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Abstract

We propose a simple yet effective metric that measures
structural similarity between visual instances of architec-
tural floor plans, without the need for learning. Qualita-
tively, our experiments show that the retrieval results are
similar to deeply learned methods. Effectively compar-
ing instances of floor plan data is paramount to the suc-
cess of machine understanding of floor plan data, including
the assessment of floor plan generative models and floor
plan recommendation systems. Comparing visual floor plan
images goes beyond a sole pixel-wise visual examination
and is crucially about similarities and differences in the
shapes and relations between subdivisions that compose
the layout. Currently, deep metric learning approaches are
used to learn a pair-wise vector representation space that
closely mimics the structural similarity, in which the mod-
els are trained on similarity labels that are obtained by
Intersection-over-Union (IoU). To compensate for the lack
of structural awareness in IoU, graph-based approaches
such as Graph Matching Networks (GMNs) are used, which
require pairwise inference for comparing data instances,
making GMNs less practical for retrieval applications. In
this paper, an effective evaluation metric for judging the
structural similarity of floor plans, coined SSIG (Structural
Similarity by IoU and GED), is proposed based on both im-
age and graph distances. In addition, an efficient algorithm
is developed that uses SSIG to rank a large-scale floor plan
database. Code will be openly available.

1. Introduction

Floor plans, as one of the most celebrated media for com-
municating and thinking in architectural design, are hor-
izontal orthographic projections of a particular building’s
floor. Floor plans are simple but powerful representations
of space, conveying a richness of information about the
compositional structure of buildings – the shapes, propor-
tions, and relations between the building’s individual subdi-
visions. The compositional structure of a building is a key
factor in the architectural quality.

The multi-modal nature of floor plans as pictorial (as im-

ages), graphical (as a set of geometrical entities), and topo-
logical (as graphs) entities, leverage different data modeling
and machine learning frameworks for digital representation
and machine understanding in the domain of architectural
design. In particular, floor plan synthesis, such as floor plan
generation [9, 10, 18] or style transfer [1], has often been
explored. Another major research line is that of architec-
tural element recognition in which the goal is to automat-
ically learn to extract geometrical features from floor plan
images e.g. walls or furniture [7, 3, 14].

Despite the developments in the generative models for
floor plans, there have been few valuable attempts at de-
veloping data-driven methods to reason about floor plans,
such as floor plan retrieval by effectively comparing data
instances i.e. measuring similarity. As found by [13], struc-
tural similarity judgment for floor plans is a challenging task
– it is multi-faceted and is about the shapes and proportions,
visual features, and relations between the floor plan’s subdi-
visions. Generally speaking, comparing floor plans is about
finding commonalities in the underlying structure, hence re-
ferred to as structural similarity.

The most effective methods for measuring structural
similarity between floor plans rely on deeply learned vec-
tor representations with the goal to make the feature vector
space reflect structural similarity i.e. the distance between
feature vectors is small for structurally similar floor plans
and vice versa. To train such models, [8] propose to use
weakly supervised deep metric learning setup by obtain-
ing similarity labels through Intersection-over-Union (IoU).
To compensate for the lack of structural awareness in IoU,
[13, 4] use Graph Matching Networks (GMNs) [6] that nat-
urally embed topological information in the feature vectors.
Besides the fact that GMNs hinder the practical usability
[22], we believe that simpler frameworks could learn sim-
ilarly effective vector representations when the objective is
better aligned with structural similarity in the first place. In
our work, we develop an improved objective and opt for
simplicity. We start by investigating the merits and bot-
tlenecks of well-known image- and graph-based similarity
metrics.

The Intersection-over-Union (IoU) is often used as an
evaluation metric to measure structural similarity e.g. to



find similar or matching pairs for deep metric learning mod-
els [13, 4], to evaluate the accuracy of structural reasoning
algorithms [7], or to evaluate the output diversity of gen-
erative models [9]. In this paper, we show how IoU fails
to robustly measure structural similarity because 1) IoU is
overly sensitive to geometric perturbations in the image rep-
resentation of a floorplan and 2) IoU is often unable to iden-
tify important differences in the connectivity between space
subdivisions such as doors, walls, openings.

