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Abstract—In domain generalization, multiple labeled non-
independent and non-identically distributed source domains are
available during training while neither the data nor the labels of
target domains are. Currently, learning so-called domain invariant
representations (DIRs) is the prevalent approach to domain
generalization. In this work, we define DIRs employed by existing
works in probabilistic terms and show that by learning DIRs,
overly strict requirements are imposed concerning the invariance.
Particularly, DIRs aim to perfectly align representations of
different domains, i.e. their input distributions. This is, however,
not necessary for good generalization to a target domain and may
even dispose of valuable classification information. We propose to
learn so-called hypothesis invariant representations (HIRs), which
relax the invariance assumptions by merely aligning posteriors,
instead of aligning representations. We report experimental
results on public domain generalization datasets to show that
learning HIRs is more effective than learning DIRs. In fact,
our approach can even compete with approaches using prior
knowledge about domains.

Index Terms—Domain generalization, invariant representation

I. INTRODUCTION

A standard assumption for many machine learning algo-
rithms is that training and test data are independent and identi-
cally distributed (i.i.d.). In practice, however, training data may
come from one source domain, while test data may come from
another differently distributed target domain; violating the i.i.d.
assumption [1]–[4]. Domain generalization is the setting where
we have access to labeled data from multiple source domains
during training while neither the data nor the labels of the
target domain are available [5]–[8]. The absence of target
data makes it impossible to infer distributional shifts between
target and source domains, which significantly complicates the
generalization to the target domain.

In some cases, strong prior knowledge about the relation
between different domains that can be exploited in the building
of a target classifier is available. A well-known example is the
artificially created rotated MNIST images [9], where every
domain—as the name eludes to—is a version of MNIST with
all images rotated over a specific angle. To make domain
generalization broadly applicable, however, one cannot rely on
such very specific prior information, which in most realistic
cases, will simply not be available. Approaches that indeed do
not rely on such prior knowledge often draw inspiration from

the field of domain adaptation [4], [10] where learning domain
invariant representations is prevalent. In domain adaptation
(rather than domain generalization as considered in this work),
the availability of input target data is assumed, which enables
one to directly relate this input distribution to those of the
various source domains.

Approaches that learn so-called domain invariant represen-
tations (DIRs) for domain adaptation inspire domain general-
ization. DIRs aim to remove those parts of the representation
that are domain specific in an attempt to generalize better to
the target domain [5], [7], [9], [11], [12]. In general supervised
learning, to achieve invariance of representations, minimal
information of the input data should be kept, which refers
to the mutual information between the learned representa-
tions and the input [13]. This, however, can compromise the
sufficiency of representations for classification tasks if the
learned invariance discards too much information. We transfer
the definition for sufficiency of representations [13] to the
setting of domain generalization and define the invariance
for domain generalization. We show that learning domain
invariant representations is too strict for the invariance because
DIRs force the source domains to be at the same location in
the representation space, which we will show is unnecessary
for generalizing to the target domain. So by learning DIRs,
the relation between different domain distributions can be
distorted. However, this relation between domains is useful
in the way that it can be used to infer the target domain.

In this work, we propose to learn hypothesis invariant
representations (HIRs) to relax the invariance requirement
of representation learning Where DIRs align data sample
representations between domains, our proposed HIRs merely
align classifier predictions between domains. If there is any
useful relation between domains, like the rotation in rotated
MNIST, learning hypothesis invariant representations differs
from DIRs in that HIRs can preserve the relative location
of domains in the representation space without having prior
domain knowledge. As it turns out, HIRs can even compete
with approaches using prior knowledge. We demonstrate that
hypothesis invariant representations can solve prior shifts as
well. This setting is usually not considered by domain invariant
representations. Moreover, when the network is trained on aug-
mented data [14], we show that learning hypothesis invariant



representations can improve the performance over the baseline
where various types of corruptions are aggregated and trained
only with a classification loss.

All in all, this work makes the following contributions:
• We introduce the notions of sufficiency and invariance of

representations to domain generalization.
• We present a probabilistic formulation to categorize and

evaluate DIRs in terms of sufficiency and invariance.
• We introduce hypothesis invariant representations (HIRs).

HIRs relax the invariance demands in DIRs by allowing
to preserve useful relations in representation space while
aligning predictions instead of representations.

