
ViDeNN: Deep Blind Video Denoising

Michele Claus
Computer Vision lab

Delft University of Technology
claus.michele@hotmail.it

Jan van Gemert
Computer Vision lab

Delft University of Technology
http://jvgemert.github.io/

Abstract

We propose ViDeNN: a CNN for Video Denoising with-
out prior knowledge on the noise distribution (blind denois-
ing). The CNN architecture uses a combination of spa-
tial and temporal filtering, learning to spatially denoise
the frames first and at the same time how to combine their
temporal information, handling objects motion, brightness
changes, low-light conditions and temporal inconsistencies.
We demonstrate the importance of the data used for CNNs
training, creating for this purpose a specific dataset for low-
light conditions. We test ViDeNN on common benchmarks
and on self-collected data, achieving good results compa-
rable with the state-of-the-art.

1. Introduction
Image and video denoising aims to obtain the original

signal X from available noisy observations Y . Noise influ-
ences the perceived visual quality, but also segmentation [1]
and compression [2] making denoising an important step.
With X as the original signal, N as the noise and Y as the
available noisy observation, the noise degradation model
can be described as Y = X + N , for an additive type of
noise. In low-light conditions, noise is signal dependent and
more sensitive in dark regions, modeled as Y = H(X)+N ,
with H as the degradation function.

Imaging noise is due to thermal effects, sensor imperfec-
tions or low-light. Hand tuning multiple filter parameters
is fundamental to optimize quality and bandwidth of new
cameras for each gain level, taking much time and effort.
Here, we automate the denoising procedure with a CNN
for flexible and efficient video denoising, capable to blindly
remove noise. Having a noise removal algorithm working
in “blind” conditions is essential in a real-world scenario
where color and light conditions can change suddenly, pro-
ducing a different noise distribution for each frame.

Solutions based on statistical models include Markov
Random Field models [3], gradient models [4], sparse mod-
els [5] and Nonlocal Self-Similarity (NSS) currently used

Figure 1: ViDeNN approach to Video Denoising: combin-
ing two networks performing first Single Frame Spatial De-
noising and subsequently Temporal Denoising over a win-
dow of three frames, all in a single feed-forward process.

in state-of-the-art techniques such as BM3D [6], LSSC [7],
NCSR [8] and WNNM [9]. Even though they achieve re-
spectable denoising performance, most of those algorithms
have some drawbacks. Firstly, they are generally designed
to tackle specific noise models and levels, limiting their
usage in blind denoising. Secondly, they involve time-
consuming hand-tuned optimization procedures.

Much work has been done on image denoising while few
algorithms have been specifically designed for videos. The
key assumption for video denoising is that video frames are
strongly correlated. The most basic video denoising tech-
nique consists of the temporal average over various sub-
sequent frames. While giving excellent results for steady
scenes, it blurs motion, causing artifacts. The VBM4D
method [10] is the state-of-the-art in video denoising. It
extends BM3D [6] single image denoising by the search of
similar patches, not only in spatial but also in temporal do-
main. Searching for similar patches in more frames drasti-
cally increases the processing time.

In this paper we propose ViDeNN, illustrated in Fig 1:
a convolutional neural network for blind video denoising,
capable to denoise videos without prior knowledge over the
noise model and the video content. For comparison, ex-
periments have been run on publicly available and on self
captured videos. The videos, the low-light dataset and the
code will be published on the project’s GitHub page.
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The main contributions of our work are: (i) a novel CNN ar-
chitecture capable to blind denoise videos, combining spa-
tial and temporal information of multiple frames with one
single feed-forward process; (ii) Flexibility tests on Addi-
tive White Gaussian Noise and real data in low-light con-
dition; (iii) Robustness to motion in challenging situations;
(iv) A new low-light dataset for a specific Bosch security
camera, with sample pairs of noise-free and noisy images.

