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for Human Action Recognition
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Abstract—This paper considers the recognition of realistic
human actions in videos based on spatio-temporal interest points
(STIPs). Existing STIP-based action recognition approaches op-
erate on intensity representations of the image data. Because of
this, these approaches are sensitive to disturbing photometric
phenomena such as shadows and highlights. Moreover, valuable
information is neglected by discarding chromaticity from the
photometric representation. These issues are addressed by color
STIPs. Color STIPs are multi-channel reformulations of STIP
detectors and descriptors, for which we consider a number
of chromatic and invariant representations derived from the
opponent color space. Color STIPs are shown to outperform
their intensity-based counterparts on the challenging UCF sports,
UCF11 and UCF50 action recognition benchmarks by more than
5% on average, where most of the gain is due to the multi-
channel descriptors. Moreover, the results show that color STIPs
are currently the single best low-level feature choice for STIP-
based approaches to human action recognition.

Index Terms—Color, human activity recognition, evaluation.

I. INTRODUCTION

HUMAN ACTIVITIES play a central role in video data
that is abundantly available in archives and on the

internet. Information about the presence of human activities
is therefore valuable for video indexing, retrieval and security
applications. However, these applications demand recognition
systems to operate in unconstrained scenarios. For this reason,
research has shifted from recognizing simple human actions
under controlled conditions to more complex activities and
events ‘in the wild’ [10]. This requires the methods to be
robust against disturbing effects of illumination, occlusion,
viewpoint, camera motion, compression and frame rates.

High-level approaches for unconstrained human activity
recognition aim at modeling image sequences based on the
detection of high level concepts [13], and may build on low-
level building blocks [20] which typically consider generic
video representations based on local photometric features
[7], [9], [26]. High-level approaches are based on complex,
computationally expensive video processing operations but
may be superior to low-level approaches in terms of recog-
nition rates. However, high-level approaches are sensitive to
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Fig. 1. Examples of STIP detections in the sequence depicted above. For
illustration purposes we have polled the detectors for the 55 strongest STIPs
in the original 55-frame sequence, and show the detections on frame 48.

local geometric disturbances such as occlusion, which limits
their applicability [13]. Low-level approaches are conceptually
simple, relatively easy to implement and potentially sparse
and efficient. Due to the local nature of features on which
low-level approaches are based, they are inherently robust
against recording disturbances such as occlusion and clutter.
Therefore, in this paper, we focus on low-level representations
for recognizing human actions in video.

Low-level action recognition approaches are often based on
spatio-temporal interest points (STIPs). Here, image sequences
are represented by descriptors that are extracted locally around
STIP detections, see figure (1) for example detections. The
descriptors are vector quantized based on a visual vocab-
ulary, and subsequent learning and recognition operates on
these quantized descriptors, comprising the well known bag-
of-(spatio-temporal)-features framework. The formulations of
spatio-temporal feature detectors and descriptors available in
literature are based on single-channel intensity representations
of the video data. Due to the lack of photometric invariance of
the intensity channel [21], current approaches are consequently
sensitive to disturbing illumination conditions such as shadows
and highlights. More importantly, discriminative information
is ignored by discarding chromaticity from the representation.

In the spatial (non-temporal) domain, color descriptors
outperform intensity descriptors in a variety of image matching
and object recognition tasks [2], [21]. The reason for this im-
proved balance between photometric invariance and discrimi-
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Fig. 2. Joint distributions of partial intensity and color (hue) derivatives for
the spatial (a) and temporal (b) domain. The distributions are estimated from
5M pixels of one sequence of the FeEval dataset [19].

native power is illustrated in figure (2a) by an estimate of the
joint distribution of spatial intensity and color partial deriva-
tives, being the image features based on which descriptors
are formed. The figure shows that every intensity derivative
is associated with a distribution over color derivatives and
vice versa. Thus, information is lost when either intensity or
chromatic representations are considered in isolation. For ef-
fective feature detection and extraction based on multi-channel
differential representations in the spatio-temporal domain, it is
thus a precondition that similar conclusions hold for the joint
distribution of temporal intensity and color derivatives. This is
verified by observing figure (2b), in which the joint distribution
of temporal color and intensity derivatives is shown to strongly
resemble the distribution of spatial derivatives in figure (2a).

In this paper, we propose to incorporate chromatic represen-
tations in the spatio-temporal domain. The aim is to reformu-
late STIP detection and description for multi-channel video
representations. Videos are represented in a variety of color
spaces exhibiting different levels of photometric invariance.
By this enhanced appearance modeling, we aim to increase
the quality (robustness and discriminative power) of STIP
detectors and descriptors for recognizing human activities in
video. This is validated through a set of repeatability and
recognition experiments on challenging video benchmarks. A
previous version of this work appeared in [6].

A. Related Work

In the spatial domain, multi-channel photometric invariant
formulations of feature detectors are reported in e.g. [18], [22],
[23]. These articles report increased repeatability, entropy, and
object categorization results as compared to intensity-based
detections. For descriptors, multi-channel formulations [2],
[21] propose various color SIFT variants. Most notably, Op-
ponentSIFT considerably improves the performance. Based
on this, we formulate a family of increasingly invariant
photometric representations which are incorporated in multi-
channel formulations of spatio-temporal feature detectors and
descriptors.

1) Spatio-Temporal Detectors: In the spatio-temporal do-
main, pioneering work by Laptev [8] extends the Harris func-
tion to 3D. Alternatively, the Gabor STIP detector proposed
by Dollàr et al. [4] applies a Gabor filter along the temporal
axis and is not based on differential image structure. The
authors [4] argue that differential based STIP detectors are
incapable of detecting subtle and periodic motion patterns.
Gabor STIPs are therefore essentially different from Harris
STIPs and we develop multi-channel formulations for both

detectors to study differential as well as raw spatio-temporal
image data.

