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Abstract: Objects can take up an arbitrary number of pixels in an image: Objects come in different sizes, and, pho-
tographs of these objects may be taken at various distances to the camera. These pixel size variations are
problematic for CNNs, causing them to learn separate filters for scaled variants of the same objects which pre-
vents learning across scales. This is addressed by scale-equivariant approaches that share features across a set
of pre-determined fixed internal scales. These works, however, give little information about how to best choose
the internal scales when the underlying distribution of sizes, or scale distribution, in the dataset, is unknown.
In this work we investigate learning the internal scales distribution in scale-equivariant CNNs, allowing them
to adapt to unknown data scale distributions. We show that our method can learn the internal scales on various
data scale distributions and can adapt the internal scales in current scale-equivariant approaches.

1 Introduction

Objects in images naturally occur at various scales.
The scale, or size in terms of pixels, of an object in an
image can vary because of perspective effects stem-
ming from the distance to the camera or due to in-
terclass variation. For example, imagine a golf ball
and a volleyball being classified as balls but varying in
size. Vanilla CNNs can learn differently-sized objects
when presented with large amounts of data. However,
since the CNN has no internal notion of scale, sepa-
rate filters for differently scaled versions of the same
objects are learned, leading to significant redundancy
in the learned features.

Scale-equivariant CNNs such as (Xu et al., 2014a;
Sosnovik et al., 2019) share features across a fixed
set of chosen internal scales which increases parame-
ter efficiency by removing the need to learn separate
filters for differently-sized objects. Yet, such scale-
convolution approaches need tune the internal scales
as a hyper-parameter. Instead, here, We present a
model that can learn these internal scales.

In this paper, we present a model of the relation-
ship between the internal scales and the data scale
distribution. We show empirically the parameters for
which this model is most accurate. Furthermore, we
define a parameterization of the internal scales and
draw inspiration from NJet-Net (Pintea et al., 2021)

to learn the internal scales. Our method provides a
way to learn the internal scales without the need for
prior knowledge of the scale distribution of your data.

We have the following contributions. 1. We
demonstrate that the best internal scales are related
to the used data scale distribution. 2. We derive an
empirical model that shows approximately how we
should choose the internal scales when the data scale
distribution is known. 3. We remove the need for
prior knowledge about the data scale distribution by
making the internal scales learnable.

2 Related Work

Scale spaces Scale is naturally defined on a loga-
rithmic axis (Florack et al., 1992; Lindeberg and Ek-
lundh, 1992) We base our work on Gaussian scale-
space theory and use theory on the logarithmic nature
of scale to define the internal scale tolerance model
and in the parameterisation of the internal scales.

Pyramid Networks These use differently scaled
versions of the input image to share features across
different scales. Popular pyramid networks in-
clude (Farabet et al., 2013; Kanazawa et al., 2014;
Marcos et al., 2018), and are equivariant over fixed



chosen scales and require many expensive interpola-
tion operations. Contrarily, our approach can learn
the scales without extensive use of interpolations.

Scale group convolutions An alternative way to
achieve scale-equivariance or scale-invariance is
through the use of group convolution (Xu et al.,
2014a; Sosnovik et al., 2019; Ghosh and Gupta, 2019;
Naderi et al., 2020; Zhu et al., 2019; Lindeberg,
2020). DISCO (Sosnovik et al., 2021) argues that
the discretisation of the underlying continuous basis
functions leads to increased scale-equivariance error
and therefore leads to worse performance. Instead,
they opt to use dilation for integer scale factors and di-
rectly optimise basis functions for non-integer scales
using the scale-equivariance error (Sosnovik et al.,
2021). While all methods allow for non-integer scale
factors, the scales over which the network is equiv-
ariant are fixed and they provide little instructions on
how to best choose the internal scales.

Learnable Scale Continuous kernel parameterisa-
tion forms the basis of methods that aim to learn the
scale or scales of the dataset (Pintea et al., 2021; Sal-
danha et al., 2021; Tomen et al., 2021; Yang et al.,
2023; Benton et al., 2020; Sun and Blu, 2023). The
NJet-Net (Pintea et al., 2021) learned the scale of the
dataset by making the σ parameter of the Gaussian
derivative basis function learnable. We build on that
work to learn multiple internal scales simultaneously.