2. Related Work
CNNs for Image Denoising. From the 2008 CNN image

denoising work of Jain and Seung [11] there have been huge
improvements thanks to more computational power and
high quality datasets. In 2012, Burger et al. [12] showed
how even a simple Multi Layer Perceptron can obtain com-
parable results with BM3D [6], even though a huge dataset
was required for training [13]. Recently, in 2016, Zhang et
al. [14] used residual learning and Batch Normalization [15]
for image denoising in their DnCNN architecture. With its
simple yet effective architecture, it has shown to be flexible
for tasks as blind Gaussian denoising, JPEG deblocking and
image inpainting. FFDNet [16] extends DnCNN by han-
dling an extended range of noise levels and has the ability to
remove spatially variant noise. Ulyanov et al. [17] showed
how, with their Deep Prior, they can enhance a given im-
age with no prior training data other than the image itself,
which can be seen as a ”blind” denoising. There have been
also some works on CNNs directly inspired by BM3D such
as [18, 19]. In [20], Ying et al. propose a deep persistent
memory network called MemNet that obtains valid results,
introducing a memory block, motivated by the fact that hu-
man thoughts are persistent. However, the network struc-
ture remains complex and not easily reproducible. A U-
Net variant has been successfully used for image denois-
ing in the work of Xiao-Jiao et al. [21] and in the most
recent work on image denoising of Guo et al. [22] called
CBDNet. With their novel approach, CBDNet reaches ex-
traordinarily results in real world blind image denoising.
The recently proposed Noise2Noise [23] model is based on
an encoder-decoder structure, obtains almost the same re-
sult using only noisy images for training, instead of clean-
noisy pairs, which is particularly useful for cases where the
ground truth is not available.

Video and Deep Neural Networks. Video denoising
using deep learning is still an under-explored research area.
The seminal work of Xinyuan et al. [24], is currently the
only one using neural networks (Recurrent Neural Net-
works) to address video denoising. We differ by address-
ing color video denoising, and offer comparable results to
the state-of-art. Other video-based tasks addressed using
CNNs include Video Frame Enhancement, Interpolation,
Deblurring and Super-Resolution, where the key compo-
nent is how to handle motion and temporal changes. For

frame interpolation, Niklaus et al. [25] use a pre-computed
optical flow to feed motion information to a frame inter-
polation CNN. Meyer et al. [26] use instead phase based
features to describe motion. Caballero et al. [27] developed
a network which estimate the motion by itself for video su-
per resolution. Similarly, in Multi Frame Quality Enhance-
ment (MFQE), Yang et al. [28] use a Motion Compensation
Network and a Quality Enhancement Network, considering
three non-consecutive frames for H265 compressed videos.
Specifically for video deblurring, Su et al. [29] developed a
network called DeBlurNet: a U-Net CNN which takes three
frames stacked together as input. Similarly, we also use
three stacked frames in our ViDeNN. Additionally, we have
also investigated variations in the number of input frames.

Real World Datasets. An image or video denoising al-
gorithm, has to be effective on real world data to be success-
ful. However, it is hard to obtain the ground truth for real
pictures, since perfect sensors and channels do not exist. In
2014, Anaya and Barbu, created a dataset for low-light con-
ditions called RENOIR [30]: they use different exposure
times and ISO levels to get noisy and clean images of the
same static scene. Similarly, in 2017, Plotz and Roth cre-
ated a dataset called DND [31]. In this case, only the noisy
samples have been released, whereas the noise free ones are
kept undisclosed for benchmarking purposes. Recently, two
other related papers have been published. The first, written
by Abdelhamed et al. [32] concerns the creation of a smart-
phone image dataset of noisy and clean images, which at
the time of writing is not yet publicly available. The sec-
ond, written by Chen et al. [33], presents a new CNN based
algorithm capable to enhance the quality of low-light raw
images. They created a dedicated dataset of two camera
types similarly to [30].

3. ViDeNN: Video DeNoising Net
ViDeNN has two subnetworks: Spatial and temporal de-

noising CNN, as illustrated in Fig 2.

3.1. Spatial Denoising CNN

For spatial denoising we build on [14], which showed
great flexibility tackling multiple degradation types at the
same time, and experimented with the same architecture
for blind spatial denoising. It is shown, that this architec-
ture can achieve state-of-art results for Gaussian denoising.
A first layer of depth 128 helps when the network has to
handle different noise models at the same time. The net-
work depth is set to 20 and Batch Normalization (BN) [15]
is used. The activation function is ReLU (Rectified Lin-
ear Unit). We also investigated the use of Leaky ReLU as
activation function, which can be more effective [34], with-
out improvement over ReLU. Comparison results are pro-
vided in the supplementary material. Our Spatial-CNN uses
Residual Learning, which has been firstly introduced in [14]