As an alternative to STIP-based sampling, local descriptors
may be extracted along motion trajectories [25]. Here, densely
sampled points are tracked from frame to frame based on
optical flow. As the method involves tracking and dense multi-
scale optical flow computation, the associated computational
complexity is typically higher than that of STIP-based ap-
proaches. Depending on the descriptor(s) that are subsequently
extracted, this sampling method may compare favorably in
terms of recognition rates. In this paper, we focus on the
sparser STIP-based approach for studying color in the spatio-
temporal domain.

Other color STIPs have been proposed earlier in [17].
However the formulation of the multi-channel spatio-temporal
structure tensor for the 3D Harris function is somewhat
erroneous. Also, the proposed color STIP descriptor is a
concatenation of a color histogram, an intensity-based gradient
(HOG) and optical flow (HOF) descriptor, which is not shown
to produce performance improvements with respect to other
existing STIP-based recognition methods. In this paper, we
extend the multi-channel structure tensor of [23] in a prin-
cipled manner to the spatio-temporal domain and investigate
various methods to incorporate color gradients in the HOG3D
descriptor.

2) Spatio-Temporal Descriptors: Among the local spatio-
temporal descriptors available in literature, the HOG3D de-
scriptor [7] appears well-suited for large scale video repre-
sentation and multi-channel extensions. In contrast to e.g.
HOG/HOF [9], MoSIFT [3] or MBH [25] descriptors, the
HOG3D algorithm serves as an integrated and efficient ap-
proach, as it excludes optical flow which is computationally
expensive [11], [15]. Also, good results in a STIP-based bag-
of-features recognition framework using the HOG3D descrip-
tor have been achieved, especially in combination with the
Gabor STIP detector [26]. Moreover, motion-based descriptors
are shown in [11] to suffer from scalability issues. Therefore,
we derive several multi-channel variants of the HOG3D de-
scriptor and evaluate their performance for realistic human
action recognition.

Discriminability issues associated to motion descriptors
in large scale action recognition are shown in [11] to be
addressed by the motion boundary histograms (MBH) of [24].
As opposed to a direct motion description, MBH is based on
differential optical flow, which greatly reduces the confusion
between action categories. In recent work by Wang et. al. [25],
MBH descriptors extracted along motion trajectories and mod-
eled in a multiple kernel learning framework have achieved
state-of-the-art results on a large number of datasets.

Another recently proposed video descriptor for human ac-
tion recognition is Gist3D [16]. This is a global descriptor
based on a 3D filter bank and describes the spatio-temporal
‘gist’ of a video. Reasonable recognition performance is
achieved in combination with STIPs.

The works mentioned comprise low/medium level ap-
proaches to action recognition. Higher level approaches such
as Action Bank by Sadanand et al. [13] give good results
on some datasets. However, such high-level approaches are
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typically not scalable. In contrast, low-level approaches are
widely applicable, conceptual simple, sparse and exhibit rea-
sonable computational complexity. Moreover, they may serve
as powerful building blocks for higher level methods [20].
We contribute by considering a variety of photometric repre-
sentations for STIP detection and description for enhancing
low-level approaches to action recognition.

II. PHOTOMETRIC REPRESENTATIONS

We model the formation of images by the dichromatic
reflection model [14],

f = e(mbcb +mici), (1)

where f = (R,G,B)T is the sum of the body reflectance
color cb with the interface reflection color ci. The con-
tributions of these reflectance colors are weighted by their
respective magnitudes mb and mi, that depend on the sur-
face orientation and illumination direction. Additionally, the
specular reflection mi is viewpoint dependent. The intensity
of the light source is represented by e.

Invariance against highlights (shifts in the signal) can be
achieved by representations that cancel out the additive inter-
face reflection term mici. Signal scalings, such as those caused
by shadows and shading, are ignored by dividing out the light
source intensity e. Here, we consider the transformation of the
RGB image to the opponent color space [2], [5], [21], [22] O1

O2

O3

 =

 R−G
R+G− 2B
R+G+B

 . (2)

The transformation approximately decorrelates the image
channels, resulting in intensity O3 and chromatic components
O1, O2. Based on these formulations, several photometric
properties can be derived.
Highlights. Due to subtraction of RGB components in eq. (2),
the reflection term from eq. (1) is subtracted in the for-
mulations of O1 and O2. Hence, the chromatic opponent
components are invariant to signal shifts such as those caused
by (white) highlights.
Shadow-shading. The chromatic components are normalized
by intensity O3, canceling out the light source intensity term
from eq. (1). This yields the shadow and shading invariants[

O1
O3
, O2

O3

]
.

Shadow-shading-highlights. Invariance against both scalings
and shifts in the signal is achieved by considering the ratio
of chromatic components: O1

O2
. This results in the shadow-

shading-highlight invariant hue representation.
We refer to these photometric image representations as

I(intensity), C(hromatic), N (ormalized chromatic) and H(ue).
These can be ordered with respect to their invariance level:
H � N � C � I . The intensity I preserves most image
structures, which is the most discriminative representation.
Therefore the intensity-normalized representations N and H
have a higher level of photometric invariance than C, in which
the light source intensity is preserved. We summarize the
representations and their properties in table (I).

TABLE I
PHOTOMETRIC IMAGE REPRESENTATIONS. CHROMATIC COMBINATIONS

WITH THE INTENSITY CHANNEL YIELD IC, IN AND IH.

Intensity Chromatic N-Chromatic Hue

Representation O3 [O1, O2]
[

O1
O3

, O2
O3

] O1
O2

Invariant to - Highlights Shadows Hl. & Sh.
Reference I C N H

The lack of discriminative power associated with the chro-
matic representations C, N and H typically renders them
unsuitable for matching and recognition tasks. Combinations
of intensity and chromatic channels result in IC, IN and
IH . Note that the three-channel representation IC comprises
the original opponent channels [O1, O2, O3]. These representa-
tions are established first, i.e., prior to any subsequent process-
ing. All channels are min-max normalized using the theoretical
extremal values per channel based on the transformations in
eq. (2) and table (I) so as to weight them equally a-priori.