• We compare HIRs to DIRs and against using prior
knowledge about the domain distributions.

II. RELATED WORK

A similar setting to domain generalization is domain adap-
tation [4], [10], where both the data and label of the source
domain are available while only the data from the target
domain is accessible during training. When multiple labeled
source domains and unlabeled target domains are available, it
is referred to as multi-source domain adaptation [10], [15]–
[18]. For both domain adaptation and domain generalization,
the challenge is the distribution shift between source domains
and target domains. Three types of distribution shifts are
usually involved: covariate shift [19], concept drift [20], and
prior shift [21]. We refer the reader to the study in [1] for a
comprehensive treatment of these three shifts. In this work,
both covariate shift and prior shift are considered.

Some domain generalization approaches can exploit strong
prior knowledge of domains to infer the target domain dis-
tribution. LG [22] assumes a continuous representation space
for domains with a specific order and applies perturbations
on training domains to generalize to the unseen domain.
DIVA [23] designs a generative model to decompose the
representations of domain, class and variations. Due to the
generative function of the network, it is possible to simulate
unseen domains, especially if the domain is generated in an
order. The disadvantage of these approaches is that the prior
knowledge of domains is not always available. HIR learning
does not require prior knowledge of domains.

When prior knowledge is not available, several approaches
draw inspiration from domain adaptation to learn domain
invariant representations for domain generalization. Guided by
theoretical proof [24]–[26], learning domain invariant repre-
sentations for domain adaptation by aligning distributions of
source domains and target domains is prevalent [27]–[30]. KL
divergence [31] and JS divergence [32] are used to measure the
divergence between distributions. In this work, we formulate
domain invariant representation in a probabilistic setting and
extend the discussion of invariance and sufficiency [13] into
domain generalization. We show that there is a trade-off
between sufficiency and invariance learning, which aims to
keep minimal information of domains.

Learning a domain invariant representation (DIR) for do-
main generalization can be achieved with kernel machines,

e.g., DICA [33], MDA [34], SCA [5] and deep learning [7],
[9], [11], [35]. DA [27] uses a gradient reverse layer for
the domain classifier prevent the network from distinguishing
different domains. HEX [36] proposes to separate the domain
specific representations of different domains from the domain
invariant representations of all possible domains. D-MTAE
[9] designs a multi-task denoising autoencoder to reconstruct
each domain with the goal to learn DIRs that are robust to
noise. CIDDG [37] designs a new architecture to solve the
problem of prior shift in domain generalization. MMD-AAE
[35] applies Maximum Mean Discrepancy (MMD) [38] loss
in the latent space of an encoder-decoder network to align
the representations of different domains. CCSA [7] aligns the
representations of different domains by minimizing the Eu-
clidean distance in the feature space. DBADG [8] introduces
a low-rank constraint to the weights of the network to not learn
domain specific information. Different from learning DIRs, our
hypothesis invariant representation learning does not strictly
align domains in the latent space but rather keeps the relative
positions between domains.

Meta-learning for domain generalization introduces a way
to train a more robust model. MLDG [39] introduces meta-
learning into the training procedure by treating part of the
training data as from the target domain to learn a model
that can generalize well to the unseen domain. Epi-FCR [40]
proposes to learn a domain agnostic model by shuffling the
feature extractors of different domains. We also compare our
approach to meta-learning.

III. METHOD

We first give a probabilistic analysis of domain gener-
alization. The analysis details sufficiency and invariance to
show the trade-off between DIR learning and sufficiency of
representations. Existing DIR approaches can be categorized
in two conditions: class-agnostic and class-conditional. We
formulate probabilistic definitions for DIRs under these two
conditions and define hypothesis invariant representations to
compare DIRs and HIRs. We show that (1) learning HIRs is
less strict than learning DIRs; (2) HIRs can tackle prior shift
and (3) a loss to learn HIRs.

A. Preliminaries

Inspired by [41] and [42], we examine the relationship
between distributions of domains and classes. We formalize
domain generalization in the setting of classification. The
label space and the domain space are denoted as Y and D
respectively where class label Y and domain D are sampled
from distributions PY and PD. Seen source domains Ds ∈ D
and unseen target domains Dt ∈ D are all in the space D. The
distribution of X is in input space X = Rd conditioned on
Y ×D and is denoted as PX|Y,D. For simplicity, we consider
discrete domains and labels.