Figure 2: The architecture of the proposed ViDeNN net-
work. Every frame will go through a spatial denoising
CNN. The temporal CNN takes as input three spatially de-
noised frames and outputs the final estimate of the central
frame. Both CNNs estimate first the noise residual, i.e. the
unwanted values noise adds to an image, and then subtracts
them from the noisy input (⊕ means addition of the two
signals, and ”-” the negation). ViDeNN is composed only
by Convolutional Layers. The number of feature maps is
written at the bottom of each layer.

to tackle image denoising. Instead of forcing the network to
output directly the denoised frame, the residual architecture
predicts the residual image, which consist in the difference
between the original clean image and the noisy observation.
The loss function L is the L2-norm, also known as least
squares error (LSE) and is the sum of the square of the dif-
ferences S between the target value Y and the estimated val-
ues Yest. In this case the difference S represents the noise
residual image estimated by the Spatial-CNN, and is given

by L =
∑
x

∑
y

(
Y (x, y)− Yest(x, y)︸ ︷︷ ︸

Noise Residual

)2
.

3.1.1 A Realistic Noise Model

The denoising performance of a spatial denoising CNN de-
pends greatly on the training data. Real noise distribution
differs from Gaussian, since it is not purely additive but
it contains a signal dependent part. For this reason, CNN
models trained only on Additive White Gaussian Noise
(AWGN) fail to denoise real world images [22]. Our goal
is to achieve a good balance between performance and flex-
ibility, training a single network for multiple noise models.
As shown in Table 1, our Spatial-CNN can handle blind
Gaussian denoising: we will further investigate its gener-
alization capabilities, introducing a signal dependent noise
model. This specific noise model, in equation 1, is com-
posed by two main contributions, the Photon Shot Noise
(PSN) and the Read Noise. The PSN is the main noise
source in low-light condition, whereNsat accounts the satu-
ration number of electrons. The Read Noise is mainly due to

(a)
Noisy frame

(18.54/0.5225)

(b)
CBM3D[35]

(29.26/0.9194)

(c)
DnCNNB[14]
(28.72/0.9355)

(d)
Our result

(30.37/0.9361)

Figure 3: Comparison of spatial denoising of an image
from the CBSD68 dataset corrupted with 1, with Ag=64
and Dg=4. AWGN based method as CBM3D and DnCNN
does not achieve optimal result. The first blurs excessively
the image. Using the proper noise model for training leads
to a better result. (PSNR [dB]/SSIM)

the quantization process in the Analog to Digital Converter
(ADC), used to transform the analog light signal into a dig-
ital image. CT1n represents the normalized value of the
noise contribution due to the Analog Gain, whereas CT2n
represents the additive normalized part. The realistic noise
model is

M =

√√√√√Ag ∗Dg
Nsat ∗ s︸ ︷︷ ︸

PSN

+Dg2 ∗ (Ag ∗ CT1n + CT2n)
2︸ ︷︷ ︸

Read Noise

, (1)

Noisy Image = s+N (0, 1) ∗M(s), (2)

where the relevant terms for the considered Sony sensor are:
Ag (Analog Gain), in range [0,64], Dg (Digital Gain), in
range [0,32] and s, the image that will be degraded. The
remaining values are CT1n=1.25−4, CT2n=1.11−4 and
Nsat=7489. The noisy image is generated by multiplying
observations of a normal distributionN (0, 1) with the same
shape of the reference image s, with the Noise Model M in
equation 2. In Figure 3 we illustrate that AWGN-based al-
gorithms such as CBM3D and DnCNN do not generalize
to realistic noise. CBM3D, in its blind version, i.e. with
the supposed AWGN standard deviation σ set to 50, over-
smooths the image, getting a low SSIM (Structural Similar-
ity, the higher the better) score, whereas DnCNN preserves
more structure. Our result shows that, to better denoise real
world images, a realistic noise model has to be used for the
training set.

