8)) for estimating fractional Gaussian
derivatives. There is on average less than 0.22 root mean squared error between these two
estimations. In all our experiments we use the linearly interpolation method to compute the
fractional Gaussian derivatives.

Because we are working with images, we use 2D Gaussian derivatives. The outer prod-
uct (⊗) of 1D Gaussian derivatives along the x- and y-direction defines the 2D Gaussian
derivative: Gi+ j(x,y;σ) = Gi(x;σ)⊗G j(y;σ).

3.3 Deep networks with fractional structured filters
Each 2D Gaussian derivative requires two order parameters: the order on the x-axis, νx, and
the order on the y-axis, νy. When considering a filter F of size [C,K,W,H] with C input
channels and K output channels, we learn in practice two order parameters (νx

ck, ν
y
ck) per

kernel in the filter, and a scalar (αck) for each kernel:

F(c,k,x,y;σ) = αck(Gνx
ck(x;σ)⊗Gν

y
ck(y;σ)), (9)

where the scale parameter σ is shared among the kernels in the filter and can either be learned
as in [29, 39], or fixed as in [16, 35]. Our method is more flexible than the structured recep-
tive fields (SRF) [16], allowing for non-integer derivatives. We coin our filters FracSRF.
Is one Gaussian derivative sufficient? Unlike previous work [16, 39], we do not use a
linear combination of Gaussian derivatives up to a fixed order. We use a single Gaussian
derivative, whose order can be learned. To check whether using a single Gaussian derivative
is sufficient, we do a small test on the CIFAR-10 dataset, using SRF filters [16] over a NiN
[19] backbone. In the SRF model the α weights control how much a certain integer-order
Gaussian derivative contributes to the final filter. Fig. 3.(a) shows the distribution of the α-s
in a layer of the original SRF-NiN model, compared to the same model in Fig. 3.(b) where
we normalize the α values and we minimize their entropy. Minimizing the entropy of α-s
reduces the actual number of Gaussian derivatives used per filter. At no loss in accuracy
(Fig. 3.(c)) the number of Gaussian derivatives can be reduced from 9 to 2 per channel. This
supports our intuition that using one Gaussian derivative is sufficient, where we make it more
flexible by learning its order from the data.
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4 Experiments

4.1 Experimental setup

Datasets. We test our method across 4 datasets: CIFAR-10, CIFAR-100 [17], and STL-10 [4]
and ImageNette [14], having low and high resolution images, respectively. Additionally, to
test the method’s ability to learn the correct data frequency, we created a dataset called Sinu-
soids containing 2D sinusoids of various orientations and 5 spatial frequencies defining the
5 classes. We also test our method’s accuracy in few-data samples regime by sub-sampling
the CIFAR-10 dataset between 40 and 0.04% of the original number of images.

Models. We consider several backbone architectures: Network in Network (NiN) [19],
Resnet-32 [11], EfficientNet-b0 [37]. We also compare with a few methods using struc-
tured filters: SRF [16, 29]. To obtain the SRF and our FracSRF variants, we replace all the
non 1×1 convolutional layers either with SRF layers or with FracSRF layers. For the SRF
networks, we always set the Gaussian basis orders to 2. For our models we initialization of
the orders uniformly between [1,6], set the spatial filter extent to 2σ around the center and
initialize σ = 1, unless stated otherwise. We train using SGD with momentum of 0.9 and
L2 regularization of 5e-4. For FracSRF-NiN, FracSRF-Resnet32, FracSRF-Efficientnetb0
we use a learning rate of 0.1, 0.05, 0.001 and batch sizes of 128, 256, and 16. When en-
abling σ learning in FracSRF, we use a different learning rate and weight decay for σ of
0.001 and 0.01 on FracSRF-Resnet-32, while on FracSRF-EfficientNet-b0 we use 0.001 and
0.05 for σ learning. We keep learning rates and batch sizes fixed across datasets except for
FracSRF-Efficientnet-b0 on STL-10 where due to memory limitations, we use a batch size
of 4 and learning rate proportionally increased to 0.05. For the baselines NiN, Resnet-32
and EfficientNet-b0 we use learning rates of 0.1, 0.01, 0.01 and batch sizes of 128, 128 and
16, respectively. Given the relatively small dataset sizes, we use the lightweight version of
Resnet-32 where the first block has 16 channels and the last block 64. For the SRF-NiN,
SRF-Resnet-32 and SRF-EfficientNet-b0 we use learning rates of of 0.1, 0.05, 0.001 and
batch sizes of 128, 256, and 16 respectively.