We introduce a latent space Z for representations to facili-
tate the discussion about DIRs and HIRs later. We denote the
mapping function from the input space to the latent space as a
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Fig. 1: The graphical model shows the relationship from do-
main D, class Y to the input data X . A latent representation Z
is learned to predict Ŷ . If Y is independent of D, PY |D = PY .
Else if Y is dependent on D, PY |D 6= PY , which is denoted
as an arrow pointing from D to Y . This dependency causes
prior shift.

representation function r : X −→ Z and a hypothesis function
from the latent space to the predicted labels h : Z −→ Ŷ .

Prior shift is caused by the unbalance of classes across
domains, PY |D 6= PY . If the prior of the target domain PY |Dt

varies significantly from the prior of the source domain PY |Ds
,

this prior shift will lead to the failure of an approach which
does not consider this type of distribution shift. To cover
the possible prior shift in domain generalization, we set our
graphical model in two different conditions: Y is independent
of D or not. If the distribution of Y is independent of domains,
PY |D = PY , it means there is no prior shift as shown in
the graphical model in Fig. 1. Else if Y is dependent on D,
PY |D 6= PY , prior shift exists.

B. Sufficiency of representations

According to the work of Achille and Soatto [13], a rep-
resentation Z is considered as sufficient for the classification
task if PY |X,Z = PY |Z in a Markov chain X −→ Z −→ Y
for general supervised machine learning setting. That implies
the mutual information between the input X and the label
Y equals the mutual information between the latent repre-
sentation Z and the label Y , I(X;Y ) = I(Z;Y ) because
the representation Z distills all the useful information for
the classification task from the input X . Here we extend
the definition of sufficiency into domain generalization. If we
assume that the representation of each domain is sufficient,
the posterior can be defined to satisfy:

PY |X,Z,D = PY |Z,D,

∀D ∈ D.
(1)

C. Invariance of representations

A concept that recurs in many domain generalization works
[33], [35], [42], is the so-called domain invariant representa-
tions which are supposed to be the essential representations
of all domains and invariant to different domains, not only
source domains but also the target domain. However, many ap-
proaches aim to learn domain invariant representations without
clear definitions. Therefore we formulate two mostly adopted
conditions of DIRs as below.

TABLE I: Categorization of approaches. Existing approaches
that learn domain invariant representations for domain gener-
alization are sorted according to the definitions (2), (3).

Class-agnostic DIRs Class-conditional DIRs both

DA [27] CCSA [7] SCA [5]
MMD-AAE [35] CIDDG [37] MDA [34]

D-MTAE [9] DICA [33]
HEX [36]

Class-agnostic DIRs refer to representations Z that are
independent of the domain D, irrespective of labels Y . We
formulate it as:

PZ|D = PZ ,

∀D ∈ D.
(2)

Approaches that fall in this category align representations
from multiple source domains without considering the labels.

Class-conditional DIRs are conditioned on both the do-
mains D and the labels Y , so it is referred to as class-
conditional DIR:

PZ|Y,D = PZ|Y ,

∀D ∈ D.
(3)

Different from class-agnostic DIRs, approaches that aim to
learn class-conditional DIRs align representations of the same
class but different domains. Some works adopt both class-
agnostic and class-conditional domain invariant representation
learning. We sort existing approaches in Table I.

Learning domain invariant representations adds constraints
on the representation invariance. However, if the algorithm fo-
cuses on learning DIRs, the useful domain specific information
in the input X may be discarded so the sufficiency is com-
promised. If a method is forced to learn DIRs, a degenerate
example of a trivial representation can be a vector full of zeros,
which is invariant to all domains or hypotheses, but, such a
vector is not sufficient for the classification task. Furthermore,
by the definitions of DIRs, all domains are aligned with each
other, and the relation between domains is no longer available.
Thus, if the domains are sampled according to a specific
order, this order information is subsequently removed by
learning DIRs. Instead, we propose to learn HIRs to relax the
constraints on the invariance so the relation between domains
is retained.