3.2. Temp3-CNN: Temporal Denoising CNN

The temporal denoising part of ViDeNN is similar in
structure to the spatial one, having the same number of lay-
ers and feature maps. However, it stacks frames together as
input. Following other work [27, 28, 29] we stack 3 frames,
which is efficient, while our preliminary results show no
improvements for stacking more than 3 frames. Consider-



(a) Low-light Noisy
Image

(b) Reference Ground
Truth

Figure 4: Sample detail of noisy-clean image pairs of our
own low-light dataset, collected with a Bosch Autodome IP
5000 IR security camera. The ground truth is obtained aver-
aging 200 raw images collected in the same light conditions.

ing a frame with dimensions w×h×c, the new input will
have dimension of w×h×3c. Similar to the Spatial-CNN,
the temporal denoising also uses residual learning and will
estimate the noise residual image of the central input frame,
combining the information of other frames allowing it to
learn temporal inconsistencies.

4. Experiments
In this section we present the dataset creation and the

training/validation, performing insightful experiments.

4.1. Low-Light Dataset Creation

An image denoising dataset has pairs of clean and noisy
images. For realistic low-light conditions, creating pairs
of noisy and clean images is challenging and the publicly
available data is scarce. We used Renoir [30] and our self-
collected dataset. Renoir [30] proposes to use two differ-
ent ISO values and exposure times to get reference and dis-
torted images, demanding many camera settings and param-
eters. We use a simpler process: grabbing many noisy im-
ages of a static scene and then simply averaging to get an
estimated ground truth. We used a Bosch Autodome IP
5000 IR, a security camera capable to record raw images,
i.e. without any type of processing. The setting involved
a static scene and a light source with color temperature
3460K, which has variable intensity between 0 and 255.
We varied the light intensity in 12 steps, from the lowest
acceptable light condition of value 46, below of which the
camera showed noise only, up to the maximum with value
255. For every different light intensity, we recorded 200 raw
images in a row. Additionally, we recorded six test video
sequences with the stop-motion technique in different light
conditions, consisting in three or four frames with moving
objects or light changes: for each frame we recorded 200
images, which results in a total of 4200 images.

4.2. Spatial CNN Training

The training is divided in two parts: (i) we train the spa-
tial denoising CNN and (2) after convergence, we train the
temporal denoising CNN.

σ = 5 σ = 10 σ = 15 σ = 25 σ = 35 σ = 50

Spatial-CNN* 39.73 35.92 33.66 30.99 29.34 27.63
DnCNN-B* [14] 39.79 35.87 33.57 30.69 28.74 26.53
DnCNN-B [14] 40.62 36.14 33.88 31.22 29.57 27.91

Table 1: Comparison of blind Gaussian denoising on the
CBSD68 dataset. Our modified version of DnCNN for
spatial denoising has comparable results with the original
one. The values represent PSNR[dB], the higher the better.
DnCNN results obtained with the provided Matlab imple-
mentation [38]. CBSD68 available here [39].
*Noisy images clipped in range [0,255].

Our ideal model has to tackle multiple degradation types
at the same time, such as AWGN and real noise model 2
including low-light conditions. During the training phase,
our neural network will learn how to estimate the residual
noise content of the input noisy image, using the clean one
as reference. Therefore, we require couples of clean and
noisy images. which are easily created for AWGN and the
real noise model in equation 2.

We use the Waterloo Exploration Dataset [36], contain-
ing 4,744 clean images. The amount of available images
helps greatly to generalize and allows us to keep a good
part of it for testing. The dataset is randomly divided in
two parts, 70% for training and 30% for testing. Half of the
images are being added with AWGN with σ=[0,55]. The
second half are processed with equation 2 which is the real-
istic noise model, with Analog Gain Ag=[0,64] and Digital
Gain Dg=[0,32].

Following [14], the network is trained with 50× 50× 3
patches. We obtained 120,000 patches from the Waterloo
training set, containing AWGN and real noise type, using
data augmentation such as rotating, flipping and mirroring.
For low-light conditions, we used five noisy images for each
light level from our own training dataset, obtaining 60 pairs
of noisy-clean images for training. The patches extracted
are 80,000. From the Renoir dataset, we used the subset
T3 and randomly cropped 40,000 patches. For low-light
testing, we will use 5 images from our camera of a different
scene, not present in the training set, and part of the Renoir
T3 set. We trained for 100 epochs, using a batch of 128 and
Adam Optimizer [37] with a learning rate of 10−3 for the
first 20 epochs and 10−4 for the latest 80.