3 Method

In Fig. 1 we visualize the setting. Our method is
equivariant to both translation and scale transforma-
tions. Like SESN (Sosnovik et al., 2019), our method
achieves scale-equivariance through an inverse map-
ping of the kernel:

Ls[ f ]∗κ = Ls[ f ∗κs−1 ], ∀ f ,s (1)
where Ls represents a scaling transformation by a fac-
tor s, κ is a discretized continuous kernel parameter-
ized by an inner scale. Thus, a scaled input convolved
with a kernel is the same as first convolving the origi-
nal input with an inversely scaled kernel and then ap-
plying the same scaling.

Due to the discrete nature of images, we need to
approximate the equivariance to translation and scal-
ing by a discrete group. The translation group is ap-
proximated by taking into account all discrete trans-
lations. The scaling group is discretised by NS scales
with log-uniform spacing as follows:

S = [σbasis × ISR( i
NS−1 ) for i in 0..NS −1] (2)
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Figure 1: Dynamic Multi-Scale Kernel generation pipeline.
Filter basis is parameterised by a discrete set of scales which
in turn are generated from learnable parameters, controlling
both the size of the first scale σbasis and the range the inter-
nal scales span (ISR). Linear combination of the Dynamic
Filter Basis functions with trainable weights form Multi-
Scale Kernel.

where σbasis is a learnable parameter that defines the
smallest scale, and the ISR defines the range between
the largest and smallest scale, also known as the In-
ternal Scale Range. The logarithmic spacing can be
attributed to the logarithmic nature of the scale.

The kernels of the model consist of a weighted
sum of basis functions that are defined at each scale
in the internal scales S. Following (Sosnovik et al.,
2019), we use a basis of 2D Hermite polynomials with
a 2D Gaussian envelope. This basis is pre-computed
at the start of training for all pre-determined scales if
scale learning is disabled. Otherwise, the basis func-
tions are recomputed at each forward pass.

Scale-Convolution Scale-convolution is a standard
convolution extended by incorporating an additional
scale dimension (Sosnovik et al., 2019). Without tak-
ing into account interscale interactions we define the
following two types of scale convolutions:

1. Conv T → H: In this scenario, the input of the
scale-convolution is a tensor without any scale-
dimension, or |S′| = 1. The output, defined over
the internal scales S stems from the convolution of
the input with scaled kernels κs−1 s.t. s ∈ S:

[ f ∗H κ](s, t) = f (·)∗κs−1(·) (3)

where κs is a kernel scaled by s, ∗H is the scale
convolution and ∗ is a standard convolution.

2. Conv H → H: The input is now defined over the
internal scales S, the resulting output at scale s
is the convolution of the input at scale s with the
scaled kernel κs−1 :

[ f ∗H κ](s, t) = f (s, ·)∗κs−1(·) (4)

These methods are designed to adhere to the scale-
equivariance equation highlighted in Eq. 1.
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Figure 2: Example of possible internal scale tolerance
model for the log-uniform data scale distribution over the
range [0.6, 2.0] with ISRhyp fixed to 2 to reflect internal
scales choice in SESN (Sosnovik et al., 2019) on MNIST-
Scale.

Internal Scale Tolerance Model We define an em-
pirical tolerance model to estimate which internal
scales to choose when the scale distribution is known.
The tolerance describes the region of data scales the
kernel can generalise to. Previous papers have shown
that the generalisation error to unseen scales follows
an approximate log-normal distribution (Kanazawa
et al., 2014; Lindeberg, 2020). Therefore, we use a
Normal distribution on a logarithmic scale to model
the tolerance for each kernel at a certain internal scale.
The log-normal distributions of each internal scale are
then combined into one mixture model. An example
of a possible configuration can be seen in Fig. 2.
The internal scale tolerance model has the following
parameters:

1. Reference Internal Scale: defines the relationship
between the position of the internal scales and the
data scales.

2. ISRhyp: range over which the internal scales are
defined, this is the factor between the largest and
the smallest scale.