Hypothesis invariant representations make domains in-
variant to the prediction hypotheses instead of DIRs that
make the feature representations invariant to domains. Thus,
the aim of HIRs is to align the predictions for representa-
tions from different domains, where a prediction label for
two domains a, b is aligned with the hypothesis function:
argmaxY PY |Z,D=a = argmaxY PY |Z,D=b. The requirement
of DIRs for aligning feature representations from different
domains is too strict, as only the prediction hypothesis needs
to be domain invariant. HIRs should satisfy:

argmax
Y

PY |Z,D = argmax
Y

PY |Z ,

∀D ∈ D.
(4)



Fig. 2: Representations of three domains. Colors represent the
two classes of the three domains. This shows that learning
DIRs is too strict compared to learning HIRs because repre-
sentations Z of the three domains are hypothesis invariant as
in (4) but not domain invariant as in (2) and (3). A threshold
function on Z can serve as a hypothesis function h with low
error for the binary classification task on all the three domains.

What matters for the final classification result is not DIRs,
as in (2) or (3), but argmaxY PY |Z,D, which is more relaxed
because it can still be satisfied even if the representations
differ across domains. See for example Fig. 2 where neither
the distributions of representations PZ|Y,D nor the posterior
PY |Z,D is domain invariant for all the domains presented, but
the hypothesis function h can give labels that satisfy (4). So
for HIR, PZ|Y,D=a 6= PZ|Y,D=b can hold.

Note that (4) in itself does not imply correct classifica-
tion performance but only guarantees that the samples of
all domains share the same prediction hypothesis function
h : Z −→ Ŷ , which can be completely different from the
ground truth hypothesis function. If the hypothesis function
h is inappropriate, then the samples could all be wrongly
classified. The classification result is related to the sufficiency
of the representation. So in practice, both the HIR learning
and the classification learning are required.

D. HIRs and DIRs comparison

To further examine the relationship between HIRs, class-
agnostic DIRs and class-conditional DIRs, we expand the
posterior PY |Z,D as:

PY |Z,D =
PZ|Y,DPY |D

PZ|D
. (5)

If each of the three items on the right-hand side of (5) is
independent of D, we will get class-agnostic DIRs as in
(2), class-conditional DIRs as in (3), and domain invariant
priors separately. If all the three items are independent of
domain, then the posterior PY |Z,D is domain invariant by
construction, that is, PY |Z,D = PY |Z . So if there is no prior
shift, PY |D = PY , the DIR is sufficient for the HIR. To the
contrary, if PY |Z,D = PY |Z holds, DIRs cannot be guaranteed.
This expansion shows first, learning DIRs cannot tackle the
prior shift when Y is dependent on D, and second, DIRs are
sufficient but not necessary for HIRs. Therefore, learning HIRs
is a more relaxed regularization on invariance and can align
the priors of different domains.

E. Aligning hypotheses: The HIR loss

Learning domain invariant posteriors is an approximation
to learn HIRs, as in (4), because it regularizes the invariance
aspect of posteriors to generalize to the unseen target domain.
Based on the analyses above on (5), learning HIRs by aligning
the posteriors of domains PY |Z,D can tackle the prior shift
in practice and it is a more relaxed invariance regularization
for representation learning. However, the distribution PY |Z,D

is usually not available. To avoid arbitrary density estimation
of PY |Z,D and guide the network to learn HIRs, we propose
to align the domain-agnostic class-conditional posteriors of
training data by minimizing the KL divergence as below:

Lh =

n∑
i=1

n∑
j=i+1

m∑
c=1

P (Ŷi|Zi, Yi = c)·log( P (Ŷi|Zi, Yi = c)

P (Ŷj |Zj , Yj = c)
),

(6)
where n is the number of samples for class c, i and j are

indices of samples. The KL divergence is computed for all m
classes separately and summed up. The comparison between
HIR loss and general DIR loss is presented in Fig. 3.

We choose KL divergence to align the posteriors because
it is a measurement for the difference between two distri-
butions, but not only a distance between distributions. KL
divergence is asymmetric and in this work we only calculate
one direction between two samples. That is because there is
no target distribution in our case. Instead, posteriors of both
the two samples can change during training. So calculating the
symmetric version of KL divergence or JS divergence is not
very different from calculating the asymmetric KL divergence
in our setting. The difference between the two approaches is
presented in Fig. 4.