Floor plans have been successfully modelled as graphs
[9, 13], which allows for graph matching algorithms to com-
pute a distance (similarity) between a pair of graphs. For ex-
ample, the Graph Edit Distance (GED) computes the min-
imum cost of converting a source graph into another (iso-
morphic to it) target graph [17]. For example, [9] uses
GED to check the compatibility between generated layouts.
Although GED effectively captures topological similarity
and with that addresses some of IoU’s limitations, we show
that GED has inherent limitations when used for measuring
structural similarity.

Independently, image- and graph-based similarity met-
rics lack to holistically capture the structural similarity be-
tween floor plans. Therefore, instead of treating images and
graphs in isolation, we propose an evaluation metric that
ascertains closeness based on the floor plans’ correspond-
ing image and graph, called SSIG. In addition, an efficient
algorithm based on SSIG is used to rank RPLAN [26], a
large-scale floor plan database, on structural similarity. Our
contributions include:

• A study on the distributions and correlations between
IoU and GED on a large-scale floor plan database, with
one main finding: IoU and GED independently fail to
robustly capture structural similarity.

• A proposed simple yet powerful measure for the struc-
tural similarity of floor plans.

• An effective ranking technique to sort a large floor plan
database, hence developing a starting point for proper
evaluation and training of floor plan retrieval models.

2. Related works
Floor plan representations. Floor plans are digitally rep-
resented in various ways that each emphasize different com-
ponents of interest e.g. as images allowing to model fine-
grained details such as materialization and furniture [21, 5],
geometries that explicitly model the shapes, proportions
and locations of the shapes of the subdivisions [13], and
graphs that model the relations between the subdivisions
[9, 13, 18, 12].

Floor plan analysis. Traditional approaches on floor plan
analysis – or similar data such as documents [28] or UIs

[2] – involve primitive heuristics to approximate a floor
plan distance and are, hence, instance-specific [11]. More
recently, two-step approaches became the standard to ap-
proximate similarity of floor plans [27, 16, 20, 23, 21, 19,
25, 12], in which the first step involves extracting relevant
features from an image e.g. a graph representation of the
room connectivity [12] and the second step computes a dis-
tance based on the extracted features e.g. a subgraph match-
ing algorithm for graph similarity [16]. Besides the fact
that the two-step approaches are prone to error propagation,
the two-step approaches assume that the extracted features,
such as the access graph, completely and accurately capture
all aspects of floor plans. In our work, we challenge this as-
sumption, particularly concerning semantic image and ac-
cess graph representations of floor plans.

Structural similarity by Graph Neural Networks. Re-
cently, Graph Neural Networks (GNN) have been proposed
to learn floor plan similarity [13, 8, 4], learning floor
plan vector representations in an end-to-end fashion. Most
successfully, [4, 13] leverage Graph Matching Networks
(GMN) [6] in combination with weakly-supervised labels
based on the IoU. Due to the cross-graph information shar-
ing in GMNs, [13] found that GMNs compensate for the
lack of structural awareness in IoU and naturally learn to
embed the structural commonalities in the vector represen-
tations. A critical shortcoming of GMNs is that vector rep-
resentations cannot be computed in isolation, therefore lim-
iting the practical usability. We believe that the main reason
that cross-graph information sharing is needed is that es-
sentially the wrong objective is injected – that is to mimic
a distance metric inspired by IoU. We show that our met-
ric, which is a combination between visual- and a graph-
inspired similarity scores, can be leveraged to rank a floor
plan database for which the retrievals share similar charac-
teristics as to the works in [13].

3. Method
In this section, we develop a simple yet effective strategy

to numerically approximate structural similarity between
floor plans. Formally, we seek a similarity function s (·, ·)
between two floor plans p1 and p2:

s (p1, p2) : P × P → R+, (1)

in which P is the (mathematical) space of a floor plan. P
can be multi-modal e.g. a joint space of images and graphs:
P = RH×W×3 × G. The goal is to make s closely mimic
the structural similarity between floor plans: the larger the
structural similarity the larger s and vice versa.

