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Abstract. We introduce a dataset to benchmark floor plan generation
of residential building complexes, coined as Modified Swiss Dwellings
(MSD). MSD is the first dataset that goes beyond single-apartment lay-
outs and comprises a notable variety of single- as well as multi-apartment
dwellings. MSD exceeds other datasets in complexity of the layouts and
diversity in the room graphs – further compensating for the mismatch
between current datasets and the real world. MSD sets the stage for un-
covering the difficulty of realistic floor plan generation and features over
5.3K floor plans of medium- to large-scale building complexes, consist-
ing of over 18.9K apartments, in image-, vectorized-, and graph-based
formats. We validate that existing approaches for floor plan generation,
while effective in simpler scenarios, cannot yet seamlessly address the
challenges posed by the proposed dataset. Our benchmark calls for new
research in floor plan machine understanding. Code and data will be
open.
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1 Introduction

Floor plans are two-dimensional orthographic projections of a building’s floor,
effectively conveying the spatial arrangements of the internal substructures like
areas, doors, and walls. Floor plan design is often a time-consuming and iterative
process for an informal optimization of multi-variable space functionality, con-
cerning various constraints including, environmental context, site boundary, reg-
ulations, and budget. Automated floor plan generation is an emerging research
area at the intersection of machine learning and design, offering an on-demand
initial point for architects to iterate on.

Recent advancements in deep learning and the accessibility of large-scale floor
plan datasets [7,33], led to a diverse range of learning-based floor plan generation
techniques [18, 24, 30, 33]. The main focus of the current automated floor plan
generation works has been on small-scale single-apartment dwellings. However,
the majority of real-world dwellings are medium- to large-scale multi-apartment
building complexes.
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Fig. 1: Examples from Modified Swiss Dwellings (MSD). Rooms are colored
on function e.g ., blue for "bedroom". The graph, indicating the functional program, is
given on top. MSD (left) differs from other floor plan datasets: RPLAN [33] (middle)
and LIFULL [13] (right) have simple single-apartment layouts only; MSD offers more
realistic layouts covering multi-apartment building complexes as well.

Floor plans of multi-apartment building complexes are very different from
single-apartment floor plans. Not only are there an order of magnitude more ar-
eas that need to be spatially arranged, but the interconnectivity between apart-
ments plays an essential role as well. Moreover, there are structural constraints
on the floor plan design e.g ., staircases, load-bearing walls, and columns that
need to remain intact while arranging the space.

To train and evaluate realistic models, we curated a new dataset, coined
Modified Swiss Dwellings (MSD), consisting of floor plans of building complexes.
MSD includes precise area annotations, graph attributes, and the essential struc-
tural components (building structure) of the building, such as load-bearing walls.
From this realistic data, we then closely mimic a real-world architectural design.
By following [6], we define a generative task as in which the generative process
is constrained on the graph that represents the functional program and a binary
image that represents the building structure. To benchmark the complexity of
the proposed dataset, we develop and test two baseline methods on the MSD
dataset. The first method is based on a diffusion-based approach and modifies
the HouseDiffusion model [24] while integrating it with a graph attention net-
work (GAT) [32]. The second is a segmentation-based approach, integrating a
U-Net [22] and a graph convolutional network (GCN) [9].

Despite the progress of floor plan generation of single-apartment layouts,
our results reveal significant challenges when scaling these approaches to the
generation of building complexes. The increased complexity underscores the need
to reassess current models and frameworks for floor plan generation of building
complexes. Our contributions are summarized as follows. We develop MSD –
a benchmark dataset of floor plans of building complexes. MSD contains 5,372
annotated floor plan images of medium- to large-scale single- to multi-apartment
building complexes, including precise geometrical and topological attributes. We
benchmark two state-of-the-art frameworks for floor plan generation to validate
the complexity of floor plan generation of building complexes on MSD. Our
quantitative and qualitative evaluations of generated floor plans for the two
baseline methods, reveal that the floor plan generation of building complexes
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is a challenging computer vision task and invites researchers to rethink current
models and frameworks.

2 Related work

Floor plan datasets. Floor plan datasets are used for retrieval [25], recon-
struction and structural reasoning [5,7,12,14,28], architectural symbol spotting
and wall detection [1, 4, 29], and floor plan generation [13, 33]. Most datasets
have digital-born floor plans [1, 4, 5, 7, 12, 14, 25] and some are scans or pho-
tographs [28,29]. For further comparison, we only consider public datasets used
in current-day data-driven floor plan generation: RPLAN [33] and (the part
of) LIFULL [13] (that is public). RPLAN [33] and LIFULL [13] contain 80K+
and 177K+ floor plan images of existing single-apartment dwellings in Japan
(RPLAN) and Asia (LIFULL), respectively. We list several shortcomings in
the diversity and annotation of RPLAN and LIFULL. First, they only cover
single-apartment dwellings with a limited number of areas, yet, multi-apartment
dwellings is more realistic in architectural practice due to the increasing housing
demand. Second, RPLAN and LIFULL comprise axis-aligned and non-complex
(Manhattan-shaped) layouts, which is at odds with realistic dwellings, which
typically contain a significant number of more irregularly shaped rooms. Third,
RPLAN and LIFULL do not provide compass orientation, while the direction
of the sun is a critical feature in environmental design [16]. Fourth, the relative
sizes between different data instances are not embedded in RPLAN and LIFULL,
despite the importance of the building scale before designing its interior. In our
work, we gather and develop MSD – a big collection of floor plans that addresses
these limitations. Specifically, MSD comprises single- as well as multi-apartment
dwellings of which a significant part contains irregularly shaped areas as well as
building boundaries. The floor plan instances encode compass orientations and
scale information.