The sufficiency of representations is guaranteed by the
cross-entropy loss which is computed as:

Lc = −
1

n

n∑
i

m∑
c

Yi · log(P (Ŷi = c|Zi)). (7)

The trade-off between the sufficiency and the invariance
learning is regulated by a coefficient α:

L = Lc + α · Lh, (8)

where α is a tunable parameter during training. Different α
values should be selected according to the scale of the HIR
loss Lh to match the scale of Lc.

IV. EXPERIMENTS

We show empirically that our approach respects the relations
between domains without using prior knowledge of domains
because it does not align the representations as strict as
learning DIRs. We also show that our approach can do well
on datasets which lack an obvious relation or global structure
among domains. We compare our results with other existing
approaches, especially the approaches that focus on learning
DIRs and the approaches that can exploit prior knowledge



Fig. 3: Comparison between HIR and DIR losses. The inputs are three domains of digits with different rotated angles. In the
latent space, different colors represent domains and classes are marked by different shapes. The dash-line circles the unseen
target domain. For learning DIRs, the loss is applied after the feature extractor which aims to align the representations of
samples from different domains. HIR loss is applied after the Softmax layer to align the distributions of posteriors from
different domains. With HIR loss, representations may keep the global structure without being strictly aligned.

(a) KL asymmetric (b) KL symmetric

Fig. 4: Asymmetric and symmetric KL divergence between
5 samples. The two matrices show all the possible matches
among 5 samples. If one match is denoted as 1, then the KL
divergence is computed, otherwise not. We use the asymmetric
KL divergence in the HIR loss.

of domain distributions. In addition, we also demonstrate
the effectiveness of HIR learning on the data augmentation
task. The hold-one-domain-out domain generalization setting
is adopted for all experiments, that is, neither the label nor
the data of the test domain is available during training. The
trained network is applied on the unseen domain for evaluation
without any adaptation or fine tuning.

A. Datasets

We examine the results of learning HIRs on three datasets,
(1) rotated MNIST dataset with clear prior knowledge about
the global structure of domains, (2) VLCS where there is no
order for domains and (3) tiny ImageNet-C which consists of
7 types of corruptions, where each corruption is a domain.

1) Rotated MNIST: Rotated MNIST dataset consists of 6
domains with the original domain M0° and it rotated by 15°,
30°, 45°, 60° and 75°. Each domain has 10 classes of hand
written digits from 0 to 9, and 100 images for each class. This
dataset has a specific rotation order for domains so it is usually
used to test approaches where prior domain information is
used.

2) VLCS: VLCS dataset [43] has four domains, each
domain is a different dataset collected under different back-
grounds, namely PASCAL VOC2007 (V) [44], LabelMe (L)
[45], Caltech-101 (C) [46] and SUN09 (S) [47] with 5

common classes, bird, car, chair, dog and person. To be
consistent with other approaches [7], [9], [40], we also use
DeCAF features in the experiments. The domains in VLCS
do not follow an obvious order, so the approaches using prior
knowledge cannot be applied on this dataset.

3) Tiny ImageNet-C: The Tiny ImageNet dataset is a
subset of ImageNet with 200 selected classes and 500 images
per class. Tiny ImageNet-C has 7 domains, where each domain
is one type of corruption of the original Tiny ImageNet dataset.
The 7 types of corruptions, Gaussian noise, Impulse noise,
JPEG compression, Defocus blur, Motion blur, Zoom blur and
Glass blur are selected by us. We deployed the corruption
methods from [14] and used the severest level 5 corruption.
We designed this dataset to evaluate the effectiveness of HIR
learning on data augmentation task.

B. Results

1) Rotated MNIST: As we expect that there is a global
structure for the order of rotated angles, as shown in Fig. 3,
the decision boundaries of domains in the middle of this global
structure can be interpolated by the domains from both sides,
e.g.,M15° can be inferred fromM0° andM30°. For the same
reason, domainM0° andM75° are significantly more difficult
to be generalized to, compared to the other domains. These two
domains are located at the two ends of this global structure of
all the domains, so the decision boundary can only be inferred
from all the domains at only one side of the global structure.