4.3. Validation of static Image Denoising

We compared blind Gaussian denoising with the original
implementation of DnCNN, on which ours is based. From
our test in Table 1 on the BSD68 test set, we notice how the
result of our blind model and the one proposed by the paper
[14] are comparable.

To further validate on real-world images, we evaluate the
sRGB DND dataset [31] and submitted for evaluation. The



PSNR [dB] SSIM

Spatial-CNN 37.0343 0.9324
CBDNet [22] 38.0564 0.9421
DnCNN+ [14] 37.9018 0.943
FFDNet+ [16] 37.6107 0.9415
BM3D [35] 34.51 0.8507

Table 2: Results of the DND benchmark [31] on real-world
noisy images. It shows that our dataset, containing differ-
ent noise models, is valid for real-world image denoising,
placing our Spatial-CNN in the top 10 for sRGB denoising.

result [40] are encouraging, since our trained model (called
128-DnCNN Tensorflow on the DND webpage) scored an
average of 37.0343dB for the PSNR and 0.9324 for the
SSIM, placing it in the first 10 positions. Interestingly, the
authors of DnCNN submitted their result of a fine-tuned
model, called DnCNN+, a week later, achieving the overall
highest score for SSIM, which further validates its flexibil-
ity, see Table 2.

4.4. Temp3-CNN: Temporal CNN Training

For video evaluation we need pairs of clean and noisy
videos. For artificially added noise as Additive White Gaus-
sian Noise (AWGN) or the real noise model in equation 2,
is easy to create such couples. However, for real-world and
low-light conditions videos it is almost impossible. For this
reason, this kind of video dataset, offering pairs of noisy
and noise-free sequences, are not available. Therefore, we
decided to proceed according to this sequence:

1. Select 31 publicly available videos from [41].

2. Divide videos in sequences of 3 frames.

3. Added either Gaussian noise with σ=[0,55] or real
noise 2 with Ag=[0,64] and Dg=[0,32].

4. Apply Spatial-CNN

5. Train on pairs of spatially-denoised and clean video.

We followed the same training procedure as the Spatial-
CNN, even though now the network will be trained with
patches of dimension 50× 50× 9, containing three patches
coming from three subsequent frames.
The 31 selected videos contain 8922 frames, which means
2974 sequences of three frames and a final number of
patches of 300032. We ran the training for 60 epochs with
a batch size of 128, Adam optimizer with learning rate of
10−4 and LeakyReLU as activation function. It is shown
LeakyReLU can outperform ReLU [34]. However, we did
not use Leaky Relu in the spatial CNN, because ReLU per-
formed better. We present the comparison result in the sup-
plementary material. In the final version of Temp3-CNN,

Figure 5: Evolution of the L2-Loss during the training of the
Temporal-CNN. Batch Normalization (BN) does not help,
adding a computation overhead without any improvement.
With Leaky ReLU as activation function and with no BN,
the loss starts immediately around 1 and decreases to 0.5
after 60 epochs. Denoising without BN takes around 5%
less time. First 1800 steps visualized.

Batch Normalization (BN) was not used: experiments show
it slows down the training and denoising process. BN did
not improve the final result in terms of PSNR. Moreover, de-
noising without BN requires around 5% less time. Figure 5
represents the evolution of the L2-loss for the Temp3-CNN:
avoiding the normalization step makes the loss starting im-
mediately at a low value. We trained also with Leaky ReLU,
Leaky ReLU+BN and ReLU+BN and present the results in
the supplementary material.

4.5. Exp 1: The Video Denoising CNN Architecture

The final proposed version of ViDeNN consists in two
CNNs in a pipeline, performing first spatial and then tem-
poral denoising. To get the final architecture, we trained Vi-
DeNN with different structures and tested it on two famous
benchmarking videos and on one we personally recorded
with a Blackmagic Design URSA Mini 4.6K, capable to
record raw videos. The videos have various levels of Ad-
ditive White Gaussian Noise (AWGN). We will answer to
three critical questions.

Q1: Is Temp3-CNN able to learn both temporal and
spatial denoising?

We compare the Spatial-CNN with the Temp3-CNN,
which in this case tries to perform spatial and temporal de-
noising at the same time.
Answer: No, Temp3 is not enough. Referring to Table 3,
we notice how using Temp3-CNN alone leads to a worse
result compared to the simpler Spatial-CNN.