3. τtol : standard deviation of the underlying log-
normal distribution that is placed on each internal
scale.

The reference scale and ISR are specific to each
tolerance model of a data scale distribution while τtol
is independent of the data scale distribution and a
property of a kernel.

We make the assumption here that we do know the
data scale distribution. We extend the data scale dis-
tribution at the boundaries by a half-log-normal dis-
tribution with σ = 0.4 to model the generalisation to
unseen scales. The Kullback-Leibler (Kullback and
Leibler, 1951) is used to fit the tolerance model on
the data scale sampling distributions.

Moving away from fixed Scale Groups To make
the scales of the network learnable we move away
from fixed multi-scale basis functions and make the
scales of the basis functions dynamic. The scales that
parameterise the basis functions are continuous and
have a gradient with regard to the loss allowing for
direct optimisation. This allows us to simultaneously
learn the kernel shape and scales, see Fig. 1. Unlike
SEUNET (Yang et al., 2023), we do not parameterise
the scales directly but parameterise the internal scales
by σbasis and the ISR using Eq. 5.

We observe that a value for the ISR lower or equal
to 1 is unwanted as this would result in kernels at the
same scale or a subsequent scale smaller than the base
scale defined by σbasis. We do not use a ReLU acti-
vation as this can lead to a dead neuron and zero gra-
dient. We parameterise the ISR using the following
formula:

ISR = 1+ γ
2 (5)

where γ is the learnable parameter. We will only men-
tion the ISR since it is closely related to the learnable
parameter and more intuitive to understand.

Various size basis functions lead to difficulties in
choosing the best kernel size before training. We use
the method by (Pintea et al., 2021) to learn the size of
the kernel based on the ISR:

l = 2⌈k(σbasis × ISR)⌉+1 (6)

where k is a hyperparameter that determines the ex-
tent of the approximation of the continuous basis
functions. Thus, the kernel size used in convolution
is determined by the largest scale in the set of internal
scales which is directly parameterised by σbasis and
the ISR.

4 Experiments

In Section 4.1 and 4.2, we use the simple architecture
shown in Tab. 1 on the commonly used MNIST-Scale
dataset (Kanazawa et al., 2014) with a Logarithmi-
cally Uniform data scale distribution with a range of 1
to 21.5,22.25 and 23 corresponding to 2.83,4.76,and 8
scale factors of MNIST respectively. Appx. A gives a
complete description of all datasets used in the exper-
iments.

4.1 Validation

Do Internal scales really matter? We test our as-
sumption that the internal scale range (ISR), the factor
between the largest and smallest internal scale influ-
ences the performance. Furthermore, we compare the



Conv T → H, Hermite, NS = 3, 16 filters

scale-projection

batch norm, relu

42 x 42 max pool

fully-connected, softmax

Table 1: CNN for Experiments 4.1 and 4.2 to show the im-
pact of choosing the internal scales and scale-learning.
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Figure 3: Impact on Test Error when varying Internal Scale
Range (ISR) for different log-uniform data scale distribu-
tions from 1 scale factor of MNIST to 2.83, 4.76 and 8 scale
factors MNIST. The value of the Internal Scale Range (ISR)
for the best-performing model increases together with the
width of the model.

optimal ISRs we discovered with the suggested val-
ues of the Internal Scale Tolerance model. The ISRs
are chosen on a logarithmic scale in the range of [1.5,
7.65].

The results in Fig. 3 indicate that smaller ISRs
are better for narrow data scale distributions, while
larger ISRs perform better for wider data scale dis-
tributions. Thus, for a log-uniform distribution that
spans a small scale range narrow internal scales are
preferred. Conversely, for a log-uniform distribution
that spans a large scale range, wide internal scales
are preferred. Looking at the test error of individ-
ual data scales in Fig. 4, we see that at the bound-
ary regions of wide scale distributions narrow inter-
nal scales achieve significantly higher test error than
wider internal scales indicating that the model can-
not share features across the whole data scale distri-
bution. Narrow internal scales perform slightly better
than wider internal scales when evaluated on narrow
distributions. This statement aligns with results found
in Fig. 3, which indicates less test error variation be-
tween ISR values for the log-uniform distribution be-
tween 1 and 2.83.

