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a b s t r a c t 

This work considers the task of object proposal scoring by integrating the consistency between state- 

of-the-art object proposal algorithms. It represents a novel way of thinking about proposals, as it starts 

with the assumption that consistent proposals are most likely centered on objects in the image. We pose 

the box-consistency problem as a large-scale regression task. The approach starts from existing popular 

object proposal algorithms and assigns scores to these proposals based on the consistency within and be- 

tween algorithms. Rather than generating new proposals, we focus on the consistency of state-of-the-art 

ones and score them on the assumption that mutually agreeing proposals usually indicate the location 

of objects. This work performs large-scale regression by starting from the strong Gaussian Process model, 

renowned for its power as a regressor. We extend the model in a natural manner to make effective use of 

the large number of training samples. We achieve this through metric learning for reshaping the kernel 

space, while maintaining the kernel-matrix size fixed. We validated the new Gaussian Process models 

on a standard regression dataset — Airfoil Self-Noise — to prove the generality of the method. Further- 

more, we test the suitability of the proposed approach for the undertaken box scoring task on Pascal- 

VOC2007. We conclude that box scoring is possible by employing overlap statistics in a new Gaussian 

Process model, fine tuned to handle large amounts of data. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

In this work we focus on the task of object proposal scoring by

ntegrating the consistency of proposals among multiple state-of-

he-art algorithms. We formulate the box-consistency problem as

 large-scale regression task, as there are over 20 0 0 proposals per

mage within only one algorithm. Furthermore, assigning scores to

oxes is inherently a regression task. Thus, we choose as a starting

oint for our approach the strong Gaussian Process model ( Bottou,

007; Hensman et al., 2013; Quiñonero-Candela and Rasmussen,

005; Snelson and Ghahramani, 2005 ). In this work, we extend

he standard Gaussian Process regression model to make effective

se of the large number of training samples by employing metric

earning. We achieve this by looking at the consistency between

he proposals of different state-of-the-art algorithms. 

Object proposal methods can be considered to have reached

 satisfactory level when inspecting the recall of state-of-the-art

ethods ( Alexe et al., 2010; Cheng et al., 2014; Krähenbühl and

oltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al.,

013; Zitnick and Dollár, 2014 ). However, the high recall comes at
∗ Corresponding author. 
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077-3142/© 2016 Elsevier Inc. All rights reserved. 
he cost of a large number of boxes — between 10 0 0 and 30 0 0

oxes per image. This work aims at precisely this: re-scoring exist-

ng proposals of different algorithms such that we can more easily

nd the good ones. 

Another gain following from the ability to assign goodness

cores to boxes is self-assessment — providing a goodness score to

ach bounding box. This allows for the selection of a limited num-

er of boxes to be used at a subsequent step for object detection.

ell-known methods such as selective search ( Uijlings et al., 2013 )

nd prim ( Manen et al., 2013 ), despite their good performance, lack

he ability of self-assessment by design. This work provides a man-

er of assigning goodness scores to any proposal box. 

There is a common denominator between well-known object

etection methods ( Alexe et al., 2010; Cheng et al., 2014; Krähen-

ühl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Ui-

lings et al., 2013; Zitnick and Dollár, 2014 ) — they use as a start-

ng point different assumptions yet they attain comparable per-

ormance. Therefore, there is gain in jointly employing them. In

his work, we hypothesize that the consistency in proposals be-

ween different methods is revealing as to the true location of

bjects in an image. This idea is underlined in Fig. 1 . The figure

epicts a box proposed by the edge-boxes algorithm ( Zitnick and

ollár, 2014 ), and its closest neighbors in a set of 6 other object

http://dx.doi.org/10.1016/j.cviu.2016.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.05.002&domain=pdf
mailto:s.l.pintea@uva.nl
http://dx.doi.org/10.1016/j.cviu.2016.05.002
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(a) Inconsistent. (b) Consistent.

Fig. 1. Proposals characterized by consistency in overlap with other proposals, tend 

to be centered on objects. 
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proposal algorithms ( Alexe et al., 2010; Cheng et al., 2014; Krähen-

bühl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Ui-

jlings et al., 2013 ). In this work, rather than extracting appear-

ance features from the pixels enclosed in the bounding boxes, we

build our features upon the consistency in overlap between the

neighboring boxes within the same proposal algorithm as well as

the other considered proposal algorithms. To our knowledge we

are the first to consider box scoring from box-overlap information.

Moreover, this method can be applied to any object proposal algo-

rithm, as it is not restricted to only the seven algorithms discussed

here. 

We cast the box-consistency as a large-scale regression prob-

lem, given that the scores associated with boxes are continuous

variables to be learned. The box scoring function is nonlinear in

the feature space, since a satisfactory filtering of boxes is hard to

achieve. Gaussian Processes are strong nonlinear — kernel-based —

regressors characterized by a high descriptive power ( Bottou, 2007;

Hensman et al., 2013; Quiñonero-Candela and Rasmussen, 2005;

Snelson and Ghahramani, 2005 ). The proper kernel characteristics,

describing the similarities between samples, are estimated directly

from the data. Moreover, they are non-parametric and have com-

parable computational costs with their discriminative counterpart,

the SVR (Support Vector Regressors). Similar to SVR, Gaussian Pro-

cesses are kernel methods, thus, require the estimation of a kernel

matrix, squared in the size of training data. Given that we have

numerous training samples — proposals in the training set, we in-

troduce an adaption of the Gaussian Process for large-scale prob-

lems. This allows us to retain the descriptive power of the Gaus-

sian Process, while limiting the kernel-matrix size to a fixed small

set of centroids. We subsequently employ additional samples to

learn the kernel distances in a metric learning formulation through

loss optimization. Thus, we reshape the kernel space such that the

model better describes the target space distribution. This theoret-

ical extension is not restricted to box scoring, and it can be ap-

plied to regression problems with a prohibitively large number of

samples. Therefore, we additionally test the new Gaussian Process

models on a standard machine learning dataset. This demonstrates

the generality of our theoretical contribution. 

To summarize this work: (i) we theoretically extend the Gaus-

sian Process model for large-scale regression. We do so by retain-

ing a fixed kernel-matrix size. To compensate for the lost infor-

mation we employ metric learning for reshaping the kernel space

to better fit the training targets. (ii) We introduce a novel view of

box proposal scoring by learning it from the consistency between

the box proposals of different algorithms. (iii) We validate the new

Gaussian Process models on a standard machine learning regres-

sion data-set — the Airfoil Self-Noise Data-set of NASA. This proves
he generality of the model. Finally, we test the suitability of the

roposed approach in the context of box regression, on the Pascal-

OC2007 data-set. 

. Related work 

.1. Object proposal methods 

In the literature, generating object proposals has been a main

ocus. Methods such as objectness ( Alexe et al., 2010 ) and core

 Rahtu et al., 2011 ), rely on the fact that objects are salient. On

he other hand, methods such as prim ( Manen et al., 2013 ), and

elective search ( Uijlings et al., 2013 ), consider a hierarchical ap-

roach to object proposals, based on the assumption that object

arts are internally coherent in terms of color, texture or loca-

ion in the image. They generate proposals by starting from an

ver-segmented image and iteratively merging similar segments.

inally, the most recent methods — bing ( Cheng et al., 2014 ),

eodesic ( Krähenbühl and Koltun, 2014 ) and edge-boxes ( Zitnick and

ollár, 2014 ) — ascertain that objects are visible through strong

oundaries. In this work, rather than generating object propos-

ls by introducing a new paradigm, we start from existing pop-

lar proposal methods and learn the goodness of boxes. We re-

ate the idea of box goodness to the consistency in proposals be-

ween different methods. Our underlying assumption is that none

f the above paradigms wins exclusively in the end, but rather, all

are reliable truth about object locations. Thus, there is gain to be

chieved by combining them. 