We adopt the same network architecture of CCSA [7], which
has two convolutional layers with 32 kernels each and three
fully connected layers. We report the average results of 10
repetitions for both the aggregation training setting (AGG)
and the HIR setting in Table II. For AGG, the network is
trained with only (7) and no domain information is used as a
baseline. For HIR the KL divergence is regularized as in (8).
For HIR, a batch size of 250 is used, with 5 samples from
each class and each domain. We use Adam for optimization
with a learning rate of 1e-3. The coefficient α is set to be 1e-3.
We can see that AGG with only classification loss can already
give much better results compared to CCSA with the same
architecture. After imposing the HIR loss, the performance



TABLE II: Results on rotated MNIST dataset. Rotated MNIST is a dataset with a global structure for the domains, where
the domains are rotated by a fixed angle. AGG is the baseline setting with only a classification loss without using HIR loss.
We show that on the ordered dataset, approaches using prior knowledge perform the best. Moreover, our HIR learning can
compete with these approaches without using the prior knowledge.

Methods M0° M15° M30° M45° M60° M75° Avg.

prior LG 89.7 97.8 98.0 97.1 96.6 92.1 95.3
knowledge DIVA 93.5 99.3 99.1 99.2 99.3 93.0 97.2

no D-MTAE 82.5 96.3 93.4 78.6 94.2 80.5 87.5
prior CCSA 84.6 95.6 94.6 82.9 94.8 82.1 89.1

knowledge MMD-AAE 83.7 96.9 95.7 85.2 95.9 81.2 89.8
DA 86.7 98.0 97.8 97.4 96.9 89.1 94.3

HEX 90.1 98.9 98.9 98.8 98.3 90.0 95.8

AGG 89.87 99.41 98.98 95.14 98.63 91.13 95.53
Ours HIR 90.34 ±0.88 99.75 ±0.18 99.40 ±0.21 96.17 ±0.71 99.25 ±0.26 91.26 ±0.66 96.03

TABLE III: Pair/unpair experiment results on rotated MNIST.
The AGG setting uses only the classification loss and gives
similar performance for both the paired and unpaired inputs.
Our HIR learning is more effective on unpaired inputs for this
dataset.

Domains unpaired AGG paired AGG unpaired HIR paired HIR

M0° 45.83±2.67 44.41±2.86 79.99±3.78 57.30±4.05
M15° 65.83 ± 3.08 66.33 ± 3.47 94.83 ± 4.14 70.44 ± 4.55
M30° 71.30 ± 4.86 70.50 ± 4.56 94.32 ± 4.07 72.74 ± 3.65
M45° 63.76 ± 3.94 64.02 ± 3.51 85.54 ± 5.34 63.63 ± 1.96
M60° 60.37 ± 3.05 62.46 ± 4.94 89.62 ± 4.57 67.63 ± 4.91
M75° 44.91 ± 2.65 44.46 ± 3.30 76.37 ± 5.64 53.51 ± 2.49
Avg. 58.67 58.70 86.78 64.21

Fig. 5: HIR losses of all 6 domains for the pair/unpair exper-
iment on rotated MNIST dataset. The scale of the unpaired
HIR loss is much larger than that of the paired inputs. So
there is more room for HIR loss to contribute to the posterior
alignment. For the paired inputs, the posteriors are similar
within the pair so the HIR loss is low. Further regularizing HIR
loss will lead the network to overfit to each pair of images.

can be further improved. We compare our HIR learning with
approaches using prior knowledge and DIR learning without
using prior knowledge. The results show that HIR learning
can achieve better results than DIR learning and can compete
with methods using prior knowledge, despite the fact that prior
knowledge is unavailable in HIR learning.

The uniqueness of RMNIST dataset is that it contains paired
images across domains which is the same image with different
rotated angles. We investigate the influence of our HIR loss

with paired and unpaired training batch. We set the batchsize to
be 50 to contain one sample per domain per class. The samples
from different domains are paired images in the paired setting
and vice versa. The results are compared in Table III. The
baseline results of paired and unpaired settings are close while
the HIR loss makes significant difference. This is because the
posteriors of paired images are similar and further regularizing
the HIR loss leads to overfit on each pair of images. The HIR
losses of paired and unpaired experiments are visualized in
Fig. 5 for each domain. HIR works better in the unpaired
setting where the divergences between posteriors are larger.