Automated floor plan generation. The goal is to automatically orchestrate
the elements intrinsic to the floor plan (e.g . rooms, doors, walls) into a rea-
sonable composition. Methods include rule-based and theoretical [17,20,34] and
more recent learning-based [18, 24, 30, 33]. We categorize the literature to three
distinctive approaches. First, boundary-constrained floor plan generation meth-
ods [20, 27, 33], constrain the generative process on the external walls that sep-
arate the interior of the building from the outside. Second, graph-constrained
floor plan generation methods [15, 18,19, 30, 34] allow for fine-grained control of
the floor plan by constraining the generative process on a graph representation
of the functional requirements. Instigated by [18], especially graph-constrained
floor plan generation of residential houses has led to a broad range of domain-
specific network architectures and optimization frameworks. For example, Conv-
MPN [35] to better capture topological and shape-wise features simultaneously,
generative adversarial networks (GANs) over graphs to enable graph-structured
generation [18,19], discrete diffusion models [24] to accommodate the denoising of
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geometrical shapes, and transformer GANs [30] to capture both local and global
relations across nodes in the graph. Third, boundary- plus graph-constrained
floor plan generation methods [6, 31] allow control over the boundary as well
as the graph, a setting that is closest to most real-world design conditions. Be-
sides the graph and boundary, we constrain the generative process on the other
necessary structural components, like load-bearing walls and columns.

3 Dataset of Modified Swiss Dwellings (MSD)

MSD is derived from the Swiss Dwellings dataset (SD) [26]. We carefully cleaned
SD to obtain an effective and reliable ML-ready dataset of medium- to large-scale
residential building complexes. We took the following steps:

– Feature removal. All non-floorplan geometries are removed e.g . "bathtub",
"stairs" (full list in the Appendix).

– Residential-only filtering. We remove floor plans that include non-residential-
like geometric details e.g . areas categorized as "waiting room", "dedicated
medical room", or "physio and rehabilitation" (full list in the supplementary
materials). The led to the removal of 2,305 (16.6%) floor plans.

– Near-duplicate removal. Many floor plans that come from the same building
stem from the same plan ID [26]. Floor plans with the same plan ID are
based on the same layout, indicating that the spatial arrangements are nearly
identical. We sample only one floor plan per plan ID to drastically reduce
the amount of near-duplicates. Specifically, we sample the floor plans with
the lowest elevation. This led to the removal of 4,395 (31.6%) floor plans.

– Medium- to large-scale filtering. Floor plans are removed that contain fewer
than 15 areas. In addition, every floor plan should have at least two "Zone
2"-categorized areas. This eliminated 1,541 (11.1%) floor plans.

Some additional and less significant steps for cleaning and filtering are provided
in the supplementary materials, leading to the removal of an extra 388 (2.8%)
floor plans. Ultimately, the amount of floor plans in MSD is 5,372.

Categorization & labeling. We refer to an area as any well-defined part in
a floor plan that a person could walk in or through e.g ., bedroom, corridor,
balcony. Each area has three attributes: 1) the shape of the room, represented
by a sequence of corners (polygon), 2) a room type category, similarly categorized
as in [18], and 3) a zoning type category. The zoning types, or zones, are based on
the categorization made in [8]: "zone1" (private space), "zone2" (public space),
"zone3" (service space), and "zone4" (outside).

Image extraction. The floor plan images are made by ’drawing’ all the floor
plan’s corresponding geometries on a single-channel image canvas. The room
category labels are represented as integers e.g . 0 for "living room" and 9 for
"structure". The coordinates, x (east-to-west) and y (south-to-north), of the
geometries in the data frame are defined in meters and are usually centered
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Fig. 2: Curation of MSD. The curation of MSD consists of three phases. Phase 1:
data collection and annotation, resulting in SD [26]. Phase 2: cleaning and filtering
of the data frame associated to SD e.g ., the removal of architectural features and the
sampling of medium- to large scale floor plans. Phase 3: extraction algorithms to
extract the rasterized image, room / zoning graph, and building structure from the
cleaned and filtered data frame. The coloring is based on the room and zoning types.

around (x, y) = (0, 0) for a given floor plan. To retain the information of the
original coordinates within the image, two extra channels are added on top of
the image canvas representing x and y. The suppl. materials provide details on
how the mapping from x and y is computed.

Graph extraction. An (access) graph is an attribute of a floor plan and ex-
plicitly models the connections (edges) between the areas (nodes). We follow an
algorithmic approach to extract the graphs from the room shapes. The graphs
are extracted by investigating every possible pair of different areas for a given
floor plan. The graphs are defined and extracted as follows:

– Edge types. First, we define three types of edge connectivity: "passage" when
one can walk from one area to the other without a door in between (often
between living room and kitchen, or living room and corridor); "door" if two
areas are connected by a door; "front door" if two areas are connected by a
front door.

– Edge development. Second, we iterate through all possible area pairs and
create an edge between the the two areas if either the polygons that define
the shapes of the areas are close enough (≤ 0.04 m) – in this case the edge
type is "passage" – or if there is a door for which the polygon that defines
the door’s shape is close enough to both area shapes (≤ 0.05 m) – in this
case the edge type is either "door" or "front door" depending on the type of
door obviously.

– Node development. Third, we include all necessary geometric and semantic
information as node attributes. "centroid": the center of the area. "geome-
try": an array of the 2D coordinates representing the shape of the room as
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polygon. "roomtype": an integer representing the room category of the area.
"zonetype": an integer representing the zoning category of the area.

– Room and zoning graph. We define the room graph as the graph including
only "roomtype" node attributes, and the zoning graph as the graph includ-
ing only "zonetype" node attributes. The room and zoning graph have an
equivalent set of edges including the edge attributes. Fig. 2 depicts both
room and zoning graph.

Structure extraction. In architectural practice, structural elements of the
building are regarded as a determining factor in interior spatial arrangement.
The structural elements projecting in floor plans include load-bearing walls and
columns. Accordingly, the structural elements of the floor plan instances are
extracted and regarded as a part of the input in this study in order to frame a
plausible design problem. The criteria to distinguish the structural walls from
the regular separating walls are based on the base wall thickness. The base wall
thickness for each floor plan is the 60% quantile of the full set of existing walls’
thickness given a floor plan. Any wall with a thickness larger than the base
thickness value is then retained as a load-bearing wall. Similar to load-bearing
walls, columns are regarded fixed as well. Hence, all geometric details categorized
as "column" are appended to the the building structure.

3.1 Comparison to other datasets

We rigorously compare MSD to RPLAN [33] and LIFULL [13]. Tab. 1 accom-
panies the findings that are given next.