.2. Deep net proposals 

Convolutional Neural Networks (CNN) have been recently used

ith success for object detection starting from already existing ob-

ect proposals ( Girshick, 2015 ), ( Girshick et al., 2014 ), ( Ren et al.,

015 ), or for proposing class-agnostic bounding boxes ( Erhan et al.,

014 ), ( Karianakis et al., 2015 ). ( Girshick et al., 2014 ), brings

orth the well known RCNN (Regions with CNN features) model

hich uses Selective Search ( Uijlings et al., 2013 ), object pro-

osals in a CNN for object detection. Girshick (2015) , improves

he RCNN method of Girshick et al. (2014) , in terms of training

nd test speed, as well as detection accuracy and it coins the

ew method “Fast RCNN”. Ren et al. (2015) , introduces a fully-

onvolutional network that predicts object bounding boxes. The

etwork can be trained to share features with the “Fast RCNN”

 Girshick, 2015 ), and thus, be used for object detection. Instead of

onsidering the feasible locations and sizes of objects in the im-

ge ( Zhao et al., 2014 ), in Erhan et al. (2014) , a neural network

ased on saliency features is proposed for generating class inde-

endent bounding boxes together with an object likelihood score.

arianakis et al. (2015) , advises the use of CNNs for generating ob-

ect proposals by advancing a boosting approach based on the hi-

rarchical CNN features which gives competitive performance on

he object detection task. The recent work of Chavali et al. (2015) ,

oints out shortcomings in the current object proposal evaluation

rotocols and offers a fully annotated data-set for evaluation as

ell as performing diagnostics on existing proposal methods. It is

f interest to take into account these findings, however we do not

im at diagnosing popular object proposals, but rather at testing if

onsistency in proposals discloses the true location of objects. In

ontrast to methods generating new object proposals — based on

and-crafted features, integrating prior knowledge about the task

t hand or, learned in a CNN framework — we aim at combing the

nformation given by a set of largely used object proposal algo-

ithms such that we can estimate the goodness of a given proposal

ox. 
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.3. Combining methods 

To learn the goodness of bounding boxes, we start from a set

f existing proposal methods. We consider the overlap between

he boxes as the only required training information. This can be

een somewhat similar to the idea of combining existing meth-

ds which was studied in Karaoglu et al. (2014) ; Xu et al. (2014) .

araoglu et al. (2014) , combines object detectors by using the de-

ection scores together with the maximum overlap with other de-

ections. Xu et al. (2014) , merges pedestrian detectors by employ-

ng the scores associated with each detection and clustering the

etections. Here we do not have scores associated with each box.

herefore, we need a method that allows us to both assign scores

o boxes and also integrate the information of all proposal meth-

ds. Rather than merging existing proposals in a straight-forward

ashion, we learn box goodness based on consistency. We correlate

he consistency in the proposals of different methods to the good-

ess of a certain box. We do so in a Gaussian Process regression

ramework. 

.4. Box overlap as features 

Vezhnevets and Ferrari (2015) , defines three overlap statistics

hat describe the relative position of two object proposal bound-

ng boxes. These overlap statistics indicate roughly the positioning

f two boxes: their relative overlap, and whether the first box is

ncluded in the second or vice-versa. Unlike Vezhnevets and Fer-

ari (2015) , where the statistics are used as targets for regression,

ere we employ these three statistics in the feature definition of

ur proposals. Furthermore, we do not make use of any additional

ppearance features based on the pixel values enclosed by the

ounding boxes. We want to challenge the idea of box scoring from

verlap information only. 

In Vezhnevets and Ferrari (2015) , the use of Gaussian Processes

s also advanced, albeit with a different goal in mind — object de-

ection. The authors of Vezhnevets and Ferrari (2015) , learn from

ppearance features extracted from the pixels enclosed by the

ounding boxes to predicted overlap statistics with other boxes.

hese overlap statistics are subsequently used together with ap-

earance features in an Exemplar-SVM for detection. Dissimilar to

ezhnevets and Ferrari (2015) , here we employ these three overlap

tatistics to describe the boxes, with the goal of learning the qual-

ty of box proposals in the large-scale Gaussian Process regression

ramework. 

.5. Gaussian process versus other regressors 

The problem of box scoring is inherently a regression prob-

em as the goodness scores are continuous variables. Given that

he task of estimating box goodness is not straight-forwardly

olved and we have numerous training samples, we use a non-

inear regressor. We propose the use of Gaussian Processes

 Rasmussen, 2006 ), as they are renowned for their strength as

on-linear regressors. Neal (2012) shows that when the number

f hidden units tends to infinity, the distribution of functions gen-

rated by a neural network converges to a Gaussian Process. More-

ver, RVM (Relevance Vector Machines), which are another choice

f non-linear regressors, can be seen as a special case of Gaussian

rocesses. In the RVM case the covariance function is degenerate

 Bishop, 2006; Rasmussen, 2006 ). When comparing the SVR (Sup-

ort Vector Regression)/SVM (Support Vector Machine) with the

aussian Process regressor/the Gaussian Process classifier, they can

e shown to optimize very similar quantities ( Rasmussen, 2006 ).

owever, they are not equivalent as the former is a discrimina-

ive model while the Gaussian Process is generative. This also en-

ails that the Gaussian Process can associate a certainty estimate
ith every prediction. Moreover, the Gaussian Process model can

earn the kernel characteristics automatically from the data. This

rovides more flexibility to the model. 

Similar to Vivarelli and Williams (1999) , we also propose the

se of a full covariance matrix in the kernel function of the Gaus-

ian Process. But unlike this work, rather than using eigen analysis,

e propose to learn this covariance through metric learning. This

tep helps to better model the target distribution by employing ad-

itional available training data. 

.6. Large scale Gaussian Processes 

Gaussian Processes focusing on the local information in the

ata samples have been proposed in Bo and Sminchisescu (2012) ,

6 ), Snelson and Ghahramani (2007) , U039" > Urtasun and Dar-

ell (2008) , proposes a local mixture of Gaussian Processes where

he hyperparameters of each component are learned in an online

ashion. The Gaussian Process models proposed in this paper are

ased on a restricted set of training sample which represent clus-

er centers describing the data in a certain area of the feature

pace. Despite these samples locally describing the feature space,

he Gaussian Process model we propose is a global one rather than

 local one. The gain of our method, with respect to the local re-

ression methods, is having one unified model rather than a set of

odels trained on different parts of the data. 

Previous work has also focused on sparse methods for restrain-

ng the kernel matrix size in the Gaussian Process. Methods such

s Cao et al. (2013) , Csató and Opper (2002) , Hensman et al. (2013) ,

awrence et al. (2003) , Quiñonero-Candela and Rasmussen (2005) ,

anganathan et al. (2011) , Snelson and Ghahramani (2005) ,

itsias (2009) propose global approximations in order to achieve

fficiency. Csató and Opper (2002) , proposes an online algorithm

n which the relevant training samples are selected in a sequen-

ial manner. Quiñonero-Candela and Rasmussen (2005) , presents

 literature survey where existing sparse Gaussian Process meth-

ds are presented in a unified manner by changing the definition

f the prior, thus emphasizing similarities between existing meth-

ds. Snelson and Ghahramani (2005) , learns a small set of pseudo-

nputs together with the model hyperparameters through gradient

ptimization. This method can be seen as a Bayesian regression

odel where the noise is input dependent. Lawrence et al. (2003) ,

uilds on active learning and forward selection to find a sparse

et of training samples which is advantageous both in terms of

peed and storage requirements. Titsias (2009) introduces a vari-

tional inference method that finds the inducing variables by min-

mizing the KL divergence between the variational distribution and

he exact posterior distribution. Hensman et al. (2013) , proposes

 stochastic variational inference approach that relies on a set of

lobal variables which factorize into observations and latent vari-

bles. Cao et al. (2013) , jointly optimizes the selection of the induc-

ng points — which provide the Gaussian Process regression with

parsity — and finds the optimal Gaussian Process hyperparame-

ers. Ranganathan et al. (2011) , proposes an online sparse Gaussian

rocess regression method that uses Cholesky updates for sparse

ernel matrices. Similarly, the models proposed in the paper are

lso sparse in the sense that rather than using the complete train-

ng data, we rely on a fixed set of cluster centers in the data space.

issimilar to existing methods, we follow an approach based on

etric learning through loss minimization for hyperparameter op-

imization. This is more common for discriminative methods — i.e.

VM , SVR . 