The section is split into three main parts. The first
part explores the modeling and attribution of floor plans,
(Subsec. 3.1). The second part investigates known and



frequently used image- and graph-based similarity metrics
(Subsec. 3.2, 3.3). The third part describes the new similar-
ity metric (Subsec. 3.4), and provides an algorithm that can
efficiently rank a floor plan dataset (Subsec. 3.5).

3.1. Floor plan representations

In this work, we consider three well-known floor plan
representations: 1) the pictorial image, 2) the semantic im-
age, and 3) the access graph.

Figure 1. Floor plan representations. Left: Pictorial image.
Center: Semantic image. Right: Access graph.

Pictorial image Conventionally, floor plans are modeled
as images. All floor plan images that are either grayscale or
RGB and do not contain any categorial information at pixel
level about the semantics of the subdivisions are referred to
as pictorial images, I ∈ I = RH×W (×3) (Fig. 1, Left).

Semantic image Floor plans are structured arrangements
consisting of subdivisions – areas such as a living room or
bathroom, openings such as doors or windows, and sepa-
rators such as walls or railings. All floor plans that have
categorical labels for subdivision areas and/or semantic in-
formation encoded at pixel level are referred to as semantic
images in our definition, X ∈ X = {0, 1, . . . , Nc}H×W ,
in which Nc is the number of subdivision categories (Fig.
1, Center). In the semantic image representation, pixel val-
ues correspond to subdivision categories e.g. 1 ← ”living
room”, 2← ”bathroom”, 16← ”internal wall”, etc.

Access graph Floor plans often have clearly identifiable
relations between subdivisions e.g. access information be-
tween two rooms by means of a door. Even though semantic
images efficiently capture the shapes and categories of the
subdivisions, semantic image maps do not explicitly define
the relations between the subdivisions.

Instead, floor plans can be attributed an access graph,
directly laying bare the topological structure of the subdivi-
sions (Fig. 1, Right). Formally, a graph is defined as a 4-
tuple g = (N,E, µ, ν), in which N is a finite set of nodes,
E is the set of edges, and µ and ν are the node and edge la-
belling functions respectively [15]. The nodes in an access
graph correspond to the areas, and the edges to connections
between the areas.

Depending on the use-case and feature accessibility, the
nodes and edges can have (one or several) attributes. Usu-
ally, room-type information is encoded on the nodes, and
edges are only present if a door is in between two rooms,
hence edges do not have an attribute [9, 18, 24]. Even
though we agree that access connectivity is the most impor-
tant relation between rooms, an important relation is disre-
garded: room adjacency. Room adjacency is an influential
factor e.g. for decisions around privacy, structural integrity,
and function. Access graphs, in the remainder of this work,
have therefor a connectivity-type attribute, which is either
”door” or ”adjacent”.

Proposed by [8], it is noteworthy to mention that several
approaches compute the edge features. Specifically, edge
features between two nodes are computed by pairwise geo-
metric features, such as the ratio between areas or the rela-
tive position.

3.2. Intersection-over-Union

The Intersection-over-Union (IoU) is not considered a
proper distance metric, but it is a well-adopted evaluation
metric for tasks where measuring the overlap between re-
gions or sets is important, such as in object detection or
segmentation tasks. In turn, IoU is often used as a measure
for estimating structural similarity in various applications
related to floor plans e.g. for finding similar or matching
floor plan pairs for similarity learning [13, 4], evaluating
the accuracy of segmentation algorithms [7], or to check the
diversity of outputs in floor plan generation [9]. The IoU
is commonly defined as the fraction between the amount
of overlap and the union of two binary images X1 and X2

∈ {0, 1}H×W :

IoU (X1, X2) =
X1 ∩X2

X1 ∪X2
. (2)

When more classes are present in an image e.g. in the
case of semantic images (X1, X2 ∈ X ), IoU is computed
per class and the results are aggregated to find the final
score. For example, the mean IoU (mIoU) computes the
average IoU, with respect to the ground truth, across the
different classes, therefore treating every class similarly re-
gardless of its proportion to the image size.

mIOU (X1, X2) =
1

Nc

Nc∑
c=1

IoU (X1 == c,X2 == c) ,

(3)
where Nc is the number of classes.