III. MULTI-CHANNEL STIP DETECTION

Multi-channel Harris STIPs. Harris STIPs are local max-
ima of the 3D Harris energy function based on the structure
tensor [8]. A multi-channel formulation of the structure tensor
has been developed in e.g. [23] which prevents opposing
color gradient directions to cancel each other out. Here, we
incorporate multiple channels in the spatio-temporal structure
tensor [8].

The multi-channel volume V consisting of nc channels is
denoted by V = (V 1, V 2, ..., V nc)T . The individual channels
are represented in scale space V j = g(·;σo, τo) ∗ f j(·), where
g(·; ·, ·) is the 3D Gaussian kernel with equal scales along
the spatial dimensions, σo and τo are the spatial and temporal
observation scales and f j : R3 → R is the imaging function of
channel j. The multi-channel spatio-temporal structure tensor
is then defined by

S = g(·;σi, τi) ∗

 Vx ·Vx Vx ·Vy Vx ·Vt

Vy ·Vx Vy ·Vy Vy ·Vt

Vt ·Vx Vt ·Vy Vt ·Vt

 , (3)

where σi and τi denote the spatial and temporal integration
scale respectively. In figure (3) we illustrate the response per
representation. Incorporating increasingly invariant photomet-
ric representations clearly has an effect on the Harris energy.
The highlight on the shiny heart-shaped object surface part
triggers a strong response for the original I-based energy
functions. This effect is clearly dampened in the C repre-
sentation. However, the reflected illumination by the colored
matte-shiny (left) object part still triggers a response, as the
nature of the local object surface causes signal changes that
are not captured by a simple shift. Intensity normalization of
the chromatic components (N ) then causes this response to
be dampened, while emphasizing colorful transitions on the
object surface. Finally, the scaling- and shift- invariant H
representation eliminates essentially all responses except for
salient color transitions.
Multi-channel Gabor STIPs. The Gabor STIP detector is
based on a Gabor filtering procedure along the temporal
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Fig. 3. Superimposed Harris and Gabor responses for Intensity, Chromatic, Normalized chromatic and Hue on three images of a rotating object on which
a strong highlight is present. The Harris energy function mainly responds to differential changes in the signal, whereas the Gabor function fires on general
spatio-temporal fluctuations. Note the dampened response to the highlight in the invariant channels.

axis [4]. Invoking multiple channels is straightforward because
the energy function is positive by formulation. Hence, no
additional care has to be taken to account for conflicting
response signs between channels

R =

nc∑
j=1

(g(·;σo) ∗ hev(·; τo) ∗ V j)2 + (g(·;σo) ∗ hod(·; τo) ∗ V j)2.

(4)
Here, the 2D Gaussian smoothing kernel g(·; ·) is applied

spatially, whereas the Gabor filter pair {hev(·; ·), hod(·; ·)}
measures the periodicity of the observed signal along the
temporal dimension. As illustrated in figure (3), the I-Gabor
energy is mainly clustered around an incidental highlight,
whereas the response-triggering local photometric events be-
come increasingly rare and colorful along with the level of
photometric invariance level of the representation.

IV. MULTI-CHANNEL STIP DESCRIPTION

The HOG3D descriptor [7] is formulated as a discretized
approximation of the full range of continuous directions of
the 3D gradient in the video volume. That is, the unit sphere
centered at the gradient location is approximated by a regular
n-sided polyhedron with congruent faces. Tracing the gradient
vector along its direction up to intersection with any of the
polyhedron faces identifies the dominant quantized direction.
Quantization proceeds by projecting the gradient vector on the
axes running through the gradient location and the face centers
with a matrix multiplication of the 3D gradient vector g,

q = (q1, ..., qn)T =
P · g
||g||2

, (5)

where P is the n×3 matrix holding the face center locations
and q is the projection result (i.e. the histogram of 3D gradient
directions). Note that the contribution is distributed among
nearby polyhedron faces. Descriptor dimensionality may be
reduced by allocating opposing gradient directions to the same
orientation bin. The descriptor algorithm proceeds by centering
a cuboid at the STIP location, which is tessellated into a spatio-
temporal grid. Histograms are computed for every grid cell and
concatenated to form the final descriptor [7].

Chromaticity is incorporated in the HOG3D descriptor by
considering the representations from section (II) in a multi-
channel formulation of the gradient vector g in eq. (5). We
follow the standard practice of concatenation of the per-
channel descriptors [2], [5], [21]:

g′ = {gj}, j = 1, ..., nc. (6)

We also compute a single gradient variant where we prevent
the effect of opposing color gradient directions by using tensor
formulations. In tensors, opposing directions reinforce each
other by summing the gradient orientations as opposed to their
directions [23],

g′′ =
nc∑

j=1

gj · gj . (7)

This formulation of the gradient defines half of the full
sphere of directions which is one of the HOG3D flavors in
[7]. Here, it naturally follows from a tensor formulation of
the multi-channel 3D gradient.

We formulate another variation as the summation of per-
channel full direction descriptors. Together with the tensor-
based approach, we call this descriptor integration as opposed
to concatenation. The variant benefits from the expressiveness
associated with the full set of multi-channel directions while
maintaining the same dimensionality as a single channel
descriptor. Note that the differences between integration and
concatenation of channels do not apply to single-channel
descriptors. The descriptor variants and their associated di-
mensionalities are summarized in table (II).

V. EXPERIMENTS

We evaluate the multi-channel STIP detectors and descrip-
tors through a set of repeatability and action recognition
datasets.

A. Implementation Details and Notation

We base our implementation of STIP detectors on the
activity recognition toolbox by Dollàr et al. [4] while re-
implementing the HOG3D descriptor of Kläser et al. [7].
STIP scale: For the Gabor detector, we set the spatial scale
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TABLE II
MULTI-CHANNEL HOG3D VARIANTS. C DENOTES SOME PHOTOMETRIC

REPRESENTATION COMPRISING nc CHANNELS. THE DIMENSIONALITY OF
AN INTEGRATED DIRECTION-BASED DESCRIPTOR IS CONSIDERED

DEFAULT (1D, WHICH IS 360 IN THIS PAPER), BASED ON WHICH WE
DERIVE THE DIMENSIONALITY OF THE OTHER DESCRIPTOR VARIANTS.