.7. Metric learning 

In order to efficiently employ the large amount of training data

hile keeping the kernel-matrix size fixed, we use metric learning.
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Fig. 2. Method overview. In the first step we generate box proposals for each image using the seven considered proposal algorithms ( Alexe et al., 2010; Cheng et al., 2014; 

Krähenbühl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al., 2013; Zitnick and Dollár, 2014 ). In the training phase, we sample the proposals of each 

algorithm based on their distribution with respect to the overlap with the ground truth. Subsequently, in the second step, we compute overlap statistics for each retained 

box with boxes from all proposal algorithms. Both during training and test, these overlap statistics with neighboring boxes describe our features. During training, a subset of 

these box features are used to obtain cluster centers from K-means. In the third step we propose 2 models: GP-Cluster — a Gaussian Process model trained on the K-means 

cluster centers only, and GP-Metric — a Gaussian Process trained on the same K-means cluster centers, but for which additional training samples (boxes with associated 

features) are used to adjust the kernel distances through metric learning. The targets of the regressors are the overlap scores with the ground truth boxes. 
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Metric learning has been previously the focus of works such as

Huang and Sun (2013) ; Kostinger et al. (2012) ; Titsias and Lázaro-

Gredilla (2013) ; Weinberger and Saul (2009) ; Xing et al. (2002) ;

Ying and Li (2012) . Ying and Li (2012) , proposes a metric learn-

ing approach based on eigenvalue optimization, connecting these

two trends together. Xing et al. (2002) , analyzes the use of metric

learning for improving clustering and proposes learning similarity

measures in a convex optimization formulation. Somewhat simi-

lar, we also combine clustering with metric learning, but clustering

is not the end goal. We do so in order to effectively employ the

training data in the Gaussian Process and to add more descriptive-

ness to the model. Titsias and Lázaro-Gredilla (2013) , advances a

variational Gaussian Process method which shifts the kernel into a

space where the hyperparameters are neutralized to value one. Un-

like in our work, the goal of Titsias and Lázaro-Gredilla (2013) , is

to achieve a model where the hyperparameters are integrated out.

Here, we adapt the kernel shape such that it incorporates informa-

tion from the discarded training samples. Huang and Sun (2013) ,

proposes kernel regression with sparse metric learning that im-

poses a regularization over the projection matrix to be learned.

Similar to Huang and Sun (2013) , we also use metric learning

to allow the model to better map the target distribution. In this

work, we perform the metric learning through loss optimization

in the SGD (Stochastic Gradient Descent). We, additionally, employ

in the SGD the cone projection step described in Weinberger and

Saul (2009) , together with their update of the learning rate. 

3. Box goodness through regression 

3.1. Method overview 

This work proposes learning box goodness in a Gaussian Pro-

cess regression framework based on the consistency in proposals

of seven different object proposal algorithms ( Alexe et al., 2010;

Cheng et al., 2014; Krähenbühl and Koltun, 2014; Manen et al.,

2013; Rahtu et al., 2011; Uijlings et al., 2013; Zitnick and Dollár,

2014 ). Fig. 2 depicts the main steps entailed by our method. 

The first step generates proposal boxes by applying all seven al-

gorithms. Given the large number of proposals generated by each

algorithm — ≈ 20 0 0 per image — during training, we sample boxes
rom each proposal method. The sampling is based on the distri-

ution of the overlap of the training boxes with the ground truth

oxes. This is meant to retain a set of diverse boxes for training,

anging from bad to good. 

In the second step, features are defined for the retained train-

ng boxes. These features measure the consistency in overlap with

ther boxes from the same proposal algorithm as well as other al-

orithms. The feature definition is used both for training and test

oxes. Additionally, during training we cluster these features into

 predefined set of clusters (in our experiments, we use 500 clus-

er centers) using K -means. This aims at both reducing the kernel-

atrix size of the Gaussian Process and making the regressor more

obust. 

Finally, we introduce two models: the GP-Cluster — Gaussian

rocess trained on the K -means cluster centers only, and GP-Metric

Gaussian Process regressor trained on the same K -means clus-

er centers but employing metric learning on additional training

amples. The targets of the Gaussian Process regressor are repre-

ented by the maximum overlap with a ground truth box, as this

ndicates the goodness of a box. During test time, we extract over-

ap features for all proposal boxes of all seven algorithms and as-

ign a quality score to each proposal by performing inference in

he trained Gaussian Process models. Metric learning is used to re-

hape the kernel such that the model better describes the target

pace. The proposed methods not only provide a box scoring solu-

ion based on consistency between different proposal algorithms,

ut also allow for self-assessment. This is specifically advantageous

or methods that do not have a way in which to incorporate box

cores, such as Manen et al. (2013) ; Uijlings et al. (2013) — this

ill be addressed in experiment Exp 2.3 . Furthermore, the consid-

red Gaussian Process extension by employing metric learning is

 general addition to the model that is not restricted to only the

ox scoring problem. This model can be applied whenever dealing

ith a large number of training samples — as shown in experiment

xp 1 . 

.2. Combining proposals 

Our underlying assumption for the box scoring problem is that

he consistency between object proposals is useful in deciding
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Table 1 

Evaluation of the seven considered object proposal algorithms, run by us on Pascal-VOC2007 

— consistent with the literature ( Alexe et al., 2010; Cheng et al., 2014; Hosang et al., 2014; 

Krähenbühl and Koltun, 2014; Manen et al., 2013; Rahtu et al., 2011; Uijlings et al., 2013; 

Zitnick and Dollár, 2014 ). Edge-boxes achieves the best recall, while at the same time, gener- 

ating the largest number of proposals per image. 

Method # Proposals/Image # True Boxes Recall 

Core Rahtu et al. (2011) 10 0 0 9348 0 .776 

Objectness Alexe et al. (2010) 10 0 0 10 ,660 0 .886 

Prim Manen et al. (2013) 2494 11 ,418 0 .949 

SSE Uijlings et al. (2013) 2008 11 ,516 0 .957 

Bing Cheng et al. (2014) 1924 11 ,470 0 .953 

Edge-Boxes Zitnick and Dollár (2014) 3479 11 ,860 0 .985 

Geodesic Krähenbühl and Koltun (2014) 653 11 ,059 0 .919 

Ground truth — 12 ,032 —

Combined 10 ,758 12 ,005 0 .998 
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he goodness of boxes. The recent paper of Hosang et al. (2014) ,

onsiders twelve state-of-the-art object proposal methods. Out of

hese we have selected six methods based on their being relatively

ast at prediction time — less than 3 s per image. Moreover, we

ave additionally considered a newer method, geodesic object pro-

osals ( Krähenbühl and Koltun, 2014 ), which provides good perfor-

ance in practice. 

Table 1 lists the average number of boxes generated by each

ne of the considered algorithms together with their recall, evalu-

ted by us on the Pascal-VOC2007 data-set. We choose the Pascal-

OC2007 data-set as it is a popular data-set for testing object pro-

osals. In addition, we are interested in the overlap between dif-

erent proposals, so the actual choice of the data-set has limited

nfluence on the experimental outcome. The numbers indicate that

he boxes proposed by the edge-boxes are the most accurate —

chieving the highest recall. However, the total number of pro-

osed boxes is relatively high. When considering all the proposals

f all algorithms, the recall is very close to one. Thus, there is gain

n trying to re-rank boxes of different algorithms based on their

oodness. 

In this work, we consider the boxes of these seven algorithms,

s just merging all proposals from all algorithms achieves 0.998

ecall. This almost solves the problem, were it not for this recall

eing reached at the cost of obtaining an impractically large set of

oxes. We aim to perform box regression for finding an ordering

f these proposals such that we can attain a good performance at

 smaller number of boxes. 

.3. Box description and selection 

Each one of the seven discussed algorithms provides a set of

pproximately 20 0 0 boxes per image. We first need to select a

ubset of these boxes, as it is unfeasible to use all boxes in the

ernel computation. For the selected boxes we devise a set of fea-

ures that describe them in terms of the overlap with other boxes.

hese features are subsequently clustered. The cluster centers rep-

esent the actual training samples to be used for computing the

raining/test kernel distances. 

Training Box Sampling. The training set is represented by pro-

osed boxes and there are on average 20 0 0 boxes proposed per

mage, thus ≈ 7 × 20 0 0 training samples per image. This gener-

tes a prohibitively large kernel matrix. A first step towards mak-

ng effective use of the training data is to sample the bounding

oxes based on their IOU (Intersection Over Union) score with the

round truth boxes. The scores are also used as targets during re-

ression training. We retain only the training boxes that have an

OU score greater than zero — boxes that intersect at least one

round truth box. The QWS (Quasi-random Weighted Sampling)

 Kalal et al., 2008 ) implies adding the IOU scores of all boxes in
ne algorithm and one image, on a unit line. The line is divided

nto N equally sized segments and we sample one unique box from

ach such segment. In the experimental part, we sample 100 boxes

er box-proposal algorithm out of 500 random training images us-

ng QWS. 