Q2: Ordering of spatial and temporal denoising?
Knowing that using Temp3-CNN alone is not enough, we
now have to compare different combination of spatial and
temporal denoising.
Answer: looking at Table 4, we can confirm that using tem-
poral denoising improves the result over spatial denoising,
with the best performing combination as Spatial-CNN fol-
lowed by Temp3-CNN.



Foreman Tennis Strijp-S *

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73
Temp3-CNN 31.56 27.45 29.32 25.63 31.13

Table 3: Comparison of Spatial-CNN and Temp3-CNN
over videos with different levels of AWGN. The Temp3-
CNN alone can not outperform the Spatial-CNN. Results
expressed in terms of PSNR[dB]. *Self-recorded Raw video
converted to RGB.

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73

Temp3-CNN &
Spatial-CNN 32.09 28.37 29.21 25.98 32.28

Spatial-CNN &
Temp3-CNN 33.12 29.56 30.36 27.18 34.07

Table 4: The combination of Spatial-CNN + Temp3-CNN
is the best performing, showing consistent improvements of
∼ 1dB over the spatial-only denoising. Results expressed
in terms of PSNR[dB].

Foreman Tennis Strijp-S

Res./Frames 288×352 / 300 240×352 / 150 656×1164/787

σ 25 55 25 55 25

Spatial-CNN 32.18 28.27 29.46 26.15 32.73

Spatial-CNN &
Temp3-CNN 33.12 29.56 30.36 27.18 34.07

Spatial-CNN &
Temp5-CNN 33.03 29.87 30.72 27.70 33.97

Table 5: Comparison of architectures using 3 or 5 frames.
Using a bigger time window, i.e. five frames, may slightly
improve the final result or even worsen it. Hence, we de-
cided to proceed using a 3-frames architecture. Results ex-
pressed in terms of PSNR[dB].

Q3: How many frames to consider? We compare now the
introduced Temp3-CNN with Temp5-CNN, which consid-
ers a time window of 5 frames.
Answer: Results in Table 5 shows that considering more
frames could improve the result, but this is not guaran-
teed. Therefore, since using a bigger time window means
more memory and time needed, we decided to use the three
frames model for a better trade-off. For comparison, us-
ing the Temp5-CNN on the video Foreman took 6.5% more
time than using the Temp3-CNN, 21.17s vs 19.85s on GPU.
The difference does not seem much here, but will enhance
for realistic large videos.

4.6. Exp 2: Sensitivity to Temporal Inconsistency

We investigate temporal consistency with a simple ex-
periment where we remove an object from the first frame
and the last frame where we denoise on the middle frame,
see Figure 6. Specifically, (i) on the video Tennis from
[41], add Gaussian noise with standard deviation σ=40; (ii)
Manually remove the white ball on the first and last frame;
(iii) Denoise the middle frame. In Figure 6 we show the
modified input frames and ViDeNN output. In terms of
PSNR value, we got the same value for both normal and
experimental case: 27.28dB. This is an illustration that the
network does what we expected: it uses part of the sec-
ondary frames and combine them with the reference, but
only where the pixel content is similar enough: the ball is
not removed from frame 10.

(a) Noisy
Frame 9

(b) Noisy
Frame 10

(c) Noisy
Frame 11

(d) Denoised
Frame 10

Figure 6: ViDeNN achieves the same PSNR value of
27.28dB for frame 10 of the video Tennis with AWGN
σ=40, even if we manually cancel the white ball from the
secondary frames. The network understands which part has
to take into consideration and which not, i.e. the ball area.

Visualization of temporal filters To understand what
our model detects, we show in Figure 7 the output of two
of the 128 filters in the first layer of Temp3-CNN. In Figure
7a, we see in black the table-tennis ball of the current frame,
whereas the ones in the previous and subsequent frame are
in white. In Figure 7b instead, we see how this filter high-
lights flat areas with similar colors and shows mostly the
ball of the current frame in white. Therefore, Temp3-CNN
gives different importance to similar and different areas
among the three frames. This is a simple indication on how
the CNN handles motion and temporal inconsistencies.

(a) Filter 90 (b) Filter 59

Figure 7: Visualization of filters 59 and 90 output of Temp3-
CNN first convolutional layer. We used frames number 9,
10 and 11 from the video Tennis as input. Filter 59 high-
lights the reference ball and other areas with similar colors,
whereas filter 90 seems to highlight mostly contours and the
ball at the reference position in frame 10.