Even though IoU is a powerful metric that in part is suit-
able for approximating structural similarity between floor
plans, IoU frequently fails on both extremes: 1) false-
negative: low IoU - high structural similarity, and 2) false-
positive: high IoU - low structural similarity. 1) IoU is over-
sensitive to irrelevant geometric perturbations in the image



Figure 2. Visual- and graph-based similarity metrics for floor plans. A) IoU can be directly used as a measure for similarity between
semantic image representations. mIoU between the semantic images is computed through Eq. 3 (floor plans have 3 semantic labels); in
this case being 0.90 which is a relatively high number. B) nGED is computed through Eqs. 5 and 6: GED equals the shortest edit path
which is 2; the orders of the graphs are both 3, hence nGED = 2/9. When γ = 0.4 (a typical value), 1 − nGED (g1, g2)

γ ≈ 0.45. The
visual-based similarity (0.90) and graph-based (0.45) similarity scores are significantly different which indicates that in some cases IoU
and GED negatively correlate in ”seeing” similarity.

e.g. translation, rotations, and scale. For example, when
identical floor plans are centered at different locations in an
image, the IoU will be low; falsely indicating that the floor
plans are not structurally similar. 2) IoU frequently fails to
correctly identify the connectivity in floor plans e.g. small
”air gaps” between rooms are hardly identified by IoU yet
are indicative of structural characteristics (see example in
Fig. 2).

3.3. Graph Edit Distance

The Graph Edit Distance (GED) [17], is another mea-
sure to judge similarity between floor plans, used for e.g.
compatibility of generated layouts [10] or for floor plan re-
trieval [12]. GED is a metric that quantifies the similarity
(dissimilarity) between two graphs by computing the min-
imum cost of transforming one graph g1 into (a graph iso-
morphic to) g2 in terms of a sequence of edit operations
(e1, e2, . . . , ej), referred to as the edit path. Edit operations
typically include node and edge deletions, insertions, and
substitutions, which can have different costs. Given a set
of graph edit operations ei and associated costs ci (ei), the
GED (g1, g2) is formally defined as,

GED (g1, g2) = min
(e1,e2,...,ej)∈π(g1,g2)

k∑
j=1

cj (ej) , (4)

in which π (g1, g2) denotes the set of edit paths that trans-
forms g1 into (a graph isomorphic to) g2. In our work, all
edit operations have the same cost, hence Eq. 4 becomes,

GED (g1, g2) = min
k

(e1, e2, . . . , ek) , (5)

such that (e1, e2, . . . , ek) ∈ π (g1, g2). GED in this case
is equivalent to the smallest number of edit operations. To
normalize the GED between 0 and 1, we define the Normal-
ized Graph Edit Distance (nGED) by dividing GED with

the product of the orders1 – the number of nodes – of the
graphs (|N1| and |N2|):

nGED (g1, g2) =
GED (g1, g2)

|N1| · |N2|
. (6)

nGED can be used as of measure of closeness between
the topology of two floor plans, in which a small nGED sug-
gests that two floor plans share topological characteristics,
which could be, for example, indicative of commonalities
in flow or function between two buildings.

nGED has several limitations. First of all, the amount of
different floor plans possible for a particular access graph
is huge, for which many corresponding floor plans pairs are
not structurally similar (see Fig. 3). Second, it is unclear
which edit costs align with structural similarity: Is the re-
moval of a node or an edge more costly? Does the node
label matter? etc. Third, nGED is compute-heavy which
limits its use in real-time systems e.g. floor plan retrieval in
search engines. We elaborate more on the shortcomings in
Subsec. 4.2.

In Subsec. 4.3 we investigate the trends and correlations
between nGED and mIoU on RPLAN [26] empirically.

