
Pushing Joint Image Denoising and Classification to the Edge 1

A Efficient Classification & Denoising: Additional results

The joint models in Section 3 are constructed using a separate denoiser and
classifier. We describe the baseline models and several methods to construct the
reduced versions.

Overview of the models used in the main paper. UNet-S: {d = 4, b
= 8, c = 2, m = 1.5}, which is also called Reduced UNet. UNet-M: {d = 4,
b = 16, c = 2, m = 2}. UNet: {d = 5, b = 64, c = 2, m = 2}, which is also
called Baseline UNet. MB2.5-M: the classifier described in Section A.1 with an
MBConv (expansion rate = 2.5) as second convolutional layer.

A.1 Efficient Classification

Experimental setup. Our baseline classifier (Conv-L) consists of two convolu-
tional, one global max pooling, and a linear layer. Each convolutional layer also
has a group normalization [44], max pooling, and ReLU activation function.

To construct the reduced version, we use two methods similar to previous
works [33,37]. In the first method, we replace the second convolutional layer with
an MBConv layer. Three expansion rates are used {1, 2.5, 4}: (i) rate 1 is the
lowest possible value, (ii) rate 4 matches the number of FLOPs of the baseline,
and (iii) rate 2.5 is in the middle of those two. The second reduction method
is to lower the number of filters in the baseline, also called the model width.
Using these techniques, models with three different FLOP sizes are constructed,
{S, M, L}. We use the following naming scheme, Conv-x and MBe-x, where x
represents the FLOP size and e is the expansion rate of the MBConv.

The models are trained using Cross Entropy loss. We report the accuracy
averaged over all 11 noise levels.

Exp. 1: Conv vs MBConv comparison. According to [33], the MBConv
layer should be more efficient than a normal convolutional layer. Therefore, when
comparing the two operators in our network, we expect the version with an
MBConv layer to need fewer FLOPs for the same accuracy. In Table 7, the MB
models with expansion rates 2.5 (MB2.5-M) and 4 (MB4-L) classify better than
the Conv-L model with fewer FLOPs. However, with an expansion rate of 1
(MB1-S), the accuracy drops 7% compared to Conv-L. Therefore, [33]’s theory
also holds for the noisy classifier, but only for the higher expansion rates.

Exp. 2: MBConv width & expansion rate scaling. Since MBConv
layers can be used to improve efficiency, we question how to further reduce the
MB model’s FLOP size. We compare two options: (i) reducing the expansion
rate and (ii) scaling the width of the network. We take MB4-L as the starting
model, as this is our best and largest model.

From the MB models with size S in Table 7, MB1-S performs the worst. It
only has a reduced expansion rate from 4 to 1. MB4-S, which is obtained by
scaling the width of MB-L, increases classification performance by only 0.4%.
However, when slightly reducing MB4-L’s width and expansion rate, we derive
MB2.5-S, which reaches 58.4% accuracy, significantly outperforming both other
S-sized MB models. So the combination of the two methods is most effective.



2 T. Markhorst et al.

Table 7: Classification baseline and reduced models, designed for three different FLOP
targets: {S, M, L}, to compare scaling methods: expansion rate and model width. Each
section of rows is used by the experiments from Sec. A.1 defined in the Exp. column.
MB models scale down more efficiently than normal Conv models.

Exp. Model Size Exp. rate FLOPs (K) # Lat. (ms) # Acc (%) "

1-3

Conv-L L - 447 0.336 63.2
MB1-S S 1 177 0.300 56.2
MB2.5-M M 2.5 350 0.384 64.1
MB4-L L 4 424 0.468 64.9

2-3 MB2.5-S S 2.5 178 0.390 58.4
MB4-S S 4 188 0.403 56.6

3 Conv-S S - 163 0.281 55.4
Conv-M M - 345 0.317 61.4

Exp. 3: Conv width scaling. In this experiment, we compare the width
scaling of the Conv-L model. Table 7 shows that all S-sized MB models out-
perform Conv-S, MB2.5-S even by 3.0%. MB2.5-M also outperforms Conv-M,
by 2.7%. Therefore, scaling is more efficient for the MB models than the Conv
models when optimizing for FLOPs.

Conclusion. The MBConv layer can replace the convolutional layers. We
find that compared to the Conv models, the MB models also scale down more
efficiently by first reducing the expansion rate, possibly followed by a width
reduction. Scaling effectively reduces the number of FLOPs.

MB2.5-M has the second-best accuracy with low FLOPs and a latency close
to the baseline, Conv-L. Therefore, MB2.5-M is used as the reduced classifier.
We also use MB2.5-M as the new baseline classifier as it outperforms the old
baseline, Conv-L, in FLOPs and accuracy.

It is important to note that the reduction in FLOPs instantiated by using
MBConvs, does not translate to a latency reduction in these experiments. This
issue is discussed previously in [38]. Since the target of these experiments is
FLOPs and the latency increase is manageable, we place minimal emphasis on
the latency.

A.2 Efficient Denoising

Experimental setup. For denoising, the baseline and reduced version are con-
structed by performing a hyperparameter study on UNet similar to [25]. Figure 2
shows the UNet architecture along with its hyperparameters to tune. We explore
the parameters one at a time, starting with the number of base features maps b,
then the UNet depth d, the feature map multiplier m, and the number of con-
volutional blocks per layer c. In the original UNet: {b = 64, d = 5, m = 2, c =
2}. Altering these hyperparameters can greatly reduce the model size. Similar to
the classification experiments, we also study the ability of the MBConv operator



Pushing Joint Image Denoising and Classification to the Edge 3

Fig. 9: UNet hyperparameter (Figure 2) scaling experiments. Shows how altering a
specific hyper-parameter influences denoising performance and FLOPs. We only show
PSNR results of �=0.8, as the other results show the same trend. We find that b and
m scale down efficiently, d and c do not.

to increase efficiency in the denoiser. The models are trained using Charbonnier
loss [4].