Features. Given the input boxes of all algorithms, we define

heir features in terms of the overlap with neighboring boxes. We

im to employ the consistency between proposals as features for

earning box-goodness. We achieve this by making use of the three

tatistics proposed in Vezhnevets and Ferrari (2015) , depicted in

q. 1 . For each considered box we estimate its closest five neigh-

ors in all the seve algorithms and compute these three statistics

ith the corresponding neighbors. 

box 1 ∩ box 2 
box 1 ∪ box 2 

, 
box 1 ∩ box 2 

box 1 
, 

box 1 ∩ box 2 
box 2 

)
, (1) 

here box 1 represents the current box to be described, and box 2 
epresents one of its closest five neighbors. These statistics are con-

atenated into a feature vector of 105 dimensions, describing each

ox — 5 neighbors × 7 algorithms × 3 statistics. For ensuring sta-

ility of the features, the neighbors are ordered in descending or-

er of their proximity to the current box being described. The re-

ression targets are the maximum over the IOU scores with the

round truth boxes. 

Clustering. The number of used training samples determines

he kernel-matrix size in the Gaussian Process. This restricts us to

sing a very small fraction out of the available samples. In order

o both limit the kernel-matrix size as well as make the regres-

or more robust, we cluster the box features corresponding to the

ampled boxes. The clustering is performed using K -means. For box

coring we use 500 cluster centers, yet we also show in the exper-

mental section the performance with respect to varying number

f clusters. 

. Large scale Gaussian Process regression 

We aim to assign goodness scores to proposals based on the

aximum over the IOU scores with the ground truth boxes. As

his is a regression problem, non-linear in the feature space, we

dopt the Gaussian Process model. This is renowned for its power

s a non-linear regressor, while having similar computational costs

ith its discriminative counterpart, the SVR ( Rasmussen, 2006 ). In

he next subsections we briefly revisit the standard Gaussian Pro-

ess model. We subsequently, indicate the changes, entailed by the

arge-scale nature of the data, that we introduce in model. 

.1. Standard Gaussian Process regression model 

For the estimation of the Gaussian Process kernel matrix we

se the squared exponential kernel, as this is the standard choice
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Algorithm 1: Metric learning SGD for kernel distances. 

1: Get training samples using QWS and cluster them. 

2: Initialize starting lengthscale, l, and noise, σ . 

3: Assume the kernel of eq. 4 . 

4: Initialize �t ← 

1 
l 2 

I , V t ← ∅ , t ← 0 . 

5: while | L t − L t+1 |≥ θ do 

6: Sample a new set of training samples using QWS. 

7: ∇L t ← 

∂L t 
∂�t 

as in eq. (5) - (9) over new samples. 

8: if (t == 0) then 

9: Initialize η ← ε F rob(�t ) 
F rob(∇L t ) 

, where F rob(·) is the Frobenius 

norm. 

10: end if 

11: Update V t+1 ← μV t − η∇L t 

12: Update �t+1 ← �t + V t+1 . 

13: �t+1 ← Pr (�t+1 ) , 

where Pr( ·) is the cone projection of �. 

14: Compute the loss over the newly sampled set: 

L t+1 ← 

∑ 

n (y n − y ∗n ) 2 + λ | � | 2 . 
15: end while 

16: Output � estimated through metric learning. 
( Rasmussen, 2006 ). The training procedure involves the computa-

tion of the inverse of the kernel matrix. The test-time prediction

together with the standardly used squared exponential kernel are

given by Eqs. (2) - (3) : 

y ∗ = k l (x 

∗, X ) T 
(
k l (X , X ) + σ 2 I 

)−1 
y , (2)

k l (x i , x j ) = exp 

(
−|| x i − x j || 2 

2 l 2 

)
, (3)

where X is the matrix of training samples, k l ( ·, ·) is the kernel

function depending on l — the length-scale hyperparameter of the

Gaussian Process, y is the vector of training targets and y ∗ is the

prediction on the current test sample, x ∗ is the input test sample,

and σ 2 is the noise hyperparameter, while I denotes the identity

matrix. 

Gaussian Processes are non-parametric models, as seen in

Eq. (2) – there are no weights to be estimated from the data. The

length-scale, l , and the noise, σ 2 , represent the hyperparameters of

the model. They do not directly describe the model, they only af-

fect the kernel distances. The hyperparameters are estimated from

the data during training and help shape the kernel. This is achieved

by adjusting the kernel distances to more suitably describe the

similarities between samples. 

4.2. Augmenting Gaussian Processes with metric learning 

The clustering of samples solves the problem of too large

kernel-matrix sizes. However, this discards valuable information as

it only retains the few cluster centers and disregards the rest of

the samples. Therefore, we may ignore the variation in the tar-

get space given by the disregarded samples. In the kernel-based

methods, the choice of the kernel defines the distance metric be-

tween the samples. By employing metric learning we make effec-

tive use of the additional samples present in the training data and

use them to reshape the kernel space. This enables the Gaussian

Process to better learn the target space variations. By doing so, we

keep the kernel-matrix size fixed while adjusting the kernel dis-

tances on additional training samples. 

Covariance-based Kernels . We aim to add back into the model

the information lost by training on the cluster centers only. To do

so, similarly to Vivarelli and Williams (1999) , we add more descrip-

tiveness into the representation by expanding the kernel definition

to incorporate a covariance matrix. We change the length-scale pa-

rameter of the Gaussian Process – Eq. 3 – to be a covariance matrix

as depicted in Eq. (4) : 

k �(x i , x j ) = exp 

(
−1 

2 

(x i − x j ) �(x i − x j ) 
T 
)
. (4)

This makes the kernel more flexible. It allows us to learn from

the data not only the correct scale — as in the case of the scalar

lengthscale, l — but also the correct shape. We subsequently, per-

form metric learning to determine the covariance, �, from new

sets of training examples. 

Metric Learning Optimization . We learn the added co-

variance matrix through metric learning, unlike Vivarelli and

Williams (1999) . This enables us to find a kernel function that fa-

cilitates the model to better describe the target distribution. In or-

der to learn � from the data, we assume the squared loss: L =∑ 

n (y n − y ∗n ) 2 . Consequently, we evaluate the gradient of the loss

function over the Gaussian Process model with respect to �. This

gradient is used in an SGD (Stochastic Gradient Descent) optimiza-

tion to iteratively update the covariance over batches of samples.

We estimate the gradient formulation as in Eqs. (5) - (9) — detailed
erivations provided in Appendix A . 

∂L 

∂�
= 

[
∂L 

∂�

]
+ 

[
∂L 

∂�

]T 

− diag 

[
∂L 

∂�

]
(5)

∂L 

∂�
= 2 

train ∑ 

n 

(y n − y ∗n ) 

[ 

clusters ∑ 

i 

[ 

clusters ∑ 

j 

−K 

in v 
i j M ji K 

in v 
ji 

] 

y i k �(x i , x n ) + αi M in ] + 2 λ�, (6)

 ji = −1 

2 

(x j − x i ) 
T (x j − x i ) k �(x j , x i ) , (7)

 

in v = (k �(X , X ) + σ 2 I ) −1 , (8)

= (k �(X , X ) + σ 2 I ) −1 y . (9)

iven that � is symmetric, we use the derivation for symmet-

ic matrices — Eq. (5) . After each gradient step we reinforce that

has to be a symmetric and semi-positive definite matrix. This

s done by performing a cone projection step as described in

einberger and Saul (2009) . Algorithm 1 provides the steps for

stimating �. Given that the optimization in terms of � may have

ocal optima ( Rasmussen, 2006 ), we restart the SGD at different

ength-scale ranges. We do so by initializing � with a diagonal ma-

rix where the elements on the diagonal are 1 
l 2 

. The same ranges

re used in the standard Gaussian Process for estimating the op-

imal length-scale parameter — l ∗. This parameter optimization is

one in the standard model through cross-validation over a held-

ut training set. After each SGD step we evaluate the reached � on

he held-out training set. As suggested in Sutskever et al. (2013) ,

e use the momentum parameter to make the gradient updates

ore smooth between iterations. We start by initializing the learn-

ng rate as ε = 0 . 05 of the ratio between the Frobenius norm of the

nitial � setting and the first gradient step. We subsequently up-

ate the learning rate as suggested in Weinberger and Saul (2009) .

ollowing Bottou (2012) , we add to the loss optimization a regular-

zation term based on the norm of �. This helps us in dealing with

verfitting. Moreover, also as a way of avoiding overfitting, in the

xperimental part we use the Huber loss rather than the squared
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RMSE: 76.91 px 76.44 px 76.53 px

RMSE: 79.73 px 55.81 px 56.19 px

RMSE: 79.62 px 61.92 px 53.89 px

Input. GP-Cluster. GP-Metric diag. GP-Metric full.