3.4. A Visually-guided Graph Edit Distance

Independently, IoU and GED fail to holistically capture
structural similarity between floor plans. Therefore, instead
of treating images and graphs separately, we propose a met-
ric that ascertains closeness based on the semantic image
and access graph. We define the similarity between a pair
of floor plans (p1, p2), pi = (Xi, gi) ∈ X × G, as

1Note that Eq. 6 does not strictly normalizes GED. Even so, for floor
plans e.g., in [26], nGED will always be below 1. Furthermore, the product
of the orders, instead of for example the sum, nicely spreads the nGED
distributions.



Figure 3. Graph to image examples. Each row represents an ac-
cess graph (column 1) and several randomly selected correspond-
ing floor plans semantic images (columns 2 - 5).

SSIG (p1, p2) =
mIoU (X1, X2) + (1− nGED (g1, g2)

γ
)

2
.

(7)
Coined as SSIG (Structural Similarity by IoU and

GED), 7 essentially computes a weighted average between
a IoU-based and a nGED-based similarity metric. γ ∈ R+

is a weight that allows to tune between the relevance of
nGED w.r.t. mIoU: the higher γ the less influence nGED
and vice versa.2 For example for RPLAN [26], the mIoU
and nGED distributions are balanced when γ = 0.4. Specif-
ically, balanced distributions here means that the IoU and
nGED probability density functions have as much overlap
as possible.

3.5. Efficient algorithm for ranking

Even for small graphs, GED is a compute-heavy mea-
sure, usually taking several seconds per floor plan pair.
When SSIG is used for evaluation, pair mining, or direct
floor plan retrieval on large datasets, the time constrain
hugely limits practical usage. We propose an algorithm that
drastically speeds up retrieval and finds structurally similar
pairs relatively fast.

First, mIoU is computed for every combination of floor
plan pairs in the dataset. Second, only the n (set between
50 and 100) best scoring pairs on mIoU for each floor plan
identity are kept. Third, the SSIG is computed for each re-

2Note that nGED ∈ (0, 1), hence increasing the power term decreases
nGED.

maining pair. Fourth, the corresponding lists for each floor
plan identity are ranked on SSIG in descending order.

The algorithm assumes that the best matches (highest
SSIG scores) are found in the n-best mIoU pairs. In the
next session, we empirically find that the assumption gen-
erally holds if n is large enough. In Subsec. 4.4, we show
that for ranking RPLAN, the assumption holds for relatively
small n. For a dataset with size N (usually between 10k
and 100k), the algorithm is orders of magnitude faster than
brute-forcing through it.

An assessment of the ranking algorithm and relation to
floor plan retrieval systems are provided in the following
section (Sec. 4).

4. Results and Evaluation
4.1. Data

In this paper, RPLAN [26] is used for analysis and eval-
uation. RPLAN is a large-scale dataset containing floor
plan images with semantically segmented areas, consisting
of >80k single-unit apartments across Asia. We further
cleaned the dataset, where there were several apartments
with rooms without any doors i.e. disconnected in terms
of the topology. Moreover, apartments are removed that
are not fully connected and/or for which our graph extrac-
tion algorithm cannot reliably compute the corresponding
access graphs. The cleaned dataset contains ∼56k apart-
ments. Furthermore, we found that RPLAN contains many
(near) duplicates. For evaluation of the ranking algorithm
(Subsec. 4.4), we remove the (near) duplicates to reduce
clutter in the results. Duplicates are removed by a thresh-
old on mIoU, τIoU = 0.87. Duplicates are not removed
when assessing the distributions and correlations of mIoU
and nGED.

4.2. Distributions

To understand the relations between the pairwise simi-
larity measures (mIoU and nGED) and how they relate to
structural similarity, we start by investigating the proba-
bility density functions of the pairwise similarity measures
(pIoU and pGED, respectively). pIoU and pGED are approxi-
mated by computing IoU and GED for over a million ran-
domly sampled floor plan pairs. For brevity, we use ”IoU”
and ”GED” instead of ”mIoU” and ”nGED”.