Origin. RPLAN and LIFULL comprise floor plans originating from the Asian
and Japanese real-estate markets, resp. MSD, on the other hand, is the first
large-scale and detailed floor plan dataset originating from Europe, specifically
Switzerland. While investigating the differences between Asian and European
floor layouts is in itself an interesting endeavour (and goes beyond this paper),
with region-specific floor plan datasets, machine learning algorithms can assist
in designing buildings that cater to specific cultural preferences or comply with
local building codes.

Realism. The vectorized floor layouts in LIFULL are extracted from the orig-
inal image dataset [13] using the vectorization algorithm proposed in [12]. This
vectorization algorithm is not necessarily error-proof and reaches on average an
accuracy (1−IoU) of 88.5 and 94.7 for predicting the room shapes and wall junc-
tions, resp. (Tab. 1 in [12]). Furthermore, floor plans in RPLAN and LIFULL
are re-oriented to make them axis-aligned, arguably for easy processing / utility.
MSD, on the contrary, retains the true orientation of the floor plans – a feature
of significant importance to the quality of the floor plan design.
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Complexity. RPLAN and LIFULL comprise floor plans of isolated apartments,
therefore the data does not contain information about the inter-relations between
spatially connected apartments. MSD is the first large-scale floor plan dataset of
multi-unit dwellings, hence, the data contains the inter-apartment connections
when such connections exist in the first place (Tab. 1, column 5). Moreover,
rooms in RPLAN and LIFULL are Manhattan-shaped. In the real-world, rooms
are often more diverse in shape, i.e. non-Manhattan (NM). MSD retains the
imposed shapes of the rooms, even if the shapes are NM (Tab. 1, column 6).
Additionally, rooms in MSD consist of more corners (Tab. 1, column 3).

Table 1: MSD compared to RPLAN [33] and LIFULL [13]. Complexity is
measured by the average number of corners per room (c3), rooms per unit (c4), and
units per floor (c5). Additionally, c6 indicates a significant share (> 5%) of NM-shaped
rooms. Information is measured per the existence of room labels (room type and
zoning type in c7 and c8, resp.) and of doors (c9). Size: c10 and c11 provide the total
number of rooms and units in the datasets, resp. Note that the total number reflects
the reduced dataset sizes when near-duplicates are removed. Diversity is measured as
the entropy, Hg (see Eq. (1)), over the distribution of graphs (c12). MSD sets a new
standard as a more complex and realistic floor plan dataset. Note that column i is
abbreviated as ci.

Dataset Origin Complexity Information Size Diversity
corners
room

rooms
unit

units
floor NM function zoning doors # rooms # units Hg

LIFULL Asia 4.54 8.15 1.00 ✗ ✓ ✗ ✗ 489.4.3K 61.3K 7.79
RPLAN Asia 5.04 6.67 1.00 ✗ ✓ ✗ ✓ 161.8K 24.2 K 4.56

MSD (ours) Europe 8.68 8.75 3.52 ✓ ✓ ✓ ✓ 163.5K 18.5K 8.02

Information. Where RPLAN and LIFULL comprise floor plans in either im-
age (RPLAN) or vectorized (LIFULL) format, MSD explicitly represents – and
makes publicly available – the floor plans in image, vectorized, and graph for-
mats. On top of the full floor plan layouts, MSD contains the corresponding
structural necessary components, represented as binary images. In addition to
room type labels e.g ., "living room", MSD provides the zoning category of each
room as well e.g ., "zone 1".. Floor plans in LIFULL do not contain door informa-
tion. MSD contains, as does RPLAN, the geometric information of the doors as
well – a necessary feature to better understand and exploit the inter-connectivity
between spaces.

Size & diversity. RPLAN (∼81K) and LIFULL (∼124K) have significantly
more data points than MSD (∼5K) (column 8 in Tab. 1). The total number
of rooms is much closer though: ∼165K for MSD vs. ∼539K and ∼1010K for
RPLAN and LIFULL, resp. However, RPLAN and LIFULL contain a serious
amount of near-duplicates, and the ‘true’ dataset sizes should be adjusted for.
We measure the number of near-duplicates in a floor plan datasets by measuring
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the MIoU between pairs of floor plans and removing those that exceed a certain
threshold, which we set to 0.87, equivalent to the procedure in [2]. While the
number of near-duplicates in MSD is negligible (<1%), those in RPLAN and
LIFULL are not: 70% for RPLAN and 50% for LIFULL. When filtering out the
near-duplicates from the original RPLAN and LIFULL datasets, the number of
rooms in MSD and RPLAN are equal, while the number in LIFULL still remains
significantly larger. In terms of the topology of the room graphs, MSD is notably
more diverse than RPLAN and slightly more diverse than LIFULL. The diversity
is measured as the entropy over the distribution of graphs:

Hg = −
∑
g∈G

pg(g) log pg(g) (1)

where G is the set of distinct un-attributed room graphs in the dataset and pg(g)
is the probability of a floor plan having a corresponding room graph equal to
graph g. pg(g) is numerically approximated through the dataset. The entropy
over the graph distributions for MSD, RPLAN, and LIFULL are 8.02, 4.56, and
7.79, resp., revealing that MSD is most diverse in terms of the distribution of
graphs.

In summary, MSD is the first well-curated and big floor plan dataset of
European (Switzerland) building complexes, and exceeds other datasets in layout
complexity and graph diversity. MSD is, above all, the first big dataset that
makes explicit the inter-relations between spatially-connected apartments, when
such connections exist in the first place. Fig. 1 further reveals the noteworthy
differences between MSD and other floor plan datasets.

4 Floor plan generation task

We set our task as a real-world design formulation by bridging the schematic
design (spatial zoning) to the detailed design (floor layout). Similar to [6], we for-
mulate the floor plan generation task as a multi-modal constrained optimization
problem with the following in- and outputs:

– Input 1. The building structure which indicates where the necessary struc-
tural components are positioned. The building structure is represented as a
set of geometries or as a binary image.

– Input 2. The zoning graph defines the connectivity of areas and is represented
as a graph with category-attributed nodes and edges that indicate the zoning
classes.