The results of the combined optimisation of the
tolerant model and the three sampling distributions

can be found in Fig. 5. The optimisation leads to
τtol = 0.459. The optimisation fits ISR values ap-
proximately similar to the best ISRs depicted in Fig.
3. Again, the ISR values follow an increasing pattern
when the data scale distribution gets wider. Addition-
ally, Fig. 5 shows increasing gaps in the tolerance
hypothesis between internal scales for wide distribu-
tions.

Can we learn the internal scales? To test our
scale-learning capabilities, we evaluate our scale-
learning on three log-uniform data scale distributions.
The ISR is parameterised according to Eq. 5 and
the scale parameters are initialised with σbasis = 2
and ISR = 3. The results of learning the ISR and
σbasis compared to the best-performing ISRs without
scale learning enabled can be found in Table 2. Apart
from the narrowest scale distribution, the ISR values
learned increase when enlarging the range of the data
scale distribution. Our scale learning method gives
comparable performance to the baselines while not
using hyperparameter optimisation to determine the
best ISR.

4.2 Model Choices

How does initialisation of the scales affect scale
learning behaviour? We test the importance of the
initialisation of the internal scales by varying the start-
ing values of σbasis and ISR and report the classifica-
tion error and variation in learned scale parameters.
We vary the σbasis between 1 and 4 and the ISR be-
tween 1.5 and 6 in a logarithmic fashion.

Table 3 show the results for the log-uniform dis-
tributions between [1,2.83], [1,4.76] and [1,8]. The
results indicate that the learned σbasis and ISR val-
ues can be adapted to fit the data scale distribution
but the initialisation of the values has a big impact on
the learned scales and thus also the test error. Initial-
isation with a large ISR for a wide data scale distri-
bution leads to significantly lower test error. Fig. 6
shows the ISR over time during training, indicating
the ISR stabilises after around 20 epochs while the
best-performing model has a significantly larger ISR.

How does parameterisation of learnable scales af-
fect learnability? We test the importance of our
scale learning parameterisation method on the sta-
bility and classification performance against other
possible parameterisation methods. We initialise all
scale learning approaches with the internal scales:
[2.0,3.47,6]. The parameterisation methods that we
compare are:
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Figure 4: Test Error per data scale for multiple data scale distributions and values for the Internal Scale Range (ISR). Models
with narrow internal scales especially deteriorate in performance in the large-scale region for wide distribution.

Data Scale
Distribution

Scale
Learning σbasis ISR Test Error

Log-uniform [1,2.83] ✓ 1.96 ± 0.081 3.390 ± 0.545 2.291 ± 0.067
✗ 2 2.34 2.239 ± 0.060

Log-uniform [1,4.76] ✓ 2.001 ± 0.063 3.321 ± 0.024 2.510 ± 0.084
✗ 2 4.76 2.503 ± 0.045

Log-uniform [1, 8.00] ✓ 1.943 ± 0.064 4.196 ± 0.159 2.872 ± 0.070
✗ 2 5.35 2.805 ± 0.028

Table 2: Learned parameters for the Basis Min Scale σbasis and Internal Scale Range (ISR) compared to the configuration of
the best-performing model with fixed internal scales on different ranges of the log-uniform data scale distribution. Apart from
the log-uniform distribution with boundaries [1,2.83], the learned scale parameters σbasis and ISR follow a similar pattern as
the manually found scale parameters. The test error of our scale-learning method is also comparable to the best-performing
models with fixed scales.

1. Learning the first scale (σbasis) and the ISR using
the parameterisation from Eq. 5 (Ours)

2. Learning the first scale (σbasis) and the individual
spacings between subsequent scales

3. Learning the individual scales directly, based on
(Yang et al., 2023) but without defining intervals
the internal scales adhere to.