IoU IoU is computed according to Eq. 3 and across all
subdivision categories except for the ”background”. The
histogram of the distribution is provided in Fig. 4 in the
middle left plot in blue. The mean of the distribution is
around 0.25 which means that on average approximately
25% of the pixels are overlapping. We also plot the IoU dis-
tribution for the 50 best-scoring examples on IoU per floor
plan identity, shown in orange. As expected, compared to



the full IoU distribution, the mean is significantly shifted.
The spike around 1.0 can be attributed to the many (near)
duplicates in the dataset.

To give an idea of the diversity of floor plan samples,
Fig. 4 (top row) highlights floor plans with different ’orig-
inality’ scores. The originality is computed by the average
IoU score for a given sample with all remaining samples.
The more right (≈ 0.1) the more original i.e. seldom and the
more left (≈ 0.4) the less original i.e. more frequent. Gen-
erally speaking, the originality positively correlated mostly
with the complexity of the shapes of both the rooms and
boundaries.

Figure 4. IoU and GED distributions and originality. The two
plots in the center illustrate the distributions of IoU (left) and GED
(right): blue depicts the distribution over all samples and orange
only considers the top-50 on IoU. An indication of semantic image
originality (based on the average IoU) is given on the top and one
for the graph originality (based on the base graph occurrence) is
given on the bottom: originality increases going from left to right.

GED nGED is computed according to Eqs. 5 and 6 and
hence cost for node and edge deletions, insertions, and sub-
stitutions are kept the same. The histogram of the full distri-
bution is illustrated in Fig. 4 in the middle right plot in blue.
We also plot the GED distribution for the 50 best scoring
examples on IoU per floor plan identity, shown in orange.
Surprisingly, both full and top-50 distributions are nearly
similar, revealing a weak (if at all) correlation between IoU
and GED. The weak correlation is further investigated in the
next section.

It is worth noting that there are only 50 unique GED val-
ues in our population of random pairs. The limited range of
GED values can be attributed to:

Firstly, the amount of floor plan pairs that share the same
underlying base graph – all possible graphs present in the
dataset for which each pairwise combination is isomorphic:

Figure 5. Distribution of base graphs. The plot on the top pro-
vides the distribution of base graphs (in descending order of occur-
rence) for base graphs that at least occur 9 times. On the bottom,
the base graphs are plotted for several randomly picked floor plans.
For some of the base graphs, we indicate the position in the distri-
bution through the colored boxes.

g1 is isomorphic to g2 – is relatively large. To make our
point, we sort all base graphs based on the number of corre-
sponding floor plans and show the huge imbalance between
base graph occurrences (see Fig. 5). For example, more
than 25% of the data (≈14k samples) correspond to the 100
most prominent base graphs only. Visualized in Fig. 4 (bot-
tom row) and similar to the IoU originality scores, we score
floor plans on graph originality as well. Graph originality
is based on the number of corresponding floor plans for a
given base graph: the more original the fewer floor plans
per base graph. While the main patterns of graph originality
are to be more closely investigated, on average the number
of nodes as well as edges slightly increase with originality.

Secondly, revealed empirically by the graph original-
ity distribution, the distribution of topology – the graph’s
structure – alone is small because the graphs are limited in
size (number of connections) and order (number of subdi-
visions). Furthermore, the topological types are limited as
well. Typically, access graphs are confined to be flower-like
and thus centered around a single node. The central node is
usually the living room and/or hallway.

Indeed, the majority of floor plans stem from a limited
collection of base graphs, and only a few node and edge
attributes are considered, leading to the ineffectiveness of
measuring structural similarity solely based on graph simi-
larity.