VARIANTS OF C ARE DENOTED BY SUBSCRIPT FLAGS, INDICATING
CHANNEL COMBINATION (INTEGRATION/CONCATENATION) AND

GRADIENT QUANTIZATION (ORIENTATION/DIRECTION).

Gradient Orientation Gradient Direction

Channel Integration C1,1 : D/2 C1,0 : 1D
Channel Concatenation C0,1 : ncD/2 C0,0 : ncD

σo = 2 and the temporal scale τo =
√

8 in eq. (4). Note that
this setting for τo is in conflict with e.g. [26], but we have
found that the proposed default setting of τo = 4 is too large
for descriptor extraction in short sequences. For the Harris de-
tector, we consider a reduced set of spatial scales with respect
to prior work, as we have found this to be satisfactory in terms
of discriminative power and computational load. Specifically,
for computing the Harris energy based on eq. (3), we consider
σo =

√
2i, i ∈ {2, 3, 4} and τo =

√
2j , j ∈ {1, 2}. As in e.g.

[9], [26], we do not perform STIP scale selection because
of its high computational costs and decreased recognition
performance [8].
Cuboids: Descriptors are extracted from cuboids centered at
STIP locations. The spatio-temporal extent as well as the grid
layout of these cuboids may be discriminatively optimized
such as in [7]. In this paper, we refrain from such an optimiza-
tion scheme in order to maintain focus on the integration of
chromatic channels. Instead, we consider one particular setting
(from e.g. [26]) in which the extent of a cuboid is defined as
∆x = ∆y = 18σo and ∆t = 8τo. For feature aggregation, we
employ a 3x3x2 spatio-temporal pooling scheme. This grid
layout is attractive due its compactness, whereas we have not
found significant dependencies of our results on these settings
for our purpose.
Descriptors: We consider the four variants of the multi-
channel HOG3D descriptor as summarized in table (II). The
variants are denoted by flagging the descriptor names. The
first flag denotes whether the descriptor channels are integrated
(or otherwise concatenated), whereas the second flag denotes
the usage of gradient orientations (as opposed to directions).
For example, IC0,1 denotes the concatenated orientation-
based Opponent-HOG3D descriptor. Integrated, orientation-
based descriptors such as IN1,1 follow from the tensor-based
approach in eq. (7). There is no difference between I0,· and
I1,· as I comprises a single channel.

We use integral video histograms for aggregating features
over grid cells. We refrain from gradient approximation based
on integral video representations of the partial derivatives
as in [7], because this affects the information that we wish
to study. For descriptor normalization, we adopt the method
proposed by Brown et al. [1] in which the normalization
cut-off threshold is a discriminatively optimized function of
the descriptor dimensionality. By this, we discard the time
consuming task of determining the optimal normalization
parameters per descriptor variant.

Fig. 4. Examples from FeEval dataset. From left to right: original, noise,
darken.

Fig. 5. Examples from UCF sports, UCF11 and UCF50 datasets (images
are cropped).

In summary, apart from the photometric representations,
our HOG3D implementation differs slightly from the original
version [7] by 1) exact gradient computation, 2) descriptor
normalization and 3) spatio-temporal pooling.
Recognition. Based on the multi-channel STIP detectors and
descriptors, we perform action recognition in a standard bag-
of-features learning framework. Unless stated otherwise, we
closely follow the setup of [26]. Here, codebooks are created
by clustering 200K randomly sampled HOG3D descriptors
using k-means in 4000 clusters. A sequence is then represented
by quantizing the extracted HOG3D descriptors based on
the learned codebook. An SVM is trained based on the χ2

distance between codebook descriptors. Evaluation of the
learned classifier is usually performed in a leave-n-out cross
validation setup. Every experiment is repeated three times
for different codebooks, which produces typical standard de-
viations between 0.2 and 1 percentage point (depending on
dataset size and the number of STIP detections).

B. Datasets

We measure STIP repeatability and descriptor entropy for
videos taken from the FeEval dataset [19]. This dataset
consists of 30 videos taken from television series, movies
and lab recordings where each video is artificially distorted
by applying different types of photometric and geometric
transformations. Every transformation type is associated to a
challenge, in which the distortion is applied in increasingly
severe steps. We consider the videos from the television series
up to the first occurring shot boundary. That is, we do not aim
at studying STIP behavior in controlled settings, cartoons or in
typical movie settings for which editing effects are frequent.
We consider the full set of challenges: blur, compression,
darken, lighten, median filter, noise, sampling rate and scaling
and rotation. Some examples are shown in figure (4).

For an in-depth evaluation of detector and descriptor settings
we use the UCF sports dataset [12]. The dataset exhibits
10 sports action categories in 150 videos, all of which are
horizontally flipped to increase the dataset size. Performance is
evaluated in a leave-one-out cross validation scheme, in which
the flipped version of the considered test video is removed
from the training set. The best performing experimental set-
tings are applied to the UCF11 [10] and UCF50 [11] datasets.
The datasets contain 11 and 50 human action classes in about
1200 and 6700 videos respectively; UCF50 is a superset of
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Fig. 6. Entropy of descriptor variants extracted around STIPs from several detector variants. Multi-channel descriptors are associated to higher entropies
than their single-channel counterparts. This holds for both integration and concatenation of channels. The figure looks similar for Harris and Gabor STIPs.

UCF11. These challenging datasets comprise youtube videos
exhibiting real human activities. Here, performance is evalu-
ated through a leave-one-group-out cross validation scheme
over 25 groups, in which we exactly follow the authors’
guidelines1. See figure (5) for some examples of the datasets.

C. STIP Repeatability

We poll the detectors for an average number of 10 STIPs per
frame of the FeEval videos. A repeatability score is obtained
by considering the detections in the challenge sequence, and
computing the relative overlap of the cuboid around the
detected STIP location with the corresponding location in
the original sequence. We take the spatio-temporal extent
of the cuboid to be equal to the observation scale. The
repeatability scores averaged over all sequences and challenges
are presented in table (III).