Table 4 shows the parameterisation methods, the clas-
sification error and the variation in the learned internal
scales. Unlike shown in (Yang et al., 2023) directly
learning the scales without constraints between the in-
ternal scales does not lead to internal scales converg-
ing to the same value. The methods do not vary sig-
nificantly in performance for the log-uniform distribu-
tion between [1, 2.83] and [1, 4.76] but this changes
when training on wider distributions. All methods
adjust the scales somewhat to account for the wider
scale distribution but our method of learning the In-
ternal Scale Range (ISR) is more stable and achieves
significantly better test Error.

4.3 Comparing baselines

We compare our scale-learning ability against ex-
isting scale-equivariant baselines by evaluating on
the MNIST-Scale (Kanazawa et al., 2014) dataset.
We reuse the code provided in DISCO (Sosnovik
et al., 2021) to compare our results to a baseline
CNN and other methods that take into account scale
variations such as SI-ConvNet (Kanazawa et al.,
2014), SS-CNN (Ghosh and Gupta, 2019), SiCNN
(Xu et al., 2014b), SEVF (Marcos et al., 2018),
DSS (Worrall and Welling, 2019), SESN (Sosnovik
et al., 2019) and DISCO (Sosnovik et al., 2021). All
methods adopt the same training strategy apart from
our scale learning method having a different learning
rate scheduler for its scale parameters (Appx. ??).

We also compared our Internal Scale Range based
parameterisation with other parameterisations such
as: learning the individual spacings between inter-
nal scales and learning the scales directly. Learning
the scale directly is similar to the approach taken by
(Yang et al., 2023) but without defining intervals the
internal scales have to adhere to.
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Figure 5: Results of combined optimisation of tolerance hypothesis models and three log-uniform data scale distributions.
The blue dashed line indicates the proposed internal scales, while the continuous blue line represents the tolerance hypothesis
for a specific data scale distribution. The red dashed lines indicate the boundaries of the loguniform distribution. The result
of fitting the tolerance model results in increasing ISRhyp similar to results best performing ISRs found for each data scale
distribution in Fig. 3.

Init σbasis Init ISR Learned σbasis Learned ISR Test Error

Data Scale Distribution: Log-uniform [1,2.83]
1 1.5 1.268 ± 0.061 2.609 ± 0.269 2.487 ± 0.108

3.0 1.236 ± 0.139 3.300 ± 0.082 2.357 ± 0.024
6.0 1.313 ± 0.102 4.350 ± 0.396 2.309 ± 0.021

2 1.5 1.810 ± 0.057 2.405 ± 0.167 2.260 ± 0.025
3.0 1.973 ± 0.079 3.635 ± 0.647 2.368 ± 0.055
6.0 1.994 ± 0.012 5.336 ± 0.283 2.359 ± 0.097

4 1.5 2.778 ± 0.092 2.521 ± 0.199 2.421 ± 0.050
3.0 2.703 ± 0.081 3.817 ± 0.245 2.483 ± 0.089
6.0 2.832 ± 0.001 5.211 ± 0.416 2.420 ± 0.124

Data Scale Distribution: Log-uniform [1, 4.76]
1 1.5 1.294 ± 0.110 3.462 ± 0.410 3.033 ± 0.130

3.0 1.253 ± 0.070 3.829 ± 0.126 2.762 ± 0.087
6.0 1.331 ± 0.091 4.612 ± 0.188 2.727 ± 0.101

2 1.5 1.931 ± 0.068 2.932 ± 0.169 2.767 ± 0.128
3.0 1.975 ± 0.060 3.309 ± 0.092 2.527 ± 0.120
6.0 2.041 ± 0.092 4.882 ± 0.007 2.501 ± 0.157

4 1.5 2.515 ± 0.038 3.093 ± 0.157 2.648 ± 0.073
3.0 2.587 ± 0.040 3.638 ± 0.169 2.575 ± 0.070
6.0 2.803 ± 0.098 5.662 ± 0.204 2.709 ± 0.078