4.2 Exp 1: Does FracSRF learn the correct data frequency?
We test the hypothesis that our FracSRF is more flexible in learning a large range of frequen-
cies, by learning the Gaussian derivative order. For this we create a synthetic toy dataset
coined the Sinusoids dataset. Fig. 4.(a) shows a few examples from this dataset. The dataset
contains 5 classes, each with 600 training examples and 200 test examples. Each class cor-

Accuracy Precision Recall
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Frac SRF CNN SRF

(a) Sinusoids dataset (b) Sinusoids scores
Figure 4: Exp 1: (a) Examples from the toy Sinusoids dataset. We vary the number of frequencies and
the orientations. (b) Accuracy / Precision / Recall results on the Sinusoids dataset. For a baseline CNN,
its SRF equivalent, and FracSRF. Our FracSRF is more suitable for learning varying frequencies.
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Figure 5: Exp 1: Confusion matrices for the CNN, SRF [16], and FracSRF small networks on the Si-
nusoids dataset. Our FracSRF can learn varying frequencies, and therefore it is better at distinguishing
the 5 classes.

Filter scale initialization

σ = 2−2 σ = 2−1 σ = 2−0 σ = 21 σ = 22

Top-1 Accuracy (%) 90.59±0.2 90.65±0.04 90.90±0.05 90.68±0.25 90.26±0.29
Initial Filter Size 3×3 5×5 7×7 9×9 11×11
Training Time (sec/epoch) 79.2s 79.2s 79.8s 79.2s 81.0s

Table 1: Exp 2.(a): Impact of initializing the filter scale on the performance and training time of the
FracSRF-NiN on CIFAR-10. The network can adapt the scale parameter σ even when initialized far
from the optimum. The best initialization seems to be σ = 20.

responds to a different frequency, where we vary the orientations of the sinusoids across
examples. For this experiment we use a small 2-layer network where the first layer has 32
output channels and the second 5 output channels. We repeated the experiments 5×. For the
normal CNN we learn the filters the traditional way, for the SRF we replace the filters with a
linear combination of Gaussian derivatives as in [16] with σ = 1, and for FracSRF we use a
single weighted Gaussian derivative with σ = 1. All filters are 5×5 px.

Fig. 5 shows confusion matrices for the CNN, SRF [16] and FracSRF 2-layer networks
on the Sinusoids dataset. Fig. 4.(b) reports accuracy, precision and recall scores for these
three methods. SRF cannot predict the highest frequency classes, being limited by its fixed
order in the Gaussian basis. The CNN is not able to resolve between similar frequencies and
tends to confuse neighboring classes. Our FracSRF can learn the varying frequencies and
therefore is able to better separate the 5 frequency classes.

4.3 Exp 2: Model choices analysis

Exp 2.(a): Impact of scale initialization. We test the effect of the initialization of the
scale parameter (σ ) of the Gaussian derivatives, in our FracSRF filters. Following [39] we
learn the σ and initialize it as a power of 2, which avoids dealing with negative σ gradients
during training. And we initialize the order uniformly in [1,6]. Table 1 shows results across
3 repetitions when varying σ for the FracSRF-NiN on CIFAR-10. The initialization of the
scale parameter shows minors variations, with σ = 20 being the best. The network can
correct for the scale well even when initialized far away from the optimum. Additionally,
using larger scales impacts the training time.