– Output. The floor plan which is either represented as an image with pixel
values that indicate the room classes or a room graph with geometry- and
category-attributed nodes that indicate the shape and room category. We
include both representations to enable the use for different model architec-
tures such as convolutional neural network (that need images) and graph
neural networks (that need graphs).
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4.1 Evaluation metrics

To measure the performance of the models, we compute both the visual and
topological similarities between the predicted and ground truth floor plans. The
ordered sets of target and predicted floor plans are denoted as Q = {Qi}1,...,N
and K = {Ki}1,...,N respectively, in which N is the size of the test set.

Mean Intersection-over-Union. It is important that predicted floor plans
closely match the ground. To measure the predictive performance at pixel level,
the Mean Intersection-over-Union (MIoU) between Q and K is used. Equivalent
to [2], MIoU across all classes c ∈ C is computed by:

MIoU(Q;K) =
1

N

N∑
i=1

∑
c∈C

Rc(Qi)
⋂
Rc(Ki)

Rc(Qi)
⋃
Rc(Ki)

, (2)

where Rc(·) is the function that outputs the region in the image occupied by c.

Graph compatibility. It is similarly important that the topology of the pre-
dicted floor plan’s composition closely matches that of the ground truth. To
measure the consistency between predicted and target graph, we compute the
graph compatibility between the graph extracted from the predicted floor plan
and the target graph. [2, 18, 19, 24, 30] measure the compatibility based on a
graph edit distance (GED) [23]. The output of the floor plan generation task,
however, hinders the practical use of the GED in our case, because doors are
not predicted in our setting. Similar to the graph extraction algorithm used in
the making of MSD, we extract the room graphs of the predicted floor plan by
looping through all the pairs of different areas of a given floor plan. We assign
an edge whenever the minimum distance between the areas is less or equal to a
buffer. The compatibility is computed by checking whether the edges from the
target graph are retained in the predicted graph:

Compatibility(Q;K) =
1

N

N∑
i=1

1∣∣Ek
i

∣∣ ∑
e∈Ek

i

1 [e ∈ Eq
i ] , (3)

Extracting graphs from noisy pixel maps is error-prone: we refrain from using
it for methods alike (e.g ., UN, in Section 5.2). For graph-based methods (e.g .,
MHD, in Section 5.1), graph extraction from the predicted layouts could lead
to errors as well, usually when a predicted layout contains many overlapping
rooms. However, we found that such scenarios do not often occur (see suppl.
materials for details). Hence, we deem extracting room edges algorithmically as
reasonable. (Note that previous works use a similar algorithmic approach too.)

As mentioned before, previous works use a GED to measure the compati-
bility [2, 18,19,24,30]. Hence, lower scores suggest better methods. We measure
a graph similarity instead of distance. Therefore, a high score (instead of low)
positively correlates with performance.
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5 Models

We design two baseline models to benchmark MSD – a diffusion- and segmentation-
based approach. Most details on the model architectures, the training, and the
algorithmic processing are given in the suppl. materials. Fig. 3 provide visual
clarifications of both baselines.

5.1 Modified HouseDiffusion (MHD)

HouseDiffusion (HD) [24] is a state-of-the-art model for graph-constrained floor
plan generation. To adapt HD to our task, a cross-attention module is added,
which effectively conditions the diffusion process on the building structure. To
learn the room graph from the zoning graph, we use a GAT [32], which operates
as a pre-processing step to the diffusion process. We coin our method Modified
HouseDiffusion (MHD).

HouseDiffusion (HD). In HD, floor plans are represented by a set of polygons
P = {P1, P2, ..., PN}, each representing a room or door. Each polygon P· is
defined by a sequence of 2D corner coordinates, Cl,m ∈ R2 in which l refers
to l-th polygon and m the index of the corner. In the forward process, noise
is added to the corner coordinates at each timestep, t such that at timestep
t=T all corner coordinates follow a normal distribution. The corner coordinates
at timestep t=0 remain unaltered. The goal of the model is then to learn the
reverse process i.e., to iteratively denoise the noisy corner candidates back. At
its core, HD consists of three attention layers with structured masking: 1) CSA,
limiting attentions among corners in the same room or door, 2) GSA, a full stack
attention between every pair of corners across all rooms, and 3) RCA, limiting
attentions between connected room-to-door corner pairs.

Wall-cross attention (WCA). MHD expects the building structure to be
encoded as a set of wall elements (straight lines), wi, which are extracted from the
binary image by a morphological thinning technique followed by skeletonization.
Each wall element is converted into a 512-d wall embedding, ŵi, by an MLP
followed by three multi-head attention modules. To condition the model on the
building structure, we add an extra cross-attention module (WCA) between all
corner and wall embeddings.

Graph attention network (GAT). Instead of changing HD’s architecture to
denoise a room type for each corner in addition to the coordinates, we separately
learn the room types beforehand. We use a GAT [32] to learn the room graph
from the zoning graph, by essentially framing the problem as node classification.

Minimum rotated rectangle (MRR). In HD, the number of corners are
sampled from the known corner count distributions per room type in the training
set. In contrast to RPLAN, whic typically have between 4 and 10 corners per
room, MSD contains many areas with a much larger amount of corners, making
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Fig. 3: Baseline methods for floor plan generation. (Left: UN) UN takes the
building structure (image) as input to the U-Net. The U-Net is composed of an encoder
and decoder using the conventional up- and down-sampling 2D convolutions, resp., and
includes skip-connections between the encoder and decoder feature maps at equivalent
feature map scales. A GCN is used to map the zoning graph to a feature vector which
is concatenated to the latent space of the U-Net. (Right: MHD) A wall encoder is
used to map the pre-processed building structure into corresponding wall embeddings.
MHD expands HD [24] by introducing an extra attention module (WCA) between the
wall embeddings from and corner features of the rooms. A GAT is separately trained
to predict the room types from the zoning types, which are used to "color" the full
layout.

it more difficult for the model to appropriately denoise the polygons. In addition
to doing experiments with the full set of corners (POL) we approximate the
polygons by a minimum rotated rectangle fit (MRR), and subsequently learn to
denoise the MRRs instead.

5.2 Graph-informed U-Net (UN)

We propose a floor plan generation model based on U-Net [22] for direct predic-
tion at pixel level. At the deepest level of the network, the U-Net is constrained
on a graph-level encoding of the zoning graph which is learned by a GCN [9].