TABLE III
STIP REPEATABILITY FOR MULTI-CHANNEL HARRIS AND GABOR

DETECTORS BASED ON THE CONSIDERED PHOTOMETRIC
REPRESENTATIONS.

I IC IN IH C N H

Harris 61.3% 61.6% 61.3% 37.0% 45.6% 40.5% 28.7%
Gabor 43.6% 43.6% 43.6% 24.4% 25.4% 22.9% 19.3%

Harris STIPs are more stable than Gabor STIPs. Nonlinear
differential spatio-temporal signal changes are more distinctive
than temporal fluctuations only. As the representation becomes
increasingly invariant, repeatability progressively decreases.
Also, combining the invariants with intensity does not increase
repeatability with respect to using intensity only (marginal
improvements for the IC representation). Moreover, the IH
representation attains lower repeatability scores than I . The
reason for these reduces scores is that, as disturbing conditions
are effectively ignored, so are spatio-temporal image structures
on which stable STIPs are detected. Adding C or N to the
intensity I basically leaves the repeatabililty unaltered for this
dataset. However, the STIP discriminability experiments will
show different recognition scores for these representations.

From here on, the pure chromatic representations are dis-
carded from the experimental batch due to the associated lack
of discriminative power.

1http://crcv.ucf.edu/data/UCF50.php

D. Descriptor Entropy

Here, we study the amount of information contained in each
of the considered descriptors. For this, we extract unnormal-
ized descriptors from the cuboids around STIP detections in
the set of undistorted FeEval videos. The descriptors Di are
then L1-normalized to allow for the computation of entropy:

entropy(Di) = −
|Di|∑
j=1

Dj
i log2(Dj

i ). (8)

The above is illustrated in figure (6) for Gabor STIPs. En-
tropies are averaged over all descriptors and sequences. The
figure is essentially similar for descriptors extracted around
Harris STIPs.

Standing out from the figure is the high entropy asso-
ciated to the IC0,0 descriptor (i.e. concatenated direction-
based Opponent-HOG3D). This is partly explained by its
high dimensionality due to concatenation. Note however the
increased entropy with respect to IN0,0, which has the same
dimensionality. In that respect it also stands out that the
entropy associated to the 2-channel descriptor IH0,0 is higher
than that of the 3-channel descriptor IN0,0. We conclude from
this that the chromatic ratio constituting H exhibits more
(differential) variation than the intensity-normalized channels
in N , whereas most variance is associated with C.

The single-channel descriptor I0,0 is associated with a
considerable lower entropy than its multi-channel counter-
parts. These differences are dampened when the channels
are integrated instead of concatenated, by which the multi-
channel dimensionality is equalized to that of a single channel.
However, the integrated descriptors IC1,0 and IH1,0 are still
clearly associated to higher entropies, whereas the difference
between IN1,0 and I0,0 is marginal.

Orientation-based descriptors exhibit lower entropies than
direction-based descriptors. This follows from their defini-
tion: two opposing gradient directions are indistinguishable in
terms of their orientation. Observations regarding photometric
representations and channel integration with respect to the
direction-based descriptors also hold for orientation-based
descriptors.

With respect to varying photometric representations in the
detector, we observe a considerable drop in entropy for the
IH detector as compared to the other representations. This
is explained by the fact that H causes the detector to fire
on signal fluctuations that do not necessarily correspond to
strong structures in the intensity profile. There appears no sub-
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stantial differences between the other representations, although
slightly higher entropies are attained for IC detections.

E. Color STIP Detector Discriminability

For evaluating action recognition performance on the
UCF sports dataset, we consider the photometric variants of
both the Harris and Gabor detectors. Direction-based intensity
HOG3D (I·,0) descriptors are extracted around multi-channel
STIP detections, so as to seperate the analyses regarding STIP
detection and description. Recognition accuracy is computed
for an average of {10, 20, 30, 40, 50} STIPs per frame by vary-
ing the detection threshold. Results are given in figures (7a,b).

We first validate our implementation by comparing recog-
nition accuracies with the evaluation reported on intensity in
[26]. Here, the average number of Harris STIPs is 33, for
which an accuracy of 79.9% is attained. We obtain 80.4% for
30 STIPs per frame. As for the Gabor detector, [26] reports
an accuracy of 82.9% for 44 STIPs. This is comparable to our
performance of 83.4% for 40 STIPs.

1) Color STIPs: It is shown in figures (7a,b) that discrim-
inative power is severely hampered by integrating H in the
energy functions. This is expected because H is associated to
the highest level of photometric invariance. As more detections
are requested, however, performance converges to that of I-
STIPs. Considering Harris STIPs in figure (7a), integrating
the C and N representations leads to marginal performance
differences compared to I . For small to moderate amounts
of STIPs, recognition accuracy is somewhat improved, in
particular for IN . The primary characterization of Harris
STIPs in terms of distinctiveness and sparsity is mainly due to
nonlinear fluctuations in the spatio-temporal intensity signal.
Adding chromatic components to the formulation of the energy
function does not drastically alter this characterization.

Regarding the multi-channel Gabor detector in figure (7b),
discriminative STIPs are detected for the C and especially N
channels as compared to using I alone. While I by itself con-
tains the most important information regarding spatio-temporal
signal fluctuations, invariants may prevent the detector to fire
on disturbing factors such as highlights and shadows. Also,
we assume the specific colorfulness of local spatio-temporal
events associated to certain actions to be informative (e.g.
‘Diving’ (skin color, blue water) and ‘Riding-Horse’ (brown
horse, green field and trees)).

2) Discussion on sparsity, distinctiveness and scale: Harris
STIPs are more discriminative than Gabor STIPs for a rela-
tively small number of detections. This relative performance
difference reverses as more STIPs are considered. The reason
for this is related to sparsity, distinctiveness and scale.