Exp. 1: The base feature map width b. In this experiment, we aim to
find the relevant range of b. Since b is multiplied at every level, the number of
feature maps throughout all layers depends on it, which makes it a powerful
hyper-parameter. We use d = 4 and the other hyper-parameters as in the orig-
inal UNet, then we test b 2 {4, 8, 16, 32, 64}. The trend in Figure 9.a shows
that the performance and FLOPs increase with b. We observe that the trend is
significantly disrupted by b = 4. Conversely, the performance difference between
b = 32 and b = 64 is small, but the network size quadrupled. Therefore in further
experiments, we focus on b 2 {8, 16, 32}.

Exp. 2: The UNet depth d. Given the robustness of b, we are interested
in how reducing d compares in terms of efficiency. Figure 9.b displays the perfor-
mance of the architectures with the selected b 2 {8, 16, 32} testing d 2 {2, 3, 4,
5}. We observe that reducing d causes a drop in denoising performance, whereas
b retains performance better, also in Figure 9.a. Therefore b scales down more
efficiently. The models with d = 3 or 4 denoise most efficient. Especially for the
smaller models, d = 4 performs well.

Exp. 3: The number of conv blocks per layer c. Does reducing c further
increase efficiency? To test this, we take the best-performing settings, d = 4 and
b 2 {8, 16, 32, 64}, and compare c = 1 and c = 2. Figure 9.c shows that the



4 T. Markhorst et al.

model with c = 2 outperforms c = 1. Therefore reducing c does not benefit the
model’s efficiency.

Exp. 4: The feature map multiplier m. We test if our smallest model
could be further reduced in size by lowering m. We take d = 4 and b = 8,
and compare m 2 {1, 1.5, 2}. Figure 9.d shows that the reduction to m = 1.5
retains performance. For m = 1, the performance drops. Reducing m to 1.5 could
therefore be used to scale down the model when further reducing b significantly
decreases performance.

Conclusion. To construct the reduced and baseline denoiser, we use the
smallest and largest values from the found hyperparameter ranges. Resulting in
baseline (UNet): {b = 32, d = 4, m = 2, c = 2} and reduced (UNet-S): {b =
8, d = 4, m = 1.5, c = 2}. Table 8 compares the two models for a selection
of the noise levels. Although the reduced model has significantly fewer FLOPs
and lower latency, the denoising performance is relatively similar to the baseline
denoiser.

The UNet hyper-parameter experiments are replicated using MBConvs, which
lead to similar findings. Moreover, the Conv UNet slightly outperforms the MB
model. Therefore, the Conv model is used.

Table 8: Compares Baseline and Reduced UNet denoisers. The reduced model has
significantly lower FLOPs and latency yet similar denoising performance.

Model FLOPs (M) # Lat. (ms) # Metric Noise level (�)
0.2 0.4 0.8 1

UNet 1301.8 7.10 PSNR " 33.9 29.5 23.8 22.3
SSIM " 0.99 0.98 0.95 0.92

UNet-S 51.2 2.38 PSNR " 33.2 28.7 23.3 22.0
SSIM " 0.99 0.98 0.94 0.92

B Search space

In Section 4.1, different variations of the TF-NAS search space are used [19].
Table 9 displays the candidate operations and for which search space size they
are used. The search space with 4 operators is constructed using the MBConvs
without SE-layer, as this is most common in recent NAS methods [38, 42]. For
the 6-operator search space, we add the possibility of using an SE layer on the
operators where the kernel size is three and the expansion rate is three or six. We
use the two smallest operators as they can be used for smaller target latencies
too. The search space with 8 operators simply uses all combinations.



Pushing Joint Image Denoising and Classification to the Edge 5

Table 9: Overview of the candidate blocks for the different search space sizes {4, 6,
8}. MBConv operators are used with different kernel sizes k, expansion rate e, and in-
or excluding the squeeze- and excitation-layer.

Name Kernel Expansion rate SE-layer 4 6 8

MB-k3-e3 3 3 - X X X
MB-k3-e6 3 6 - X X X
MB-k5-e3 5 3 - X X X
MB-k5-e6 5 6 - X X X
MB-k3-e3-se 3 3 X - X X
MB-k3-e6-se 3 6 X - X X
MB-k5-e3-se 5 3 X - - X
MB-k5-e6-se 5 6 X - - X

C Learned vs. Removed �: Additional results

In Experiment 1 of Section 4.1, we test the influence of removing � from the
search approach. The models with Removed � significantly outperform the mod-
els with Learned � in accuracy. Besides, the found models are more similar for
Removed than Fixed, Removed � differs only 0.04ms and 0.2% accuracy, while
Learned � differs 0.57ms and 1.4% accuracy. This indicates that the search for
Removed is more stable.

Table 10: Compares four searched models with target latency 6 ms. Trained on clean
images. Two models are searched without � and the other two using learned �. Removed
outperforms learned �.

Type Search id LAT (ms) # Acc (%) "

Removed �
1 5.85 86.2
2 5.81 86.4

Learned �
1 5.04 84.9
2 4.47 83.5