Tennis Old Town Cross Park Run Stefan

Res./Frames 240×352 / 150 720×1280 / 500 720×1280 / 504 656×1164 / 300

σ 5 25 40 15 25 40 15 25 40 15 25 55

ViDeNN 35.51 29.97 28.00 32.15 30.91 29.41 31.04 28.44 25.97 32.06 29.23 24.63
ViDeNN-G 37.81 30.36 28.44 32.39 31.29 29.97 31.25 28.72 26.36 32.37 29.59 25.06
VBM4D [10] 34.64 29.72 27.49 32.40 31.21 29.57 29.99 27.90 25.84 29.90 27.87 23.83
CBM3D [35] 27.04 26.37 25.62 28.19 27.95 27.35 24.75 24.46 23.71 26.19 25.89 24.18
DnCNN [14] 35.49 27.47 25.43 31.47 30.10 28.35 30.66 27.87 25.20 32.20 29.29 24.51

Table 6: Comparison of ViDeNN with a video denoising algorithm, VBM4D [10], and two image denoising algorithms,
DnCNN [14] and CBM3D [35]. ViDeNN-G is the model trained specifically for blind Gaussian denoising. Test videos have
different length, size and level of Additive White Gaussian Noise. ViDeNN performs better than blind denoising algorithms
CBM3D, DnCNN and VBM4D, which has been used with the low complexity setup due to our memory limitations. Best
results are highlighted in bold. Original videos are publicly available here [41]. Results expressed in terms of PSNR[dB].

(a) Noisy frame
148

(b) Noisy frame
149

(c) Noisy frame
150

(d) CBM3D[6]
(25.60/0.9482)

(e) VBM4D[10]
(24.51/0.9292)

(f) ViDeNN-G
(27.19/0.9605)

Figure 8: Blind video denoising comparison on Tennis [41] corrupted with AWGN σ=40 and values clipped between [0,255].
We show the result of two competitors, VBM4D and CBM3D, which scored respectively second and third (see Table 6) on
this test video. ViDeNN performs well in challenging situations, even if the previous frame is completely different 8a, thanks
to the temporal inconsistency detection. VBM4D suffers from the change of view, creating artifacts. Results in brackets are
referred to the single frame 149 (PSNR [dB]/SSIM).

4.7. Exp 3: Evaluating Gaussian Video Denoising

Currently, most of the video and image denoising al-
gorithms have been developed to tackle Additive White
Gaussian Noise (AWGN). We will compare ViDeNN with
the state-of-art algorithm for Gaussian video denoising
VBM4D [10] and additionally with CBM3D [35] and
DnCNN [14] for single frame denoising. We used the al-
gorithms in their blind version: for VBM4D we activated
the noise estimation, for CBM3D we set the sigma level
to 50 and for DnCNN we use the blind model provided by
the authors. We compare two versions of ViDeNN, where
ViDeNN-G is the model trained specifically for AWGN de-
noising and ViDeNN is the final model tackling multiple
noise models, including low-light conditions. The videos
have been stored as uncompressed png frames, added with
AWGN and saved again in loss-less png format. From the
results in Table 6 we notice that VBM4D achieves supe-
rior results compared to its spatial counterpart CBM3D,
which is probably due to the effectiveness of the noise es-
timator implemented in VBM4D. CBM3D suffers from the
wrong noise std. deviation (σ) level for low noise intensi-
ties, whereas for high levels achieves comparable results.
Overall, our implemented ViDeNN in its Gaussian specific
version performs better than the general blind model, even
though the difference is limited. ViDeNN-G scores the best

results, as highlighted in bold in Table 6, confirming our
blind video denoising network as a valid approach, which
achieves state-of-art results.

4.8. Exp 4: Evaluating Low-Light Video Denoising

Along with the low-light dataset creation, we also
recorded six sequences of three or four frames each:

• Two sequences of the same scene, with a moving toy
train, in two different light intensities.

• A sequence of an artificial mountain landscape with
increasing light intensity.

• Three sequences of the same scene, with a rotating
toy windmill and a moving toy truck, in three differ-
ent light conditions.