Fig. 3. Losses in predicting pixel intensities from pixel location on 3 images: a cir- 

cle, an ellipse and a rotate ellipse. We use the center point — depicted in red — as 

the only cluster center to compute the kernel on. We randomly sample 100 pixels 

for evaluating the hyperparameter, �. The second column depicts the loss of the 

standard Gaussian Process on one cluster. The third column shows the loss for the 

metric learning-based Gaussian Process with a diagonal covariance matrix, �. The 

last column corresponds to the metric learning-based Gaussian Process with a full 

matrix, �. 

Table 2 

Runtime estimates when using 500 cluster centers in the three proposed 

Gaussian Process models as well as the standard Gaussian Process where 

1500 samples are randomly picked from the data. The times are esti- 

mated as average time for predicting goodness scores for one box as well 

as for all boxes ( ≈14,0 0 0 per image) in one image of Pascal VOC-2007 

Dataset. The newly designed Gaussian Process models are more time- 

efficient when compared with the standard Gaussian Process model. 

GP Std. GP models 

Cluster Metric-diag. Metric-full 

# Samples ≈ 1500 500 500 500 

Millisec./Box 8.847 ms. 1.124 ms. 1.177 ms. 1.181 ms. 

Sec./Image 132 .76 s 16 .87 s 17 .66 s 17 .73 s 
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oss. By doing so, we bound the contribution to the gradient for

he samples that are far away from the corresponding target. 

Metric Learning-based Gaussian Process Illustration. We have

rgued that by expanding the kernel definition to incorporate the

ovariance matrix, �, we allow the Gaussian Process to be more

escriptive. This helps in more effectively learning the shape of the

arget distribution. Fig. 3 depicts precisely this idea. Here, we use

s input three gray-scale images, displayed on the first column in

ig. 3 . We want to learn to predict the pixel intensity values from

ixel locations in the image. Thus, our targets are represented by

ixel intensities while our input features are the pixel locations.

or all models we use only one training sample in the kernel com-

utation, depicted in red. Hence, our training kernels have sizes 1

1. The two GP-Metric models use 100 additional pixel samples to

earn the covariance, �. However, they still use the same 1 sam-

le for computing the training and test kernels. We consider two

ases of the metric learning-based Gaussian Process: GP-Metric diag

the metric learning-based Gaussian Process in which the covari-

nce matrix, �, is assumed to be diagonal for time efficiency, and

P-Metric full — the metric learning-based Gaussian Process using

 full covaraince matrix, �. The first one is able to learn the correct

hape of the target distribution. Nonetheless, due to the restriction

mposed on the �, to be diagonal, it cannot learn the appropriate

otation. The later learns both the shape and the appropriate orien-

ation from additional samples. We depict the losses between the
nput image and the predictions for the three considered models.

ow values (darker) correspond to small losses, while high values

brighter) represent larger prediction losses. We also plot the RMSE

Root Mean Squared Error) achieved by each method on each task.

ig. 3 indicates that the GP-Cluster can only learn the appropriate

cale. However it cannot learn the shape and the orientation of the

amples in the target space. The diagonal model learns the ellipse

ut fails to learn the rotated ellipse. Finally, the full model can pre-

ict the rotated ellipse from 1 cluster only, by reshaping the kernel

pace through metric learning. This illustration shows the gain of

mploying metric learning for reshaping the kernel space while re-

tricting the kernel-matrix size. 

. Complexity analysis 

The train-time computational complexity of a standard Gaus-

ian Process is O(N 

3 + N 

2 D ) . Here N represents the total number of

raining samples and D represents the data dimensions. The train-

ime complexity of the Gaussian Process trained on cluster cen-

ers is O(K 

3 + K 

2 D ) . K represents the number of considered clus-

ers and it is taken to be considerably smaller than the complete

umber of training samples, N . For the proposed metric learn-

ng based extension of the Gaussian Process method, the train-

ime complexity, as derived from Algorithm 1 , is O(T (K 

3 + K 

2 D +
MD (1 + KD ))) . Here T is the number of iterations and M is the

ini-batch size in the SGD. For a reasonable parameter setting, we

eadily obtain train-time computational gains when compared to

he standard Gaussian Process. If we set K to 500 clusters, T to

00 iterations, M to 100 samples in the mini-batch and assume

00-dimensional data, gains are achieved for training data sizes, N ,

arger than 70 0 0 samples for the model based on diagonal covari-

nce, and 30,0 0 0 samples using the full covariance. 

At test time, the gain is even more notable, as for one test sam-

le the standard Gaussian Process has an O(ND ) complexity. While

n our case, for either of the two Gaussian Process models pro-

osed, the test-time complexity is O(KD ) , with K taken to be con-

iderably smaller than N . This is specifically desirable as it provides

ubstantially faster test-time predictions. 

Table 2 displays real runtime estimated when predicting on a

ingle image in the Pascal VOC-2007 dataset. These estimates are

btained when using 500 cluster centers. We also show time es-

imates when using 1500 samples rather than 500 cluster centers.

he proposed method based on only clustering is able to perform

nference considerably faster than the standard Gaussian Process

odel while being more accurate. The subsequent two models —

eric-diag and Metric-full — based on metric learning with diago-

al and full covariances, respectively, are less than 1 s slower per

mage than the clustering based model while further boosting the

ccuracy. 

. Experimental evaluation 

The proposed Gaussian Process models are not restricted to the

roblem of box regression and can be applied to any task with nu-

erous training samples. To demonstrate the generality of the pro-

osed extensions, we validate the Gaussian Process model choices

nd the model formulation in Exp 1 . This is done on an indepen-

ent machine learning regression dataset — the Airfoil Self-Noise

ataset of NASA Lichman (2013) . In Exp 2 we evaluate the perfor-

ance of the advanced Gaussian Process models on the box scor-

ng problem. Exp 2.1 analyzes the features used. The choice of us-

ng the Gaussian Process regressors versus linear and non-linear

VR (Support Vector Regression), as well as the large-scale Gaus-

ian Process model of Bo and Sminchisescu (2012) , is validated in

xp 2.2. Exp 2.3 supports the ability of performing self-assessment

or individual object proposal algorithms. Exp 2.4 evaluates the
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Table 3 

RMSE on the Self-Noise Dataset of NASA Lichman (2013) , for a baseline 

Least Squares (LS) regressor on all training samples, standard Gaussian 

Process on all samples, GP-Cluster — Gaussian Process trained on 300 

clusters centers, GP-Metric diag/full — the metric-learning kernel version 

of Eq. 4 on 300 clusters. (We show in bold where the methods are better 

than the baselines and underline the best method.) 

GP Least GP models 

Std. Squares Cluster M. diag M. full 

#Samples 1503 1503 300 300 300 

RMSE 3.29 dB. 4.88 dB. 3.63 dB. 3 .18 dB. 2.86 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Plots of the changes in RMSE with respect to varying numbers of clusters for 

the 2 baselines trained on all training samples — Least Squares (LS) and standard 

Gaussian Process, and the three Gaussian Process variants we have proposed: GP- 

Cluster, GP-Metric diag and GP-Metric full . 
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Gaussian Process models on the task of scoring object proposals

based on box consistency. The consistency between proposals is in-

tegrated in the definition of the features as a manner of combining

the multiple object proposal algorithms considered. We compare

the results of our method of combining proposals of all seven algo-

rithms with the interleaved baseline — where at each position the

best box is picked out of the seven algorithms based on the pro-

vided ranking, if any. And we additionally compare with the best

performing method in terms of the goodness of proposed boxes

( Table 1 ) — edge-boxes ( Zitnick and Dollár, 2014 ). 