Data Scale Distribution: Log-uniform [1, 8.00]
1 1.5 1.450 ± 0.130 3.767 ± 0.171 3.087 ± 0.173

3.0 1.275 ± 0.076 4.158 ± 0.123 3.131 ± 0.179
6.0 1.331 ± 0.097 5.423 ± 0.529 3.087 ± 0.178

2 1.5 1.755 ± 0.156 3.444 ± 0.025 3.010 ± 0.198
3.0 1.982 ± 0.068 4.095 ± 0.078 2.921 ± 0.082
6.0 2.079 ± 0.061 5.053 ± 0.375 2.745 ± 0.012

4 1.5 2.453 ± 0.151 3.466 ± 0.216 2.935 ± 0.036
3.0 2.607 ± 0.078 4.401 ± 0.343 2.803 ± 0.085
6.0 2.655 ± 0.044 5.268 ± 1.071 2.957 ± 0.140

Table 3: Mean and standard deviation of learned scale pa-
rameters (σbasis, ISR) and Test Error for different initiali-
sation of σbasis and ISR for log-uniform data scale distri-
bution between [1,2.83], [1,4.76] and [1,8]. Learned σbasis
and ISR values are highly dependent on the values they are
initialised on. Initialisation with a large ISR for a wide data
scale distribution leads to significantly lower test error than
initialisation at a low ISR.

As can be seen from Table 5, the performance
of the scale learning approaches are very comparable
with SESN (Sosnovik et al., 2019) without learnable
scales. All three scale-learning approaches achieve
test error performance within 1 standard deviation of
SESN with fixed scales. The learned scales, found
in Table 6, are consistently more spread out than the
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Figure 6: ISR parameter overtime for run initialised with
σbasis = 2, ISR = 3 on log-uniform distribution with bound-
aries [1,8]. After around 20 epochs, the learnable ISR sta-
bilises while the value for the ISR of the best-performing
model is significantly larger.

default scales used in SESN (Sosnovik et al., 2019)
especially when scale data augmentation is used.

5 Discussion

We have shown to be able to learn the internal scales,
but the problem of choosing the number of internal
scales remains an issue. For wide scale distribution,
wide internal scales achieve the best performance.
However, if the models were truly scale-equivariant,
the resulting test error would be similar to the test
error for the log-uniform data scale distribution be-
tween 1 and 2.83. More specifically, if the spacing
between the internal scales is too large the implied
scale-equivariance over the entire range of the inter-
nal scales does not hold up. The model again needs
to learn duplicate filters to cover the entire data scale
range. This hypothesis also matches up with our In-
ternal Scale tolerance model seen in Fig. 5, which
shows dips in between internal scales. We expect that
increasing the number of internal scales restores the
scale equivariance over the entire scale group with the



Data Scale
Distribution Parameterisation Scale 1 Scale 2 Scale 3 Test Error

Log-uniform [1, 2.83] Direct 1.965 ± 0.047 3.500 ± 0.193 6.235 ± 0.497 2.321 ± 0.095
Individual Spacing 1.967 ± 0.079 3.591 ± 0.329 6.930 ± 1.374 2.285 ± 0.038
ISR 1.960 ± 0.081 3.608 ± 0.435 6.672 ± 1.311 2.291 ± 0.067

Log-uniform [1, 4.76] Direct 1.865 ± 0.046 3.357 ± 0.105 6.450 ± 0.049 2.554 ± 0.093
Individual Spacing 1.996 ± 0.013 3.626 ± 0.158 6.830 ± 0.167 2.565 ± 0.061
ISR 2.001 ± 0.063 3.647 ± 0.127 6.647 ± 0.255 2.510 ± 0.084

Log-uniform [1, 8.00] Direct 1.689 ± 0.109 3.262 ± 0.107 6.997 ± 0.282 3.057 ± 0.015
Individual Spacing 1.902 ± 0.085 3.648 ± 0.165 8.093 ± 0.229 3.007 ± 0.049
ISR 1.943 ± 0.063 3.977 ± 0.053 8.145 ± 0.057 2.872 ± 0.070

Table 4: Mean and standard deviation of learned scales and Test Error of different parameterisations for multiple log-uniform
distributions with internal scales initialised as [2.0, 3.46, 6.0]. Learning the ISR leads to more stable learned internal scales
and better performance for wide distributions further away from the initialised scales.