U-Net. A U-Net is used to ’segment’ the building structure into the floor plan.
Essentially, a U-Net is an autoencoder with the addition of skip-connection be-
tween the feature maps of the encoder and decoder that share the same feature
map resolution. Similar to the original U-Net implementation, we use convolu-
tional layers for both down- and up-sampling. The output of the U-Net is the
floor plan image.

Graph convolutional network (GCN). A GCN [9] is used to learn a fixed-
sized graph-level embedding of the zoning graph. To effectively combine the
graph and boundary representations, the graph-level embedding is concatenated
to the deepest layer’s feature map – the layer which has the lowest resolution –
of the U-Net.
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Boundary pre-processing. Inspired by [33], we pre-process the building struc-
ture into a 3-channel image, distinguishing the interior (channel 1), the exterior
(channel 2), and the original building structure (channel 3). We use Segment
Anything [10] to extract the interior and exterior from the building structure.

6 Results

MIoU. (Eq. 2) is used to measure the visual similarity. The polygonal outputs
of MHD are drawn on the same image canvas as that of the ground truth. The
drawing order matters and is from largest to smallest region size to make sure
the smaller areas are not occluded by larger areas entirely.

The average MIoU (Tab. 2) ranges from 10.9 to 42.4. Intuitively, this means
that for all the models, a pixel is more likely to be predicted incorrectly than
it is to be predicted correctly. We could conclude that the performance is poor
and does not yet comply to the performance standards we would like to see. The
apparent mismatch between predictions and targets is further investigated based
on some of the generated examples that are provided in Fig. 4. Even though the
relative positioning of the areas (for MHD models) and pixel regions (for UN
models), for most generated floor plans, are predicted quite accurately, the exact
locations and precise shapes of the areas and regions are far from accurate yet
– explaining, indeed, the low overlap scores.

Table 2: MIoU and compatibility scores for MHD and UN.. The best scores
across indicated in bold, and we underline the scores that are best within each ap-
proach. The scores for different floor plan ’sizes’ – based on the range in number of
areas – are provided in the different columns of MIoU and graph compatibility. The
graph compatibility scores for the UN-based models are not available (n.a.) because
graphs cannot be reasonably extracted from the output images. The vanilla version
of UN is denoted as "U-Net", and "(pre)" indicates the use of Segment Anything for
pre-processing. MHD considers either the full polygons (POL) or a minimum rotated
rectangle fit (MRR). "+WCA" indicates the use of the full-stack attention module
between corner and wall embeddings.

Method MIoU (↑) Compatibility (↑)
avg. 15 – 19 20 – 29 30 – 39 40 – 49 50+ avg. 15 – 19 20 – 29 30 – 39 40 – 49 50+

U-Net 32.5 33.4 33.1 32.8 29.7 29.3 n.a. n.a. n.a. n.a. n.a. n.a.
UN 40.6 44.8 42.9 38.4 32.3 30.4 n.a. n.a. n.a. n.a. n.a. n.a.
UN (pre) 42.4 45.4 45.4 40.6 35.1 32.2 n.a. n.a. n.a. n.a. n.a. n.a.

MHD (POL) 10.9 11.6 11.5 10.2 9.8 9.1 80.3 80.1 79.5 81.4 80.4 81.9
MHD (POL) + WCA 17.9 18.6 18.4 17.6 16.2 15.5 71.1 70.5 70.7 71.4 71.9 73.7
MHD (MRR) 11.5 12.2 12.2 11.1 10.2 9.0 87.1 85.9 87.3 88.0 87.5 88.6
MHD (MRR) + WCA 21.8 23.5 22.0 21.0 20.1 17.9 76.2 76.0 75.6 75.8 77.6 79.2

Graph compatibility. The compatibility is not measured for the UN models
because extracting the graph from the generated images is error prone. Therefore,
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the compatibility is only computed for MHD. First, an approximating of the
room graph is extracted from the output of MHD. For an image size equal to
512, the buffer is set to 5 to allow some, but not too much, space between
rooms. The compatibility is computed between the extracted room graph of the
predicted floor plan and room graph of the target floor plan by Eq. 3. See the
supplementary material for a visual clarification of computing the compatibility
score in our case.

Compared to the MIoU, the compatibility scores, ranging between 74.4 and
87.0, are much higher. Therefore, at least in the case of MHD, the topology of
the zoning graphs are largely retained in the generated floor plans. Therefore,
MHD can reasonably well learn how the rooms should be composed – that is to
be located and shaped – together.

UN vs. MHD. Fig. 4 shows the qualitative differences between MHD and UN
models. One observation is that MHD creates composed shapes in which the
distinct areas can be easily separated by the eye. In contrast, UN models create
segmented scenes for which it is less visible which set of pixels belong to which
room. The MIoU scores, however, much higher for the UN models from which we
can conclude that the UN models have better understanding of the placement of
specific rooms in relation to the building structure. Indeed, the example outputs
of the UN models clearly show that the central regions in the floor plans are
usually corridors, that the balconies are placed outside the building structure,
and that the kitchen is usually located close the living room – characteristics
that are to lesser extend present in the floor plans generated by MHD.

6.1 Ablation studies

UN. From Tab. 2, the effects of adding the GCN and/or pre-processing are
significant and increase MIoU. The impact of the GCN is most significant for
smaller building complexes. The MIoU scores for larger plans are comparable
across the three methods, which suggests that the GCN struggles with larger
graphs, emphasizing the need of graph models that can cope better with both
small- as well as large graphs. The examples in Fig. 4 show that the addition of
the pre-processing tend to improve the placement of the areas within the interior
of the building.

MHD. Observed from the generated examples in Fig. 4, adding WCA leads to
floor plan generations that follow the building structure reasonably well. This
is shown by the increase in MIoU scores between the models with and with-
out WCA. However, the addition of WCA leads to degraded graph compatibil-
ity, likely because when conditioning on the building structure, the model has
to learn to place rooms along the existing structure, instead of only placing
rooms relative to each other. The model that uses the minimum rotated rect-
angle (MRR) approximation performs better than the model with full polygons
(POL), both on MIoU and compatibility, which we attribute to the following
potential causes. First, some rooms in MSD have many corners and are likely
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Fig. 4: Example generations of MHD and UN. Columns 1 and 2 show the inputs:
the zone graph and building structure respectively. Columns 3 - 6 show the floor plans
generated by the MHD variants. Columns 7 - 9 show the floor plans generated by the
UN variants. Column 10 shows the ground truth.

more complicated to learn. Second, the number of corners for POL is sampled
independently of the building structure, which can lead to room polygons having
too few or too many corners to fit the building structure.