6.1. Exp 1 : Analysis of model choices 

This experiment tests our model choices on an independent

machine learning dataset — the Airfoil Self-Noise Dataset of NASA

Lichman (2013) . The dataset comprises 1503 data samples. The fea-

tures represent five different statistics of airfoils such as size, fre-

quency and speed and outputs are sound pressure levels, in deci-

bels. We shuffle the data keeping half for training and the other

half for testing. For this experiment we use all training samples,

thus no QWS sampling is applied. We report the performance with

respect to varying numbers of clusters. This experiment is designed

to support the generality of the proposed Gaussian Process adap-

tion. The model variations advanced in this paper are not restricted

only to the problem of box regression. They can be applied to nu-

merous problems where the number of training samples is pro-

hibitively large. 

Table 3 depicts the results on this dataset obtained by the Least

Squares (LS) regressor as a baseline. We show as well the Gaus-

sian Process trained on the full training data as the upper bound.

We compare the clustering Gaussian Process, with the two variants

of metric-learning Gaussian Process — with diagonal � and full �.

Fig. 4 shows how the performance varies with respect to the num-

ber of clusters. The results indicate that, indeed, incorporating the

target variance by reshaping the kernel space is beneficial. This is

true, as the metric-learning models improve over the Gaussian Pro-

cess model using the same number of clusters. Moreover, they at-

tain similar performance to the standard Gaussian Process model

using the complete training set, yet the proposed models use only

300 samples — cluster centers. 

6.2. Exp 2 : Gaussian Process models for box scoring 

In this experiment we evaluate the performance of the devel-

oped Gaussian Process model variations on Pascal-VOC2007 for the

task of box scoring. The purpose of this experiment is to verify

the suitability of the approaches brought forth by this work, in

the context of estimating box goodness. In the introduced mod-

els we use the QWS box-sampling to retain a number of 100 boxes

per box-proposal algorithm from 500 randomly selected training

images. We subsequently cluster the statistics used as features

— Eq. 1 — into 500 clusters. This setting represents our starting

model — GP-Cluster . The GP-Metric uses the same cluster centers
s training data, yet it learns the appropriate kernel distances from

00 additional boxes per iteration in the SGD mini-batches, sam-

led using QWS. For the box-scoring task we only use the metric-

earning Gaussian Process model with an associated diagonal � as

his is more efficient. Given that we rank the boxes of all seven al-

orithms, we perform an additional NMS (non maximum suppres-

ion) at 0.7 overlap threshold over the scores to remove near du-

licates generated by different algorithms. We also apply this step

or all methods we compare against. 

.2.1. Exp 2.1 : Box feature analysis 

In order to describe the consistency in box prediction, we esti-

ate the overlap between boxes of all 7 considered algorithms. For

ach box we retain the closest neighbors in all seven algorithms

nd use the three overlap scores of Eq. 1 to define the features.

n this experiment we test the effect of the number of neighbors

onsidered in the feature computation on the overall performance.

We plot the change in recall as well as the change in the

UC scores when we vary the number of neighbors from 1 to

0. Fig. 5 depicts these scores at a 0.5 overlap threshold with the

round truth. We additionally plot the performance when the av-

rage over five neighbors is considered per algorithm — giving rise

o a 7 D feature vector. The scores when considering five neigh-

ors is depicted separately, as this is taken to be our default set-

ing in the subsequent experiments. It can be observed the AUC

cores vary 2% when considering different numbers of neighbors

n the feature computation, while the recall varies 3%. The set-

ing considering five neighbors attains an average performance and

t the same time it retains the feature dimensions within reason-

ble bounds — using ten neighbors rather than five does not bring

ubstantial gain, yet it increases the feature dimensions twofold,

act which affects the kernel matrix computation, and thus the

untimes. 

.2.2. Exp 2.2 : Gaussian Process models vs. other regressors 

The goal of this experiment is to test the performance of the

roposed Gaussian Process models — based on sample selection,

lustering and metric learning — when compared to other regres-

ors trained either on the same cluster centers or on randomly se-

ected samples. We inspect, therefore, a linear regressor, the linear-

VR , as well as the non-linear counterpart of it. In the non-

inear SVR we choose the RBF kernel as this is closely related to

he squared exponential kernel used in the Gaussian Process for-

ulation. We train the SVR models on ≈ 1500 random samples.

e additionally compare our models with two Gaussian process
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Fig. 5. Recall and AUC scores at 0.5 overlap threshold, with respect to the number of neighbors considered in the feature computation. We plot separately the case when 

5 neighbors are used in the feature computation, as this is the standard setting in our experiments. Overall, the considered number of neighbors seems to have limited 

influence on the performance of the method, as the ranges have limited variance both in terms of AUC scores as well as recall. 

Table 4 

Box regression results on the Pascal-VOC2007 dataset for different regression baselines and different training selection methods. We report recall 

and AUC at top 500 and 1K boxes with 0.5 overlap. (We show in bold where the proposed Gaussian Process model extensions outperform the 

baselines and underline the best method.). The new Gaussian Process models proposed in this paper are more suitable for performing the box 

scoring task while using a smaller set of samples to define the kernel matrix. 

Linear SVR RBF-SVR GP baselines Proposed GP models 

Standard Cluster Standard Cluster Standard Large scale Bo and Sminchisescu (2012) Cluster Metric-diag. 

#Samples ≈ 1500 500 ≈ 1500 500 ≈ 1500 ≈ 1500 500 500 

Recall @ 1K 87 .09% 88 .86% 90 .30% 92 .51% 89 .48% 93 .62% 94 .12 % 94.73 % 

Recall @ 500 78 .71% 81 .80% 83 .60% 86 .15% 81 .03% 88 .62% 89 .25 % 89.52 % 

AUC @ 1K 69 .97% 72 .45% 71 .91% 74 .38% 71 .99% 73 .76% 74 .47 % 74.80 % 

AUC @ 500 63 .81% 66 .80% 66 .80% 69 .52% 65 .00% 69 .66% 70 .41 % 71.03 % 
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aseline: the standard Gaussian Process on ≈ 1500 randomly se-

ected samples — GP-Standard — instead of on the 500 cluster cen-

ers, as well as the large scale Gaussian Process method of Bo and

minchisescu (2012) , also trained on ≈ 1500 randomly selected

amples. The strength of Bo and Sminchisescu (2012) , is in the

bility to retain all training samples, and still perform the opti-

ization, therefore for this method we use 3 × more data than

or our proposed methods. The first Gaussian Process baseline vali-

ates the proposed way of defining training features based on sam-

ling and clustering, while the second Gaussian Process baseline

valuates the performance of our method as a large scale Gaus-

ian Process regression method. We additionally evaluate the per-

ormance of the SVR regressors when trained on samples selected

s proposed in this paper: QWS sampling and K-means clustering.

e do so in order to test the choice of the non-linear regressor,

ndependent of the sample-selection. 

Table 4 depicts the achieved recall and AUC at top 500 boxes

nd 1K boxes. As seen from the results, the proposed sampling and

lustering is highly effective. Regardless of the choice of the regres-

or, this achieves an improvement in the recall of 2% to 3%. More-

ver, for the Gaussian Process case, the improvement achieved by

lustering is more substantial: 5% and 8%. What is even more ad-

antageous in our box selection method is the fact that these gains

re achieved while training on a third of the data. When compared

o the standard case, we use only 500 cluster centers instead of

500 random samples. This is an important gain as, at test time,

he Gaussian Process prediction has a complexity O(ND ) (where N

s training data and D are data dimensions). So with the proposed

raining data selection in the Gaussian Process model, we gain a 3
computational speedup at test time and an additional 5% to 8%

ecall improvement. Furthermore, when performing the data selec-

ion as proposed in this paper by applying QWS and clustering, the

aussian Process regressor proves to be the most appropriate for

he box-scoring task. Table 4 shows that both recommended Gaus-

ian Process models — the GP-Cluster and the GP-Metric — outper-

orm the linear and non-linear SVR regressors. 

As we argued that the task of box-scoring is highly non-linear,

t is to be expected that the linear SVR is outperformed by the

ther regressors. The RBF-SVR and the Gaussian Process rely on the

ame non-linear kernel. The only difference is that in the Gaussian

rocess, the kernel distances are reshaped during training to better

t the data. This provides more descriptive power to the Gaussian

rocess model and explains the obtained performance gain, for the

ox-scoring task, when compared with its discriminative counter-

art — the RBF-SVR. 