Exp 2.(b): Impact of order initialization. We test the effect of initializing the Gaussian
derivative order on the CIFAR-10 dataset using FracSRF-NiN. We vary the initialization of
the order by uniformly sampling in the ranges: [1,3], [3,6], and [6,10]. We repeated the
experiments 3×. Table 2 shows the optimal order initialization is found in the interval [1,3].
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Filter order initialization

order ∈ U[1,3] order ∈ U[3,6] order ∈ U[6,10]

Top-1 Accuracy (%) 90.62±0.20 90.34±0.12 89.52±0.13
Training Time (sec/epoch) 74.4s 74.5s 79.2s

Table 2: Exp 2.(b): Impact of order initialization on CIFAR-10 using FracSRF-NiN. There is not a
large difference in performance between different order ranges used for initialization. The model can
learn to adapt the order to the best one. Higher orders require more computations.
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Figure 6: Exp 3.(a): Data efficiency in the FracSRF model. Relative accuracy of NiN, SRF-NiN
[16, 29], and FracSRF-NiN on subsets of CIFAR-10. The dot size of each method indicates the relative
number of parameters. The performance of each model are normalized as a percentage of their own
accuracy at 100% training data. The scores of our FracSRF-NiN degrade less rapidly especially when
compared to NiN and SRF-NiN.

There is not a large difference between the different initialization ranges, suggesting that
the model can learn the correct orders for task. Starting from larger order range is sub-
optimal as the training time increases: the Hermite polynomial computations requires more
time at higher orders. CIFAR-10 does not contain many high frequencies and therefore it is
reasonable that orders up to 3 are able to capture the information.

4.4 Exp 3: FracSRF performance analysis

Exp 3.(a): Accuracy in few-samples regime. We test our method in the few-training sam-
ples regime. We train on different sub-sets of the CIFAR-10 dataset and evaluate on the full
test set. We compare our FracSRF-NiN with the baseline NiN and other models using struc-
tured filters such as the SRF-NiN [16], which also have been shown to generalize well with
few training examples. Fig. 6 shows the relative accuracy of each model as a percentage
of its own top-1 accuracy when trained with 100% of the data: therefore all models start at
100% and scores decrease with the decrease in training samples. We also indicate through
the dot size in the plot the relative number of parameters of each model. Our FracSRF has
the smallest number of parameters. This plot shows the expected degradation of the perfor-
mance of the networks as training data decreases. The scores of our FracSRF-NiN degrade
less rapidly, especially when compared to the SRF-NiN and the original NiN model.

Exp 3.(b): Accuracy versus parameter reduction. We test the accuracy versus parameter
efficiency for our FracSRF models when compared to a set of baseline CNNs and their SRF
versions with fixed scale [16] and learned scale [29], on CIFAR-10, CIFAR-100, STL-10
and ImageNette for the ResNet-32 backbone. Table 3 reports accuracies and number of
parameters. Our FracSRF layer achieves comparable performance to standard convolutional

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Jacobsen, van Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Pintea, Tomen, Goes, Loog, and van Gemert} 2021



NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 9

NiN [19] SRF FracSRF (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (0.98M) 51% (0.5M) 53% (0.52M) 33% (0.33M) 35% (0.35M)
CIFAR-10 90.90% 85.30% 91.48% 86.60% 91.30%
CIFAR-100 67.80% 61.50% 68.30% 61.90% 67.80%
STL-10 80.13% 59.40% 70.00% 71.00% 77.75%

ResNet-32 [11] SRF-ResNet-32 FracSRF-ResNet-32 (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (0.47M) 63% (0.30M) 65% (0.31M) 31% (0.15M) 34% (0.16M)
CIFAR-10 92.28% 88.33% 92.20% 87.99% 91.60%
CIFAR-100 67.90% 65.82% 67.61% 63.00% 67.50%
STL-10 72.30% 68.40% 70.30% 67.40% 72.00%
ImageNette 86.37% 78.57% 81.24% 80.23% 83.57%