As can be derived from figure (3), the Harris function is
sparser than the Gabor energy. The Harris function fires only
on relatively rare events - nonlinear signal changes in both
space and time - which are also distinctive in scale space, and
are usually caused by human activity rather than background
and/or camera motion. As a consequence, Harris STIPs are
highly discriminative, but very sparse: there resides a large
and indifferent gap between the thresholds of a good quality
Harris STIP detector and a noise detector. Opposed to this, the
Gabor detector is more generic and covers the image sequences
more densely. This results in improved recognition results as
more STIPs are requested, whereas the performance of the
Harris detector as a function of the number of STIPs quickly
plateaus and even degrades.

Whereas the Harris function is typically computed over
multiple scales, the Gabor detector (as originally proposed)
operates at a single scale. In fact, we have found in the
recognition experiments in which we poll the detectors for
a fixed number of interest points, that a multi-scale Gabor im-
plementation seriously hampers the recognition performance
(results not shown). The reason for this is that the across-
scale Gabor responses are highly correlated. This results in
overly redundant overlapping detections for local volumes
exhibiting strong periodic signal fluctuations, whereas other
discriminative local volumes may not be detected at all.
Applying the Gabor filters at a single scale only is therefore
not so much a choice of design; it is rather instrumental to the
method. These arguments do not apply to the Harris detector
due to its associated sparsity, i.e. single scale Harris STIPs are
insufficient for effective recognition. The unnecessity of multi-
scale processing grants a large advantage to the Gabor detector
over the Harris detector in terms of computational efficiency.
The experimental summary over all datasets in table VI shows
the effectiveness of the Gabor detector.

F. Color STIP Descriptor Discriminability

For the action recognition experiments on the UCF sports
dataset, descriptors are extracted around Gabor STIPs as these
have shown superior recognition performance over Harris
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TABLE IV
COLOR STIP ACTION RECOGNITION RESULTS ON UCF11 AND UCF50 DATASETS. THE FIRST 5 COLUMNS SHOW RESULTS FOR DIRECTION-BASED

DESCRIPTORS, WHEREAS RESULTS FOR ORIENTATION-BASED DESCRIPTORS ARE SHOWN IN THE REMAINING COLUMNS.

Detector/Descriptor: I·,0 IC1,0 IC0,0 IN1,0 IN0,0 I·,1 IC1,1 IC0,1 IN1,1 IN0,1

U
C

F1
1 I −Gabor 73.8% 77.5% 78.2% 76.0% 76.4% 71.6% 75.8% 74.2% 73.8% 74.6%

IC −Gabor 73.8% 78.4% 78.1% 76.6% 76.3% 71.5% 75.4% 73.7% 73.9% 74.3%
IN −Gabor 74.5% 77.5% 78.6% 76.7% 76.4% 72.4% 76.0% 74.6% 74.2% 74.0%

U
C

F5
0 I −Gabor 68.3% 71.7% 70.9% 71.2% 72.1% 68.8% 72.6% 69.7% 71.8% 72.0%

IC −Gabor 68.5% 71.8% 70.8% 71.2% 71.9% 68.8% 72.4% 69.8% 71.5% 72.4%
IN −Gabor 68.4% 71.8% 71.1% 71.0% 71.8% 68.5% 72.9% 69.9% 71.6% 72.5%

STIPs in figure (7a,b). The detector representation is fixed
to I . We adopt the detection threshold that yields 50 STIPs
per frame on average. Recognition accuracies are reported in
figure (7c).

General conclusions about photometric invariance relate to
the discriminative power of the descriptors. That is, the IC-
based descriptors typically outperform IN descriptors, which
in turn are favored over IH . Multi-channel descriptors usually
outperform the I-based descriptor. We observe a general
preference for direction-based descriptors over orientation-
based descriptors (table II). This is due to the associated wider
range of expressiveness. Most apparent in this respect is the
IC representation, i.e. IC0,0 improves over IC0,1 by almost 4
percentage points, whereas IC1,0 attains 2 percentage points
more than IC1,1. Thus, every channel exhibits discriminative
power in the full range of gradient directions. It may even be
the case that the (implicit) preservation of opposing gradient
directions between channels is informative. Furthermore, IC-
based descriptors favor channel integration over concatenation,
which is not the case for IN - and IH- based descriptors.
In fact, one would expect concatenation-based descriptors to
perform better in general due the enhanced expressiveness
associated with multiple channels and increased dimension-
ality. This is also the most widely adopted approach to multi-
channel descriptors, e.g. [2], [5], [21]. However, we obtain
the positive side-effect of increased recognition performance
against reduced descriptor dimensionality. That is, the multi-
channel descriptor dimensionality remains equal to that of a
single channel. Although the difference with IC0,0 is marginal,
we report a top performance of 85.6% for IC1,0 against 1)
our I·,0 baseline of 83.4% and 2) 82.9% reported in [26]. A
summary over all datasets in table VI illustrated the power of
IC.

We conduct a final experiment on the codebook size. We
consider ‘Opponent STIP’ combinations of I and IC Gabor
STIPs with I·,0 and IC1,0 HOG3D descriptors. We drop the
orientation-based descriptors for now. Recognition results for
varying codebook sizes are depicted in figure (7d). We observe
that the I-IC (detector-descriptor) combination performs best
up to a codebook size of 4000. Top performance is marginally
improved to 85.7% by the IC-IC combination for a codebook
size of 8000. The computational load associated to such a
vocabulary is not worth the effort, considering the performance
of 85.5% attained by the I-IC combination for a much smaller
codebook size of 1000. We have not observed a relationship
between descriptor dimensionality and codebook size.

In contrast to these low/medium level action recognition
approaches, the high level Action Bank approach of [13]
reaches an accuracy of 95% on UCF sports. Here, we focus
on low-level approaches, and our best performance for 50
STIPs per frame is on par with the performance of 85.6%
for densely sampled I-HOG3D descriptors in [26], which on
average yields over 600 descriptors per frame. Based on a
combination of HOG, HOF and MBH descriptors extracted
along dense motion trajectories, a performance of 88% is
achieved in [25]. Compared to this, our STIP-based approach
does a good job considering that it outperforms all reported
individual features on UCF sports.

G. UCF11

Based on the in-depth evaluations on UCF sports, we select
the I , IC and IN representations for both STIP detection and
description for evaluation on the UCF11 and UCF50 datasets.
Results are presented in table (IV) and summarised in table VI.