When comparing the proposed models with the large scale

aseline of Bo and Sminchisescu (2012) , we observe that the pro-

osed methods are slightly more accurate while using a smaller

umber of training samples and, thus, a smaller training/test ker-

el matrix. The fact that our proposed Gaussian Process meth-

ds outperform the results of Bo and Sminchisescu (2012) , on this

ata, validates our models as large scale regression models. We,

urther, conclude that both developed Gaussian Process methods

re able to discover the underlying structure present in the data.

ur metric-learning based Gaussian Process model performs on

ar with our proposed clustering-based method. This drives us to

he conclusion that the target variance is not substantially present

n the data. Therefore, the more simple model, employing a scalar
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Table 5 

Evaluation of the ability to perform self-assessment within the proposed GP regression method. 

We depict the scores at top 1K boxes when using the provided scores (if any) versus the ranking 

obtained my applying the box-goodness learning based on GP regression with metric learning. 

We show in bold where our ranking method exceeds the original scores. 

Recall @ 500 AUC @ 500 

Method Provided GP-Metric Provided GP-Metric 

Core Rahtu et al. (2011) 70 .76% 76 .37 % 59 .06% 62 .40 % 

Objectness Alexe et al. (2010) 84 .14% 86 .90 % 59 .78% 61 .32 % 

Prim Manen et al. (2013) 82 .38% 87 .14 % 66 .41% 69 .06 % 

SSE Uijlings et al. (2013) 85 .53% 88 .09 % 66 .37% 70 .36 % 

Bing Cheng et al. (2014) 87 .49% 90 .07 % 59 .19% 61 .48 % 

Edge-Boxes Zitnick and Dollár (2014) 85 .89% 90 .82 % 68 .19% 70 .82 % 

Geodesic Krähenbühl and Koltun (2014) 88 .84% 89 .61 % 70 .28% 71 .34 % 

Fig. 6. Recall and AUC scores with respect to the number of boxes, at 0.5 overlap threshold with the ground truth. We evaluate on Pascal-VOC2007 the developed Gaussian 

Process model based on metric learning, compared with the interleaved baseline — selecting the best box at each position, out of each of the seven algorithms, based on 

their provided ordering and, the best method in terms of proposed good boxes (according to Table 1 ) — edge-boxes ( Zitnick and Dollár, 2014 ). 
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lengthscale rather than a diagonal covariance, is sufficient for tack-

ling the box-scoring problem. 

6.2.3. Exp 2.3 : Object proposals self-assessment 

One of the claimed gains of the proposed box-scoring method

is the ability of performing self-assessment for any object pro-

posal algorithms. In this experiment we test precisely this claim.

Thus we train on only boxes of a fixed reference algorithm. We

still sampled the boxes using the QWS method, followed by the K -

mean clustering. The only difference with the previous experiment

is that the boxes used for training come from the proposal algo-

rithm to be evaluated. The features are, however, defined as before

by looking at the consistency with the five closest neighbors in the

other proposal algorithms. Subsequently, at test time we only score

the boxes of the evaluated proposal method by looking at the con-

sistency with the other algorithms. 

Table 5 displays the recall and AUC scores at 0.5 overlap thresh-

old on the top 500 boxes on Pascal-VOC2007. We compare the GP-

Metric — Gaussian Process trained through metric learning for esti-

mating the diagonal covariance matrix — with the scores obtained

when using the ranking provided by the proposal algorithms. If

no scores are provided, as in the case of prim and selective search ,

we randomly shuffle the boxes and then evaluate the performance.

For all methods there is a substantial gain in performance — up

to 6% in recall and up to 4% in AUC — when employing the pro-

posed method. A considerable gain is obtained by performing self-

assessment on the edge-boxes method. This is due to this method
aving more precise boxes present in the list of predicted boxes

see Table 1 ). The introduced box-scoring method aims at giving

igher scores to those good boxes. For the geodesic object proposal

ethod the gain is not substantial when compared to the provided

anking. The geodesic method produces a small number of propos-

ls to start with, 653 on average per image, while in Table 5 we

valuate the AUC and Recall at 500 boxes. Overall, we can observe

hat the proposed method of box-scoring is effective in practice

nd it is useful when scoring boxes of individual algorithms. 

.2.4. Exp 2.4 : Combining object proposals 

The ambition of this paper is in developing a method for scor-

ng object proposals based solely on the overlap information with

ther boxes within the same algorithm as well as other algorithms.

or this we use two baselines to compare against: Interleaved —

electing the best box from each algorithm greedily at each po-

ition, Best — the best performing algorithm in terms of good-

ess of proposed boxes, which as seen in Table 1 is the edge-boxes

 Zitnick and Dollár, 2014 ). 

Fig. 6 (a) displays the change in the AUC with the number of re-

ained boxes for the metric-learning based Gaussian Process vari-

nt proposed in this paper — GP-Metric — and the two base-

ines: Interleaved and Best . We can notice that the Gaussian Pro-

ess method outperforms the other two methods in terms of AUC

t already only 100 boxes retained. The tendency remains stable

s the number of boxes increases. The Gaussian Process model is

n average 2% more precise in the AUC scores than the Best . The
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nterleaved method is less precise than the Best for a smaller num-

er of considered boxes. However, it gains in performance as the

umber of boxes increases. This is to be expected as the best box

er algorithm is not necessarily the best box over all algorithms.

he Interleaved method is characterized by more diversity, yet the

roposed box-scoring model outperforms both these methods. 

For the recall, we can observe a similar tendency — Fig. 6 (b) —

he proposed Gaussian Process regression model being on average

ore precise than the Best , regardless of the number of considered

oxes. Finally, we notice that at 10 0 0 boxes the Interleaved method

lightly outperforms Best . We argue that this is due to the Inter-

eaved baseline being characterized by more diversity in the pro-

osals. And this brings a gain in the performance as the number

f boxes increases. Moreover, the proposed box-scoring regression

ethod outperforms both baselines in terms of recall. This is due

o the boxes being more precise — more likely to be centered on

rue objects — as it is the case with the Best baseline, and more

iverse boxes, as it is the case with the Interleaved baseline. 

. Discussion and illustrative results 

This work proposes a manner of assigning goodness scores to

oxes. We start with the idea that consistency in box proposals

high overlap between proposals of different algorithms — is a

ufficient indication of box goodness. In Fig. 7 we show a few ex-

mples of top-10 ranked boxes for the two considered box-scoring

aselines, Interleaved and Best , and our GP-Metric method. In green

e display the ground truth boxes. In blue we indicate the boxes

ut of the top-ten ranked ones that overlap more than 0.5 with a

round truth box. In red we show the non-overlapping boxes. The

rst row indicates a failure case for our method: no ground truth

ox is present in the top-ten ranked boxes. This is due to the fact

hat, for this case, the top-ten boxes tend to focus on object parts

ather than complete objects. On the second row we can observe

hat our method manages to find, within the first ten proposals,

ne out of the two people present. Also noteworthy is the fact that

t correctly finds the human faces as good proposals. Similarly, in

he example with the car, we notice that the highly ranked boxes

or our method contain parts of the car such as the license plate

nd the wheels. The Interleaved baseline seems to have a prefer-

nce for large boxes in the top-ten ranked boxes, yet we can also

bserve a few small ones. The Interleaved baseline takes greed-

ly the best box per algorithm at each position. Therefore, intu-

tively, it is characterized by more diversity in the proposals. The

est ( edge-boxes ) baseline opts for medium-sized boxes that focus

ore on the textured part of the image. Thus, it is more precise

s it tends to be more object-focused. The highly ranked boxes in

ur case are more diverse, as both small boxes as well as large

oxes are present in the top ten. Additionally, they are also char-

cterized by more precision, since they rely on the consistency in

he proposals. Therefore, if more algorithms select a certain area

f the image as likely to contain an object, the box corresponding

o that area will be assigned a high score in our method. This ex-

lains why for the proposed GP-Metric method we observe also the

bject parts being highly ranked. 