EfficientNet-b0 [37] SRF-EfficientNet-b0 FracSRF-EfficientNet-b0 (ours)
Fixed scale [16] Learned scale [29] Fixed scale Learned scale

% Params (count) 100% (3.6M) 96% (3.47M) 96% (3.48M) 95% (3.43M) 95% (3.45M)
CIFAR-10 92.31% 89.37% 93.50% 84.50% 90.23%
CIFAR-100 76.20% 67.50% 75.81% 66.89% 72.50%
STL-10 73.20% 67.50% 71.78% 65.83% 71.81%

Table 3: Exp 3.(b): Classification accuracies versus number of parameters on CIFAR-10, CIFAR-100,
STL-10 and ImageNette datasets when comparing the baseline NiN, Resnet-32 and EfficientNet-b0
with their SRF variants [16, 29] and our FracSRF variants. Our method has comparable accuracy with
the baselines while largely reducing the number of parameters. On the high resolution, encoding more
frequencies, STL-10 dataset our method consistently outperforms the other models.

networks, while reducing the number of parameters 2 to 3 times on NiN and Resnet-32.
On the EfficientNet-b0 we do not see large parameter reductions because the model heavily
relies on 1×1 convolutions which are not replaced with our FracSRF layers. On STL-10 our
model with learned σ and learned Gaussian derivative order consistently outperforms the
other models. On the ImageNette dataset our method outperforms the baseline SRF while
reducing the number of parameters, as it does not limit the maximum filter frequency. The
STL-10 dataset contains high resolution images (96× 96 px) allowing for higher frequencies
to be present in the data. While the other methods cannot adapt to varying data frequencies,
our models learn this information through the order parameter of the Gaussian derivatives.

5 Discussion
One of the limitations of our model is that computations increase with derivative order,
because we rely on the recursive Hermite polynomials to define the Gaussian derivatives.
However, while being computationally more expensive than standard CNNs, we find that
FracSRF models are 25% faster during training compared to baseline SRF models (time
estimates averaged over the complete training epochs) which also rely on the Hermite poly-
nomials. The training time speedup comes from only computing 2 Gaussian derivative basis
functions per filter.

Another limitation is that the scale learning is fairly unstable and it needs proper regu-
larization and careful learning rate selection. Additionally, we notice that the orders have
the tendency to go towards negative values, requiring clipping during training. However,
our model greatly reduces the number of parameters when compared to standard 3×3 con-
volutional layers where instead of learning 9 parameters per kernel, it only needs to learn 3
parameters per kernel: the scale σ , and the orders νx and νy.
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6 Conclusion
We propose to explicitly learn the frequencies present in the data by encoding these in a
trainable network parameter. We start from the structured filters based on Gaussian derivative
basis and make the observation that by learning the order of the Gaussian derivative we can
learn to control the filter frequencies. We show experimentally that our model can learn the
correct frequencies from the data on a synthetic dataset and test the abilities of our model
on standard benchmark datasets when compared to NiN, ResNet and EfficientNet backbone
architectures. Our model degrades gracefully with fewer training samples, and it can achieve
good accuracy at large parameter reductions.
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with project number 612. 001.805 of the research programme TOP which is financed by the
Dutch Research Council (NWO).

References
[1] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. TPAMI,

35(8):1872–1886, 2013.

[2] Michele Caputo and Mauro Fabrizio. A new definition of fractional derivative without
singular kernel. Progr. Fract. Differ. Appl, 1(2):1–13, 2015.

[3] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pages 215–223. JMLR Workshop and
Conference Proceedings, 2011.

[5] Fergal Cotter and Nick Kingsbury. Visualizing and improving scattering networks. In
MLSP, 2017.