Differences between performance in the detectors are again
small, but we observe a consistent top-performing combina-
tion of IN -Gabor STIPs with IC-based HOG3D. Thus, we
conclude that a certain amount of invariance against local
photometric events is beneficial for STIP detection, whereas
the descriptor should be extracted from the most discriminative
representation.

We achieve a baseline result of 73.8% on the UCF11 dataset
for the intensity-based STIP variant. Adding chromaticity
increases the recognition accuracies substantially. Also here,
best performance is achieved by the direction-based IC de-
scriptors: 78.4% for IC1,0 on IC-Gabor STIPs and 78.6% for
IC0,0 on IN -Gabor STIPs. The representation of the detector
appears to be more influential on this dataset, although its
contribution is marginal on average.

The results compare favourably to the trajectory-based har-
vesting of HOG and HOF features in [25], for which 72.6%
and 70% is achieved respectively. However, they report a
superior performance of 84.1% for their motion boundary
histograms.

1) Discussion on inter-class confusion: For a detailed anal-
ysis of the results on UCF11 we have included a confusion-
difference matrix in figure (8). The usage of color causes most
performance gain for the category ‘basketball’. Corresponding
videos in the dataset exhibit mostly practicing individuals,
whereas considerable variations are observed in other facets
such as indoor/outdoor, solid/shaking camera work and cloth-
ing. These observations are supportive for the argument that
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Fig. 8. Confusion difference matrix between UCF11 categories. Depicted
is the element-wise difference between the confusion matrices of (best
performing) color and intensity STIPs.

multi-channel processing is useful for feature extraction in
general, irrespective of the actual color itself. In addition to
this, category-specific motion patterns are more accurately
described by using color. For example, a basketball generally
has the same orange color, which makes the description of its
associated motion (bouncing) more accurate. Furthermore, the
usage of color decreases the confusion between ‘basketball’
and ‘horse riding’, and especially ‘tennis swing’. The initial
confusion (i.e. based on intensity-STIPs) between ‘basketball’
and ‘tennis swing’ is comprehensible, as most videos of both
categories exhibit, in general, an individual performing the
activities in isolation. Specific information associated to e.g.
the colors of the basketball and tennis courts alleviate much
of the confusion. The same line of reasoning applies to the
confusion between ‘tennis swing’ and ‘golf swing’, and to
a lesser extent ‘basketball’ and ‘vollyball spiking’, as the
associated videos exhibit a single, sudden burst of activity
performed by an individual. Less evident is the reason for
resolved confusion between ‘basketball’ and ‘horse riding’.
Videos associated to the latter exhibit a walking or galopping
horse, which is characterized by a periodic motion pattern
resembling that of a person shooting a basketball. It is prob-
ably the case that a bouncing basketball also renders similar
motion patterns, while its color then provides the power to
discriminate. Opposed to this, it stands out that color STIPs
increase the confusion between ‘tennis swing’ and ‘soccer
juggling’. This is mainly due to the fact that in one ‘soccer
juggling’ video group the activity is performed on a typical
tennis hardcourt, which renders similar patterns in all color
channels.

H. UCF50

Considering the results on UCF50 in table IV, we observe
that best performance is achieved with orientation-based de-
scriptors, as opposed to the direction-based descriptors that
are favoured for UCF sports and UCF11. As the number

TABLE V
RECENT UCF50 RESULTS AVAILABLE IN LITERATURE.

Ref. Description %

[25] Trajectory(All) 84.5%
Trajectory(MBH) 82.2%
Trajectory(HOF) 68.2%
Trajectory(HOG) 68.0%

[15] Dense(All) 83.3%
Dense(MBH) 80.1%
Dense(HOG3D) 72.4%
Dense(HOF) 69.7%
Dense(HOG) 58.6%

[11] Scene context + STIP(MBH) 76.9%
Scene Context 47.6%
STIP(MBH) 71.9%

[16] Gist3D + STIP(HOG/HOF) 73.7%
Gist3D 65.3%
STIP(HOG/HOF) 54.3%

[13] Action Bank 57.9%
STIP(HOG/HOF) 47.9%

Here Color STIP(HOG3D) 72.9%

of categories increases, descriptor robustness becomes more
important. We observe a baseline result of 68.8% for I·,1.
This is substantially higher than the results reported in [13]
for Action Bank (57.9%) and Harris STIP + HOG/HOF
(47.9%) (see table (V) for an overview of recent results on
UCF50). We conclude that the Action Bank method is not
scalable and suffers from increased geometric variations. As
for Harris STIP + HOG/HOF, we conclude that the high
degree of distinctiveness of spatio-temporal corners limits
generalization capacity for these descriptors. A performance
of 76.9% is reported in [11] for a combination of scene context
and spatio-temporal descriptors. Here, the best performing
spatio-temporal descriptor is MBH on Harris STIPs, which
achieves 71.9%. This shows the generalization capacity of
differential optical flow descriptors, as well as the capacity
of MBH to differentiate between video content around Harris
STIPs, as opposed to HOG and HOF descriptors. It should
however be noted here that MBH performance comprises a
complex multiple kernel combination of a horizontal MBHx
and vertical MBHy component. In [16], a recognition accu-
racy of 73.7% is reported for a combination of Gist3D and
Harris STIP + HOG/HOF descriptors. However, performance
of the individual descriptors is at most 65.3%. In the recent
work of Wang et. al. [25], trajectory-based HOG, HOF and
MBH attain 68%, 68.2% and 82.2% respectively, while a
multiple kernel combination yields state of the art performance
of 84.5%. Finally, in [15] a result of 72.4% is obtained based
on dense random sampling of HOG3D descriptors, whereas
83.3% is achieved with a multiple kernel combination of HOG,
HOF, HOG3D and MBH descriptors

We report a top performance of 72.9% for IC1,1-HOG3D
extracted around IN -Gabor STIPs. This result constitutes the
best performing STIP-based approach to action recognition,
while state of the art results are achieved by trajectory-based
harvesting or dense sampling of MBH descriptors and multiple
kernel modeling thereof.
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Fig. 9. Per-class recognition performances on UCF50 dataset. Color-
STIP (IN -Gabor+IC1,1) performance is depicted in red, intensity-STIP (I-
Gabor+I·,1) in black and their difference in yellow.