From the seven considered proposal algorithms, two of them

o not provide scores — prim ( Manen et al., 2013 ), selective search

 Uijlings et al., 2013 ). As seen from Exp 2.3: Object Proposals Self-

ssessment , the proposed regression models can be used as a man-

er of performing self-assessment for methods that do not provide

 way to do so. For the algorithms that provide associated scores

o boxes, however, a possible approach to integrating existing box

cores in the learning of box goodness is transforming these scores

nto probabilities and using them as priors. Alternatively, as in

araoglu et al. (2014) , the scores can be included as part of the

eature in the feature vector or as in Xu et al. (2014) , where the
ndividual scores are combined using theory of belief functions.

oteworthy is that in Karaoglu et al. (2014) and Xu et al. (2014) ,

he goal is combining detection scores, thus these scores are class

pecific. In our case the scores do not correspond to class confi-

ences but rather, presumed box-goodness scores. This fact makes

he scores more unreliable in our case. Therefore, given that not all

he algorithms provide scores and moreover that these scores are

nreliable, in this work we choose not to make use of this infor-

ation. 

The selection of the seven box-proposal algorithms is a design

hoice based on their popularity as well as their characteristics

speed, performance. Ideally, the considered box proposal algo-

ithms should be orthogonal to each other, employing complemen-

ary information. The question that arises is: how many different

efinitions of what makes a good object proposal we know? The

iterature offers three main ones: (i) an object is enclosed by a

trong edge ( Cheng et al., 2014; Krähenbühl and Koltun, 2014; Zit-

ick and Dollár, 2014 ); (ii) an object is salient ( Alexe et al., 2010;

ahtu et al., 2011 ); (iii) an object is composed of similar parts

 Manen et al., 2013; Uijlings et al., 2013 ). However, using correlated

roposal methods is also beneficial as it adds to the robustness of

he system. Although certain methods start from the same prin-

iple, they implement it differently and their combination gives

ore stable predictions. 

Noteworthy, in our approach the precise choice of the object

roposal algorithms is not essential. The use of the seven selected

ethods is a design choice and any of them can be removed, re-

laced with another, or box-proposal methods can be added with-

ut the need to change the mathematical definition of the regres-

ion model or its applicability. 

. Conclusions 

This paper starts with the assumption that the consistency be-

ween the proposed boxes of different state-of-the art algorithms,

s revealing as to how good a certain box is. The considered ob-

ect proposal algorithms rely on different cues, which makes their

aive combination able to achieve a recall close to one. We de-

elop an addition over the standard Gaussian Process model by

earning the kernel shape in a metric learning framework through

oss optimization. The optimization enables us to keep the kernel-

atrix size fixed, while using as much as possible of the informa-

ion provided by the additional samples. We find that on the prob-

em of box regression, both the simpler GP-Cluster approach and

he metric-learning Gaussian Process models, capture the correla-

ions in the data. Experiment Exp 2.1 evaluates the influence of

he number of neighbors considered in the feature definition. Ad-

itionally, we experimentally prove the suitability of the cluster-

ng and metric-learning Gaussian Process models, when compared

ith other regressors on the box scoring problem — Exp 2.2 . We

how the ability of performing self-assessment for individual ob-

ect proposal methods in Exp 2.3 . We prove experimentally — Exp

.4 — that features capturing the overlap are sufficiently descrip-

ive for evaluating box goodness. Exp 1 shows the effectiveness of

he metric-learning Gaussian Process models on an independent

egression problem as well as the suitability of the methods as

eneral purpose large scale models. 

The idea of considering only the overlap between boxes for

coring existing proposals can be extended to other similar prob-

ems such as: pedestrian detection ( Dollár et al., 2012 ), where mul-

iple detector predictions are available, or in the context of object

racking ( Smeulders et al., 2014 ). Furthermore, the three proposed

ariations of the Gaussian Process model are suitable for a mul-

itude of problems where the number of training samples is pro-

ibitively large. 
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Fig. 7. Illustrative results of top ten boxes per image for the three considered methods: Interleaved — where the boxes of all seven algorithms are interleaved based on the 

provided ranking, Best — the method acquiring the best recall, edge-boxes ( Table 1 ), and GP-Metric — assigning scores to boxes based on the consistency in the overlap. We 

show in green the ground truth boxes, in blue the boxes, out of the 10 ones retained, that have over 0.5 overlap with the ground truth and in red the ones that are not 

meeting the 0.5 overlap criterion. The first row displays a failure case where the boats are missed, yet parts of them are selected. The Interleaved method has a preference 

for large boxes being ranked higher in the list. Compared to the two baselines, the proposed approach gives rise to more diverse boxes in the top-ranked ones, as both small 

and large boxes are present in the top 10. Moreover, our method focuses on both object parts — i.e., faces of people, wheels of the cars, as well as entire objects. 
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ppendix A. Metric Learning Derivations 

The standard Gaussian Process model definition estimates at

est-time the kernel similarities between the input test sample, x ∗,

nd training samples, X . In our case, these training samples repre-

ent cluster centers. The test-time kernel distances are weighed by
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he vector α, learned during training. 

 

∗ = k �(x 

∗, X ) T α. (A.1) 

= (k �(X , X ) + σ 2 I ) −1 y . (A.2) 

 �(x i , x j ) = exp 

(
−1 

2 

(x i − x j ) �(x i − x j ) 
T 
)
. (A.3) 

s presented in Section 3 , rather than a scalar length-scale, we use

he covariance matrix, �, in the kernel function definition. 

In order to determine the covariance matrix, �, we consider the

quared loss and we optimize this by computing the gradient with

espect to it and iteratively updating the parameters in an SGD op-

imization. Given that � is symmetric, we use the derivative for-

ulation for symmetric matrices – Eq. (A.4) . 

∂L 

∂�
= 

[
∂L 

∂�

]
+ 

[
∂L 

∂�

]T 

− diag 

[
∂L 

∂�

]
. (A.4) 

∂L 

∂�
= 2 

train ∑ 

n 

(y n − y ∗n ) 
∂y ∗n 
∂�

+ λ | � | 2 . (A.5) 

∂y ∗n 
∂�

= 

clusters ∑ 

i 

∂αi 

∂�
k �(x n , x i ) + αi 

∂k �(x n , x i ) 

∂�
. (A.6) 

he predictive distribution of the Gaussian Process, as see in

q. (A.1) has two components: the test-time kernel and the vector

. We use the product rule and estimate the derivative for each

erm separately. 

The first term involves computing the gradient of αi with re-

pect to the covariance matrix. This is a function that depends

n the train-time targets, y i , and train-time kernel values, K i j =
 �(x i , x j ) , where x i and x j are cluster centers. 

∂αi 

∂�
= 

clusters ∑ 

j 

∂(K i j + σ 2 I i j ) 
−1 

∂�
y i 

= 

clusters ∑ 

j 

[
−(K i j + σ 2 I i j ) 

−1 ∂K ji 

∂�
(K ji + σ 2 I ji ) 

−1 

]
y i . (A.7) 

The gradient of the train kernel depends on the covariance ma-

rix �, as derived from Eq. (A.3) . 

∂K ji 

∂�
= 

∂k �(x j , x i ) 

∂�
. (A.8) 

∂K ji 

∂�
= 

∂ exp 

(
− 1 

2 
(x j − x i ) �(x j − x i ) 

T 
)

∂�
. (A.9) 

= −1 

2 

(x j − x i ) 
T (x j − x i ) k �(x j , x i ) . (A.10) 

The derivative of the kernel has the same formulation for test

nd train. At test time the only difference is that rather than hav-

ng both samples represent cluster centers, one of them is the clus-

er center while the second represents the input test sample, x ∗. 

∂k �(x ∗, x i ) 

∂�
= −1 

2 

(x ∗ − x i ) 
T (x ∗ − x i ) k �(x ∗, x i ) . (A.11) 

Putting all partial derivatives back into the formulation of the

radient of the loss function with respect to the covariance, �, we

btain the complete derivation: 

∂L 

∂�
= 2 

train ∑ 

n 

(y n − y ∗n ) 

[ 

clusters ∑ 

i 

[ 

clusters ∑ 

j 

−K 

in v 
i j M ji K 

in v 
ji 

] 

y i k �(x n , x i ) + αi M ni ] + 2 λ�, (A.12) 
 ji = −1 

2 

(x j − x i ) 
T (x j − x i ) k �(x j , x i ) , (A.13) 

 

in v = (k �(X , X ) + σ 2 I ) −1 . (A.14) 
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