2) VLCS: Unlike rotated MNIST, VLCS is consisted of
four independent datasets where the global structure of do-
mains is not obvious. This experiment further demonstrates
the effectiveness of HIR loss on datasets without any order in
the domains. The number of samples varies across domains
and classes and we do stratified sampling. Samples of each
training domain are split into 80 folds with balanced classes
in each fold. One training batch is consisted of a fold from
each domain. We use Adam with a learning rate of 1e-4. The
coefficient α is 1e-6 to match the scale of the empirical loss.

For VLCS, we use the CCSA architecture [7] with two
fully connected layers of dimension 1024 and 128. We adopt
the same experiment setting as in CCSA where the dataset is
randomly split into 0.7 for training and 0.3 for testing. Results
are averaged across 20 repetitions. We initiate an individual
random split for each repetition, which causes the relatively
high standard deviations. The results of AGG and HIR are
presented together with other existing approaches in Table IV.

3) Tiny ImageNet-C: We show that data augmentation,
especially when the augmented corruption types are divergent,
fits well in a domain generalization setting. Our HIR loss can
help with aligning the divergence between different corrup-
tions.

Paired images of the 7 domains in Tiny ImageNet-C are
visualized in Fig. 6 together with the uncorrupted image. We
adopt ResNet50 pretrained on ImageNet for this experiment,
so the uncorrupted images are not included as one domain in
this setting. This dataset is challenging in the way that the
corruptions are severe and both blurring and noise corruptions



TABLE IV: Results on VLCS dataset. The domains in VLCS dataset do not follow a specific order or distribution, so prior
knowledge cannot be used on this dataset. AGG is the baseline setting with only a classification loss without HIR loss. Our
HIR learning performs better than the approaches that learn domain invariant representations.

Domains D-MTAE CIDDG DBADG MMD-AAE MLDG Epi-FCR CCSA AGG HIR

V 63.90 64.38 69.99 67.70 67.7 67.1 67.10 65.4 69.10 ± 1.8
L 60.13 63.06 63.49 62.60 61.3 64.3 62.10 60.6 62.22 ± 1.7
C 89.05 88.83 93.63 94.40 94.4 94.1 92.30 93.1 95.39 ± 0.9
S 61.33 62.10 61.32 64.40 65.9 65.9 59.10 65.8 65.71 ± 1.6

Avg 68.60 69.59 72.11 72.28 72.3 72.9 70.15 71.2 73.10

(a) uncorrupted (b) Gauss. noise (c) Impulse noise (d) JPEG (e) Defocus blur (f) Motion blur (g) Zoom blur (h) Glass blur

Fig. 6: Corruptions in Tiny ImageNet-C dataset. All images are corrupted at the highest severity [14].

Fig. 7: Results on Tiny ImageNet-C dataset. Different colors denote the values of α, which regulates the strength of HIR loss
w.r.t. the classification loss. AGG is the baseline setting with only a classification loss without using HIR loss.

are presented. Training on one type of corruption cannot help
but may deteriorate the performance on an unseen corruption.

We use the Adam optimizer with learning rate 1e-5. A small
batch is consisted of one image and all its paired images from
all the training domains and a large batch contains 20 shuffled
small batches. The large batch is used as one batch during
training. Unlike the rotated MNIST dataset, due to the large
domain shifts in this dataset, even posteriors of paired images
have large variation so the HIR loss of paired images is high
enough to contribute to the posterior alignment. We show the
impact of coefficient α for all the seven domains in Fig. 7. For
domains with noise corruptions, larger α works better while
smaller α is more suitable for blurring corruptions.

V. CONCLUSION

This work summarizes existing approaches for domain gen-
eralization in probabilistic expressions and shows that learning
DIRs is too strict for representation learning so useful domain
information is discarded. We proposed to learn HIRs instead of
DIRs aiming to keep possible global structure of the domains
without prior knowledge of domains, thus the target domain
can be inferred from the relation between domains.

In our work, to avoid arbitrary density estimation of the
posterior of each domain, we approximated it by aligning the
posteriors of samples from each domain. Future work can
explore how to reliably estimate the distribution of domain
posteriors to further relax the invariance learning.
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