Model MNIST-Scale MNIST-Scale+ # Params.

CNN 2.02 ± 0.07 1.60 ± 0.09 495k
SiCNN 2.02 ± 0.14 1.59 ± 0.03 497k
SI-ConvNet 1.82 ± 0.11 1.59 ± 0.10 495k
SEVF 2.12 ± 0.13 1.81 ± 0.09 495k
DSS 1.97 ± 0.08 1.57 ± 0.09 475k
SS-CNN 1.84 ± 0.10 1.76 ± 0.07 494k
SESN (Hermite) 1.68 ± 0.06 1.42 ± 0.07 495k
DISCO 1.52 ± 0.06 1.35 ± 0.05 495k

Ours (Learn ISR) 1.72 ± 0.05 1.44 ± 0.09 495k
Ours (Learn Spacings) 1.70 ± 0.10 1.50 ± 0.08 495k
Ours (Learn Scales Directly) 1.74 ± 0.06 1.50 ± 0.08 495k

Table 5: Classification error of Vanilla CNN and other
methods that take into account scale variations in the data.
The error is reported for runs with and without data scale
augmentation, the ”+” denotes the use of data scale augmen-
tation. Learnable scale approaches perform on par with the
non-learnable scale baseline SESN (Sosnovik et al., 2019).

downside of reduced computational efficiency.
Another difficulty of learning the scales is the ini-

tialisation of the internal scales. We have found that
the initialisation of the internal scales has a large im-
pact on the learned scales and as a result the perfor-
mance. However, we do expect that this can be re-
solved by tuning the training procedure.

In addition, our method adds a significant com-
putational overhead since it has to reconstruct the dy-
namic filter basis functions on each step instead of be-
ing able to reuse the fixed multi-scale basis. However,
hyperparameter optimisation of the scale parameters
would take significantly longer.

Learnable scales did not add significant gains for
classification but for other tasks with larger scale-
variations the importance of choosing internal scales
becomes more important. We anticipate that the abil-
ity to learn the internal scales is especially beneficial
in more complicated scenarios with more complicated
data scale distributions, like a Normal distribution. To
learn the internal scales for more advanced data scale
distributions it might be essential to find a way to ad-
ditionally learn or adapt the number of internal scales
based on a heuristic.
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A Dataset Description

Dynamic Scale MNIST The Dynamic Scale
MNIST pads the original 28x28 images from the
MNIST dataset (Deng, 2012) to 168x168 pixels and
then on initialisation of the dataset, an independent
scale for each sample is drawn from the chosen scale
distribution. Only scales e larger than 1 are sampled
during training time to prevent the influence of infor-
mation loss which occurs when downsampling the
data. Since each digit is upsampled upon accessing
no additional storage is needed to use this dataset for
various scale distributions. After initialisation the
dataset is normalised.

Additionally, this dataset can also be used to eval-
uate across a range of scales by sampling each test
digit individually on multiple scales. The scales to
evaluate are rounded to the nearest half-octave of 2.
The number to evaluate is determined by the range of
octaves times 10. Thus for Fig. 4, 45 scales are sam-
pled between 2−0.5 and 23.5 in a logarithmic manner.
The underlying MNIST dataset (Deng, 2012) is split
into 10k training samples, 5k validation samples, and
50k test samples and 3 different realisations are gen-
erated and fixed.

MNIST-Scale The images in the MNIST-Scale
dataset are rescaled images of the MNIST dataset
(Deng, 2012). The scales are sampled from a Uni-
form distribution in the range of 0.3 - 1.0 of the orig-
inal size and padded back to the original resolution
of 28x28 pixels. The dataset is split into 10k training
samples, 2k validation samples and 50k test samples
and 6 realisations are made.