1) Discussion on per-class results: The results on UCF50
are further analyzed based on the per-category results in
figure (9). The recognition performance for 44 out of 50 action
categories is improved by using color. The largest improve-
ment is observed for ‘BenchPress’. The main reason for this is
that the barbell weights are often (red) colored and thus render
discriminative periodic motion patterns, see figure (10) for
examples. Another influential factor is the associated typical

indoor setting (gym), which often consists of solidly colored
walls contrasting with the motion patterns in the foreground.
Apart from that, we observe a large variety in terms of, for
example, the specific background color or the clothing of
the actors. Another action category with large recognition
improvement is ‘TaiChi’. We observe from corresponding
examples that the activity is often performed outdoors on green
grass by individuals wearing colorful clothes. Furthermore, it
turns out that two ‘TaiChi’ video groups are composed of
the same person performing the activity in the same pink
clothes, which provides an obvious advantage to color based
methods. A similar line of reasoning applies to the decreased
recognition performance of ‘PlayingTabla’ activity, as one of
the video groups contains grayscale samples only (in which all
RGB channels are consequently identical). The subtraction of
‘RGB’ channels in the transformation to ‘chromatic’ opponent
space in eq. 2 then yields NULL channels. However, it is
also possibly the case that the cast shadows of the fingers
on the tabla exhibit discriminative motion patterns which may
be better detected by an unnormalized (intensity-only) STIP
detector. Another category for which intensity STIPs perform
better is ‘JumpingJack’. Also here, there is one video group
containing essentially black/white footage which influences
the results. We conclude from these observations that the usage
of color for action recognition provides a performance boost
in general, while the extremal result cases exhibit rather trivial
characteristics.

I. Discussion on Entropy and Discriminative Power

Consider the descriptor with the highest entropy: IC0,0-
HOG3D. This is the best performing descriptor on UCF11,
suggesting that high entropy is an indicator for discrimina-
tive power. On UCF50, however, IC1,1-HOG3D is the best
performing descriptor, which has considerably lower entropy
compared to most other descriptors. When larger datasets
exhibiting higher intra-class variability and lower inter-class
variability are considered, it becomes more important for
descriptors to be robust, as opposed to discriminative only. An-
other illustrative example of this phenomenon would be a raw
pixel descriptor (list of pixel values) which typically has high
entropy and is very discriminative but not at all robust. An-
other high-entropy descriptor is the 2-channel IH0,0-HOG3D.
This is remarkable at first sight because its dimensionality
is lower than e.g. the 3-channel IN0,0-HOG3D descriptor.
That is, entropy is generally expected to increase along with
dimensionality. Furthermore, the results on UCF sports show
that IH descriptors perform worse than other descriptors in
general which can be attributed to the instability of the hue
representation for unsaturated colors resulting in high entropy
in the extracted descriptor.

In conclusion, high descriptor entropy indicates either dis-
criminative power or instability of the underlying represen-
tation. Discriminative power does not guarantee best perfor-
mance because descriptor robustness becomes more important
as the problem becomes more difficult.
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Fig. 10. Example frames from UCF50 dataset. The top row contains samples from the categories for which recognition performance based on color STIPs
has improved the most over intensity STIPs. The bottom row shows examples from the 6 categories for which recognition performance has decreased. The
samples are sorted from left to right based on the difference in recognition rates.

TABLE VI
SUMMARY OF BEST RECOGNITION RESULTS OVER ALL DATASETS.

UCF sports UCF11 UCF50

# videos 150 1200 6700
# actions 10 11 50
Best Detector IN IN IN
Best Descriptor IC0,0 IC0,0 IC1,1

VI. CONCLUSION

We have reformulated STIP detectors and descriptors to
incorporate multiple photometric channels in addition to image
intensities, resulting in color STIPs. The enhanced modeling of
appearance results in an improved balance between photomet-
ric invariance and discriminative power, as chromaticity pro-
vides more information, based on which better representations
are formed. Color STIPs are thoroughly evaluated and shown
to significantly outperform their intensity-based counterparts
for recognizing human actions on a number of challenging
video benchmarks. In table VI we show an overview of the best
results over all datasets. The best detector is consistently IN ,
although differences between I and IN are small. Consistent
across all results is the superior performance of descriptors
extracted from the unnormalized opponent representation IC.
Differences are observed between variations of the IC descrip-
tor in terms of channel integration/concatenation and gradient
orientation/direction, where the best descriptor choice depends
on the difficulty and size of the dataset. For a small to moderate
amount of visually relatively distinct categories such as in the
UCF11 dataset, it is best to use a discriminative descriptor
such as IC0,0 (channel concatenation + gradient direction).
For larger datasets such as UCF50 it is better to use the robust
descriptor IC1,1 (channel integration + gradient orientation),
which has the additional advantage of low dimensionality.
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ation on color invariant based local spatiotemporal features for action
recognition. In SIBGRAPI, 2012.

[18] J. Stöttinger, A. Hanbury, N. Sebe, and T. Gevers. Sparse color interest
points for image retrieval and object categorization. TIP, 2012.

[19] J. Stöttinger, S. Zambanini, R. Khan, and A. Hanbury. Feeval - a dataset
for evaluation of spatio-temporal local features. In ICPR, 2010.

[20] A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng,
and H. Sawhney. Evaluation of low-level features and their combinations
for complex event detection in open source videos. In CVPR, 2012.

[21] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating
color descriptors for object and scene recognition. PAMI, 2010.

[22] J. van de Weijer, T. Gevers, and J. M. Geusebroek. Edge and corner
detection by photometric quasi-invariants. PAMI, 2005.

[23] J. van de Weijer, T. Gevers, and A. W. M. Smeulders. Robust
photometric invariant features from the colour tensor. TIP, 2006.
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