Visually, the results do often look infeasible. We could, however, train MHD
on RPLAN successfully (see suppl. materials), hence we believe the "bad" re-
sults do not come from improper training – instead we attribute them to the
more complex benchmark we set: more complex graphs; more irregularly-shaped
rooms; unit connectivity; no axis-alignment.

7 Conclusion

We developed MSD – a floor plan dataset comprised of a large collection of
building-level floor plan images with corresponding geometrical and topological
attributes. In contrast to the other floor plan datasets, MSD contains diverse,
complex, and realistic floor plans of single- and multi-apartment building com-
plexes. We developed two baseline models to investigate the complexity of floor
plan generation of residential building complexes. To test the applicability of
state-of-the-art data-driven frameworks developed for floor plan generation of
single-apartment layouts, the baseline models are highly inspired by previous
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works and only altered where needed. The experiments show that floor plan
generation of building complexes is significantly more difficult than that of single-
apartment residential layouts. Our benchmark asks for even smarter methods in
the future to address real-world floor plan design.
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Supplementary Materials: MSD: A Benchmark
Dataset for Floor Plan Generation of Building

Complexes

8 Dataset of MSD

8.1 Categorization and ID nesting

The Swiss Dwellings dataset (SD) [26] is stored as a large dataframe1. Each row
in the dataframe corresponds to a geometrical detail e.g . living room, wall ele-
ment, balcony. The entity has a type and, further nested, subtype categorization
(which form two of the columns in the dataframe):

– The "feature" type includes the following subtypes: "washing machine",
"shower", "bathtub", "kitchen", "elevator", "built in furniture", "stairs",
"toilet", "sink", "ramp".

– The "separator" type includes the following subtypes: "wall", "railing",
"column".

– The "opening" type includes the following subtypes: "entrance door", "win-
dow", "door".

– The "area" type includes the following subtypes:: "radiation therapy", "of-
fice", "corridors and halls", "wintergarten", "salesroom", "studio", "open
plan office", "outdoor void", "electrical supply", "workshop", "physio and re-
habilitation", "living dining", "not defined", "shaft", "carpark", "corridor",
"air", "dedicated medical room", "office space", "water supply", "garage",
"medical room", "elevator", "balcony", "sanitary rooms", "staircase", "ve-
hicle traffic area", "cold storage", "meeting room", "living room", "factory
room", "showroom", "oil tank", "office tech room", "bedroom", "foyer",
"room", "patio", "teaching room", "elevator facilities", "logistics", "gar-
den", "canteen", "community room", "gas","operations facilities", "store-
room", "lobby", "shelter", "cloakroom", "technical area", "dining", "ware-
house", "basement compartment", "loggia", "reception room", "bathroom",
"basement", "common kitchen", "pram and bike storage room", "bike stor-
age", "break room", "house technics facilities", "lightwell", "counter room",
"transport shaft", "wash and dry room", "terrace", "arcade", "waiting room",
"void", "heating", "kitchen", "sports rooms", "pram", "kitchen dining",
"archive".

Here, the blue indicates which subtype category names are shared between
the "feature" and "area" types.

1 A dataframe is defined as a two dimensional data structure, for which the naming
is borrowed from the Pandas library in Python.

https://pandas.pydata.org/
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In addition to the type and subtype categories, each entity contains metadata
about the relation to other entities. This relation is resembled by the nested
positioning of the entities across different sites, buildings, floors, apartments,
and units. The most high-level positional identifier (ID) is the site ID which
tells you in which site the entity is located. A site could, for instance, be a set
of buildings in the same neighbourhood (in which the different buildings are
likely to share similar characteristics). Second is the building ID which tells you
in which building the entity is located. Third is the plan ID which corresponds
to the floor plan layout prototype that the entity is part of. Fourth is the floor
ID which corresponds to a particular floor at a specific elevation in a building.
It is noteworthy to mention that different floors can originate from the same
plan ID. Fifth is the apartment ID which tells you from which apartment the
entity originates. It is important to note that the apartment ID is shared across
different floors in the case of multi-storey apartments i.e. apartments that stretch
across multiple levels. Sixth and final is the unit ID which indicates from which
apartment the entity originates. In contrast to the apartment ID, the unit ID is
different for each floor.

Type, subtype, geometry, site ID, building ID, plan ID, floor ID, apartment
ID, and unit ID define – besides other meta-level information such as elevation –
the columns of the dataframe. The geometry is defined as a polygon, formatted
as well-known text (WKT).

8.2 Filtering details

For filtering and cleaning, we follow the steps provided in Section 3. Some details
that were not mentioned specifically in the main text are provided below:

– Feature removal. All entities that are a "feature" (see Sec. 8.1) are removed
entirely from the dataframe.

– Residential-only filtering. All floor plans that contain at least one entity
for which the subtype category is not to-be-found in residential buildings
(the subtypes indicated in red in Sec. 8.1) are removed from the dataframe.

In addition to the filtering steps above, we remove floor plans that have too
many small disconnected parts. Specifically, we remove all floor plans that have
2 or more areas that are fully disconnected in the room graph (read: that are
"floating" in the floor plan); removing an extra 388 (2.8%) floor plans.

8.3 Image extraction

The coordinates, x (east-to-west) and y (south-to-north), of the geometries in the
data frame are defined in meters and are usually centered around (x, y) = (0, 0)
for a given floor plan. To retain the information of the original coordinates within
the image, two extra channels are added on top of the image canvas representing
x and y. The mappings from x and y to the corresponding pixel locations xi and
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yi (both defined on [0, 512]) for a given image size s (assumed to be square) are
given by:

xi =
(
x− xmin + 0.5 [∆yx]+

)
· s

max (∆x, ∆y)
, (4)

yi =
(
y − ymin + 0.5 [∆xy]+

)
· s

max (∆x, ∆y)
, (5)

where ∆x = xmax − xmin is the ’width’ of the floor plan, ∆y = ymax − ymin
is the ’height’ of the floor plan, ∆xy = ∆x − ∆y and ∆yx = −∆xy are the
relative differences between width and height, and [·]+ = max (0, ·). The red
part maps all coordinate values above 0; the green part makes sure to put
the floor plan in the middle of the square that starts at (0, 0) and extends to
(max(∆x, ∆y),max(∆x, ∆y)); the blue part makes sure to scale the square to
the image domain.