Those sequences are not part of the training set and have
been recorded separately, with the same Bosch Autodome
IP 5000 IR camera. In Table 7 we present the results of
ViDeNN highlighted in bold, in comparison with other
state-of-art denoising algorithms on the low-light test set.
We compare our method with VBM4D [10], CBM3D [35],
DnCNN [14] and CBDNet [22]. ViDeNN outperforms the
competitors, especially for the lowest light intensities. Sur-
prisingly, the single frame denoiser CBM3D performs bet-
ter than the video version VBM4D: the difference may be



Train Mountains Windmill

Res./Frames 212×1091 / 4 1080×1920 / 4 1080×1920 / 3

Light 50/255 55/255 [55,75]/255 44.6 lux 118 lux 212 lux

ViDeNN 34.05 36.96 40.84 32.96 35.42 36.69
VBM4D[10] 29.10 33.48 37.34 26.62 30.69 32.92
CBDNet[22] 30.89 34.56 39.91 29.56 34.31 36.22
CBM3D[35] 31.27 34.06 40.20 29.81 34.06 35.74
DnCNN[14] 24.33 29.87 32.39 21.73 25.55 27.87

Table 7: Comparison of state-of-art denoising algorithms over six low-light sequences recorded with a Bosch Autodome IP
5000 IR in raw mode, without any type of filtering activated. Every sequence is composed of 4 or 3 frames, with ground
truths obtained averaging over 200 images. The Windmill sequences has been recorded with a different light source, where
we were able to measure the light intensity. Highlighted in bold our ViDeNN results, which performs well. Results expressed
in terms of PSNR[dB].

(a) Noisy frame 2
(22.54/0.4402)

(b) DnCNN [14]
(24.30/0.5323)

(c) VBM4D [10]
(29.08/0.7684)

(d) CBDNet [22]
(30.75/0.8710)

(e) CBM3D[35]
(31.11/0.8982)

(f) ViDeNN
(34.14/0.9158)

Figure 9: Detailed comparison of denoising algorithms on the low-light video Train with light intensity at 50/255. Our
ViDeNN shows good performance in this light condition, preserving edges and correctly smoothing flat areas. Results
referred to frame 2, expressed in terms of (PSNR [dB]/SSIM).

because CBM3D in its blind version uses σ = 50, whereas
VBM4D has a built-in noise level estimator, which may per-
form worse with a completely different noise model from
the supposed Gaussian one.

5. Discussion
In this paper, we presented a novel CNN architecture for

Blind Video Denoising called ViDeNN. We use spatial and
temporal information in a feed-forward process, combin-
ing three consecutive frames to get a clean version of the
middle frame. We perform temporal denoising in simple
yet efficient manner, where our Temp3-CNN learns how
to handle objects motion, brightness changes, and tempo-
ral inconsistencies. We do not address camera motion in
videos, since the model was designed to reduce the band-
width usage of static security cameras keeping the network
as simple and efficient as possible. We define our model as
Blind, since it can tackle different noise models at the same
time, without any prior knowledge nor analysis of the input
signal. We created a dataset containing multiple noise mod-
els, showing how the right mix of training data can improve
image denoising on real world data, such as on the DND
Benchmarking Dataset [31]. We achieve state-of-art results
in blind Gaussian video denoising, comparing our outcome

with the competitors available in the literature. We show
how it is possible, with the proper hardware, to address low-
light video denoising with the use of a CNN, which would
ease the tuning of new sensors and camera models. Col-
lecting the proper training data would be the most time con-
suming part. However, defining an automatic framework
with predefined scenes and light conditions would simplify
the process, allowing to further reduce the needed time and
resources. Our technique for acquiring clean and noisy low-
light image pairs has proven to be effective and simple, re-
quiring no specific exposure tuning.

5.1. Limitations and Future Works

The largest real-world limitations of ViDeNN is the re-
quired computational power. Even with an high-end graphic
card as the Nvidia Titan X, we were able to reach a maxi-
mum speed of only∼ 3fps on HD videos. However, most of
the current cameras work with Full HD or even UHD (4K)
resolutions with high frame rates. We did not try to imple-
ment ViDeNN on a mobile device supporting Tensorflow
Lite, which converts the model to a lighter version more
suitable for handled devices. This could be new develop-
ment and challenging question to investigate on, since every
week the available hardware in the market improves.
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