[6] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wich-
mann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increas-
ing shape bias improves accuracy and robustness. ICLR, 2019.

[7] Golnaz Ghiasi and Charless C Fowlkes. Laplacian pyramid reconstruction and refine-
ment for semantic segmentation. In ECCV, 2016.

[8] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin,
Sicheng Zhao, and Kurt Keutzer. Squeezenext: Hardware-aware neural network design.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 1638–1647, 2018.

[9] Kfir Goldberg, Stav Shapiro, Elad Richardson, and Shai Avidan. Rethinking fun:
Frequency-domain utilization networks. arXiv preprint arXiv:2012.03357, 2020.



NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS11

[10] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. ICLR, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[12] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 784–800, 2018.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR, 2017.

[14] Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. Informa-
tion, 11(2):108, 2020.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. CoRR, 2016.

[16] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold W. M. Smeulders.
Structured receptive fields in cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Citeseer, 2009.

[18] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for
convolutional neural network compression. In ICCV, pages 5623–5632, 2019.

[19] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, 2013.

[20] Tony Lindeberg. Scale-space theory in computer vision, volume 256. Springer Science
& Business Media, 2013.

[21] Tony Lindeberg. Scale-covariant and scale-invariant gaussian derivative networks,
2020.

[22] Shangzhen Luan, Chen Chen, Baochang Zhang, Jungong Han, and Jianzhuang Liu.
Gabor convolutional networks. IEEE Transactions on Image Processing, 27(9):4357–
4366, 2018.

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practi-
cal guidelines for efficient cnn architecture design. In Proceedings of the European
conference on computer vision (ECCV), pages 116–131, 2018.

[24] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[25] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied
Mathematics, 65(10):1331–1398, 2012.



12NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

[26] J-B Martens. The hermite transform-theory. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 38(9):1595–1606, 1990.

[27] Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scaling the scattering
transform: Deep hybrid networks. In ICCV, 2017.

[28] Juan C Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Thabet, Bernard
Ghanem, and Pablo Arbeláez. Gabor layers enhance network robustness. In European
Conference on Computer Vision, pages 450–466. Springer, 2020.

[29] Silvia L Pintea, Nergis Tomen, Stanley F Goes, Marco Loog, and Jan C van
Gemert. Resolution learning in deep convolutional networks using scale-space theory.
arXiv:2106.03412, 2021.

[30] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-
precht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[31] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scat-
tering for texture discrimination. In CVPR, 2013.

[32] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger.
Shiftable multiscale transforms. IEEE transactions on Information Theory, 38(2):587–
607, 1992.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. ICLR, 2015.

[34] Amarjot Singh and Nick Kingsbury. Efficient convolutional network learning using
parametric log based dual-tree wavelet scatternet. In CVPR workshop, 2017.

[35] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable
networks. ICLR, 2020.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[38] Nergis Tomen and Jan van Gemert. Spectral leakage and rethinking the kernel size in
cnns. arXiv preprint arXiv:2101.10143, 2021.

[39] Nergis Tomen, Silvia Laura Pintea, and Jan van Gemert. Deep continuous networks.
In International Conference on Machine Learning (ICML), 2021.

[40] Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component
helps explain the generalization of convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8684–
8694, 2020.



NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS13

[41] Thomio Watanabe and Denis F Wolf. Image classification in frequency domain with
2srelu: a second harmonics superposition activation function. CoRR, 2020.

[42] Andrew P Witkin. Scale-space filtering. In Readings in Computer Vision, pages 329–
332. Elsevier, 1987.

[43] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Bros-
tow. Harmonic networks: Deep translation and rotation equivariance. In CVPR, July
2017.

[44] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren.
Learning in the frequency domain. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1740–1749, 2020.

[45] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-
enne Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for
mobile applications. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 285–300, 2018.

[46] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and Justin Gilmer.
A fourier perspective on model robustness in computer vision. NeurIPS, 2019.

[47] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848–6856, 2018.