8.4 Statistics

With a total of 5.3K+ floor plans, containing 18.9K+ units, and covering 165.3K+
areas, MSD is one of the few publicly available large-scale floor plan datasets2.
Fig. 5 shows the room and unit distributions for MSD.

Fig. 5: Area and unit distributions MSD. The unit distribution per floor (right),
area distribution per floor (middle), and area distribution per unit (right) are plotted
as histograms. The x-axis specifies the number of units or areas, and the y-axis specifies
the frequency. From the unit distribution plot it is apparent that MSD comprises mostly
floor plans that contain between 2 to 9 units. MSD comprises mostly floor plans that
have between 15 and 50 areas, with a peak around 25. The area distribution per unit
is similar to RPLAN [33] and LIFULL [13], ranging between 3 and 15 areas per unit
and a median around 7 areas per unit.

2 For details on the sizes of the other floor plan datasets, please refer to [21].
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9 Graph extraction from generated outputs

In our work, we have set the floor plan generation task to predict only walls
and areas – not doors. Therefore, we cannot reliably extract the room graph,
ĝr

3, from the predicted floor plan because the edge formation critically depends
on the door locations. Instead, we extract the adjacency graph, ĝa, from the
predicted floor plan in which the edges are formed when geometries are close
enough. Note that the set of nodes of ĝr and ĝa are equivalent, and that the set
of edges can be different.

For the graph extraction strategy, we use an algorithmic approach to extract
ĝa. Specifically, we assign an edge between a pair of nodes if and only if the mini-
mum distance between the areas of that pair does not exceed a preset maximum
distance, which is referred to as the buffer distance. For an image size of 512,
we set the buffer distance to 5. Note that when two areas are overlapping, the
minimum distance is 0, hence an edge is formed between overlapping areas.

Fig. 6: Graph compatibility computation. Left: predicted floor plan including ĝa.
Right: ground truth floor plan including gr. The set of edges in gr that is retained in ĝa
is colored in red. The node correspondence is made visual by enumerating the nodes
graphically. The graph compatibility is computed by dividing the amount of red edges
from ĝa by the total amount of edges in gr, equaling 25/30 = 0.83.

Access connectivity implies adjacency, but adjacency does not necessarily im-
ply access connectivity, which means that the gr is a subgraph of ga. Essentially,
the graph compatibility reflects to what extend gr is contained in ĝa, which is
done by computing the ratio of the amount of the edges from gr that are retained
in ĝa with respect to the total amount of edges in ĝa (see Eq. (3) for details, and
Fig. 6 for a visual elaboration).

For graph-based approaches e.g ., MHD Section 5.1, the process of extract-
ing graphs from predicted layouts can also introduce inaccuracies, particularly

3 We use ĝ to refer to the graph of the predicted floor plan and g to the graph of
the ground truth floor plan. Additionally, the subscripts r and a refer to ’room’ and
’adjacency’ graph types.
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in cases where the predicted layout encompasses numerous overlapping rooms.
Nonetheless, our analysis indicates that these instances are infrequent: rooms
overlap on average (for MHD) with 4.11±2.25 other rooms. A typical prediction
is given in Fig. 6. Therefore, we consider the algorithmic extraction of room
edges to be a justifiable method for extracting the room graphs.

10 Modified HouseDiffusion (MHD)

10.1 Node classification with GAT

We train a GAT model [32] to predict the room graph given the zoning graph.
The room and zoning graph are isomorphic, and thus this prediction task can
be formulated as a node classification problem.

The GAT model consists of several stacked graph attention convolutional
(GATConv) layers. The input to the model consists of the zoning type for each
node, as well as the door type for each edge. The output of the last GATConv is
concatenated with the initial node features, and subsequently fed into the final
linear layer that maps the concatenated feature vectors to the correct output
dimension for predicting the room types. Between each hidden layer, a ReLU is
used as activation function. We use dropout for regularization and use the Adam
optimizer. The amount of GATConv layers is set to 5, the hidden sizes of each
GATConv to 64, the learning rate to 0.001, and the batch size to 128. Including
early stopping, for this setting the validation accuracy is 0.893.

10.2 Minimum rotated rectangle approximation (MRR)

To be able to represent each area with a fixed number of corners, we propose
to take the minimum rotated rectangle of each area. The minimum rotated
rectangle of an area is the rotated rectangle that fully encloses the area polygon
with minimal area. Approximating the areas of a floor plan by their minimum
rotated rectangle (MRR) works best when drawing the area rectangles in order
from largest to smallest, such that small areas occlude larger areas (see Fig. 7
for a visual clarification).

Fig. 7: MRR. Left: the original floor plan (containing polygons with arbitrarily many
corners). Middle: the result of applying MRR, but drawn in random order. Right: the
result of applying MRR and drawn largest to smallest area .
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10.3 Diffusion model

We borrow the model architecture of HouseDiffusion (HD) [24], and extend it to
suite MSD. The attention layer in the transformer model is modified by adding
a cross attention between room corners and wall segments. Additionally, the
relational cross attention (RCA) as defined in HD is modified to incorporate
the edge attributes as well. RCA is modified because, in contrast to RPLAN in
which areas are solely connected by a door, edges in MSD have a "connectivity"
attribute representing the type of connectivity being "door", "front door", or
"passage".

We set the batch size to 32 and train for 300k steps. Other hyperparameters
are left the same as in HD implementation.

10.4 Building structure pre-processing

To be able to effectively condition MHD on walls, we first convert the binary
image of the building structure to a set of straight lines. The line elements are
extracted from the binary image of the building structure by following the steps
below:

– Morphological thinning. We start by morphological thinning of the bi-
nary image of the building structure. Morphological thinning (see page 671
in [3], and an overview of thinning techniques in [11]) essentially creates a
new binary image in which line thicknesses are reduced to a minimum (ide-
ally one pixel). The resulting binary image is a skeletonized version of the
original version.

– Skeleton network extraction. From the skeletonized image we extract
the skeleton network graph in which nodes represent joints and corners of
the skeleton, and edges the geometry of the curves between the nodes.

– Simplify skeleton network into set of lines. The edges of the skeleton
network graph, which contain the geometry of the curves between two nodes,
are converted to a set of straight lines.

Fig. 8 visualizes the processing steps of the line extraction algorithm.

10.5 Wall-cross attention (WCA)

Each wall element wi extracted by the line extraction algorithm is a vector that
represents the start and end point of the line. Similar to HD, we augment wi

by uniformly sampling 7 points between start and end point. Equivalent to the
corner embeddings in HD, a single-layer MLP embeds the 4-D wi into a 512-
D embedding vector: ŵi = MLPw(AUW(wi)), in which AUW is the sampling
function (similarly named as in HD). Note that the wall elements do not get
updated during the denoising process.

The wall embeddings are used as additional input to MHD. In the original
model, the attention layer consists of three types of masked attention with the
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Fig. 8: Line element extraction. Top-left: building structure as a binary image in
which black indicates the necessary structural elements of the building. Top-right: a
skeletonized building structure in which all the walls are reduced to one pixel width.
Bottom-left: a skeleton network graph in which the nodes (joints and corners) are
red dots. Bottom-right: a simplified set of straight lines approximating the complete
building structure as a set of straight line elements.

room corner embeddings. Specifically, the attention module in MHD is modified
by adding an extra cross attention operation between all room corner embeddings
and wall embeddings, referred to as wall cross attention (WCA). The room
corners are used as query, and the wall embeddings as keys and values. All
attention operations in the attention layer are summed together. Fig. 9 provides
a zoomed-in version of Fig. 3.

10.6 RCA with door type embedding

We modify the RCA module to discern between different connectivity types.
Standard doors, passages, and front doors are each assigned a unique learned
embedding. The RCA attention is applied separately for each door type, with the
attention mask modified to only act on room corners connected by the specified
type. On each application, the room corner embeddings are modified when used
as keys and value by summing with the embedding of the door type.

11 Graph-informed U-Net

11.1 Visual explanation of model.

Fig. 10 shows the architecture of U-Net model coupled with the GCN. While
the U-Net learns a representation for the building structure, the GCN learns a
representation for the zoning graph. The two representations are concatenated
and simultaneously upsampled by the decoder of the U-Net, outputting the floor
plan as a segmented image with the same resolution as the building structure.
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Fig. 9: Modified HouseDiffusion (MHD). A wall encoder is used to map the
pre-processed building structure into corresponding wall embeddings. MHD expands
HD [24] by introducing an extra attention module (WCA) between the wall embed-
dings from and corner features of the rooms. A GAT is separately trained to predict
the room types from the zoning types, which are used to "color" the full layout.

11.2 Boundary pre-processing

Initially, the building structure’s binary image consists purely of the struc-
tural necessary components: black ("0") for structure and white ("1") for non-
structure. To better guide the model, we use Segment Anything [10] to predict
the interior and exterior of the floor plans and explicitly input that information as
well. Before we use Segment Anything, the binary images is substantially padded
with extra pixel (white pixels). The padding ensures that the segmentation al-
gorithm can reliably infer the largest area as the exterior, even in cases where
the building structure is not completely closed. Once the masks are created, the
largest mask is selected as background. The pre-processed image contains the
following channels:

1. "In-wall-out". This channel marks the interior of the building as ’1’, the
boundaries as ’0.5’, and the exterior as ’0’.

2. "In-out". This channel marks the interior of the building as ’1’ and the
exterior as ’0’, focusing on distinguishing between the interior and exterior
spaces without structural details.

3. "Raw-boundary". This channel contains the original building structure.
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11.3 Model, training, and evaluation details

The encoder of the U-Net comprises four convolutional layers, each with layers
that double the channel dimensions from 64 to 512 (64 → 128 → 256 → 512). The
convolutional layers all consist of (in order): 3x3 convolution, batchnorm, ReLU,
and 2x2 maxpool. The GCN consists of a stack of several graph convolutional
(GConv) layers, each with a hidden feature size of 256. Global mean pooling
is used to compute a graph-level feature vector of size 256. We use the Adam
optimizer, and we use the cross-entropy loss.

We found the following optimal settings during training: the amount of
GConv layers is 2, a learning rate equal to 0.001, the batch size is 16, and
the hidden sizes of each GConv layer is 256.

Fig. 10: Graph-informed U-Net (UN). UN takes the building structure (image) as
input to the U-Net. The U-Net is composed of an encoder and decoder using the con-
ventional up- and down-sampling 2D convolutions, resp., and includes skip-connections
between the encoder and decoder feature maps at equivalent feature map scales. A GCN
is used to map the zoning graph to a feature vector which is concatenated to the latent
space of the U-Net.

12 MHD on RPLAN

Not surprisingly, we successfully trained MHD on RPLAN [33], with seemingly
similar performance to HD. To train MHD on RPLAN, we extract the boundary
of the layouts first. The boundary (as a set of walls) and room graph serve as
inputs to MHD. Similar to HD, doors are also predicted (dark red and light
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Fig. 11: MHD on RPLAN. Two example predictions of MHD on RPLAN [33]. The
generated layouts follow the boundary reasonably well. The input graphs in both cases
are equivalent, showing that the model can cope with a wide-variety of differently-
shaped boundaries.

green for interior and front doors, resp., in Fig. 11). Further training details are
equivalent to training on MSD. Two typical examples are shown in Fig. 11.

13 Extra results

For visual inspection and comparison, extra results of MHD on MSD are given
in Fig. 12.
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Fig. 12: Extra example generations of MHD and UN. Columns 1 and 2 show
the inputs: the zone graph and building structure respectively. Columns 3 - 6 show
the floor plans generated by the MHD variants. Columns 7 - 9 show the floor plans
generated by the UN variants. Column 10 shows the ground truth.
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