4.3. Correlations

The correlation between IoU and GED is further investi-
gated. The 2D density map of IoU and GED is depicted in
Fig. 6 and plotted as a heatmap. We define a positive corre-
lation when increments in visual similarity i.e. higher IoU
result in increments in the graph-based similarity i.e. lower
GED. Effectively we measure the correlation between IoU
and negative GED. The heatmap shows for increasing IoU
ranges that GED distributions shift towards lower values,
hence the correlation between IoU and GED is positive. To
be precise, the Pearson correlation coefficient is 0.503 be-
tween mIoU and -nGED, hence GED and IoU are moder-
ately correlated. However, the overlapping regions between
GED distributions for different IoU ranges are often large.
Specifically, IoU and GED oppose each other 38% of the
time – opposition here means that a higher IoU results in
a higher GED or that a lower IoU results in a lower GED.
Several examples in which IoU and GED oppose each other
are given in Fig. 7.

Figure 6. 2D density map of IoU and GED as heatmap. A mod-
erate correlation (0.503) between IoU and -GED is found. The dis-
tribution is, however, widely spread indicating that IoU and GED
often fail to predict one another with confidence.

From the triplets shown in Fig. 7, many characteristics of
IoU and GED rise to the surface. For an anchor, we define
pos@IoU as the positive (IoU high) and neg@IoU as the
negative query (IoU low). The same holds for pos@GED
(GED low) and neg@GED (GED high). Most prominent is
the sensitivity of IoU w.r.t. the overall shape of the building:
in all cases, the overall shape between the anchor and the
pos@IoU are nearly identical and slightly different for the
pos@GED. On the other hand, the number of rooms is often
different between the anchor and pos@IoU while (nearly)
always equivalent between the anchor and pos@GED: plac-
ing or removing rooms is detrimental for GED but in many
cases does not hurt IoU so much. Another difference be-
tween pos@IoU and pos@GED is the fact that changes in
the room shapes – especially to the central space – are not
penalized by GED yet detrimental for IoU. The examples
reveal the difficulty of measuring the structural similarity of
floor plans. Apparently, both measures independently can-

not fully grasp structural similarity.

Figure 7. Negative examples between IoU and GED on
RPLAN. IoU is sensitive to the scales and shape of the room while
GED captures the connections between the rooms.

4.4. Floor plan retrieval

We evaluate our ranking algorithm provided in Subsec.
3.5 and qualitatively compare the retrievals to independent
IoU- and GED-based rankings, and to retrievals based on a
deeply learned metric [13].

We start by finding a proper value for n – the number of
samples (when ranked on IoU) considered for further SSIG
assessment. In Fig. 9, the distributions for IoU, GED, and
SSIG are provided for various values of n. In our observa-
tion, for relatively large values of SSIG (>0.7) every linear
increase in n adds fewer samples every time. We found
for RPLAN that values of n >= 50 seldom change the top-
10 on SSIG. Compared to measuring SSIG on the whole
dataset, SSIG only needs to be computed 50 times. We be-
lieve that IoU, at least in the case of RPLAN, is a proper
first step to find correspondences in structural similarity
coarsely, while GED is a proper help to measure structural
similarity on a finer level. Hence, we refer to our ranking
method as a visually-guided graph edit distance.

Our algorithm is compute-efficient w.r.t. GMNs. De-
pending on the size and originality of the floor plan’s cor-
responding access graphs, our algorithm takes between 1
and 5 s on a single CPU per unseen sample to fully rank
it. Compared to LayoutGMN, the same computation takes
approximately 1500 s. Hence, our algorithm is compute-
efficient w.r.t. GMNs.

Randomly picked retrievals (top 10) of our method are



Figure 8. Retrieval results of our method. The most left is the query and to the right are the retrievals. The red and blue transparent
boxes indicate the IoU and GED ranks, respectively.

Figure 9. IoU, GED, and SSIG distributions for various n. The
different colors indicate different n. Particularly interesting is the
fact that the mean of both IoU and SSIG drastically decreases for
increasing n.

shown in Fig. 8 and compared against IoU- and GED-only
ranks. In red and blue are IoU and GED ranks, respectively.
Not surprisingly the SSIG, IoU, and GED ranks are quite
different which can be attributed to the fact that the corre-
lation between IoU and GED is only weakly positive (see
Subsec. 4.3). Compared to IoU- and GED-only retrievals,
it can be seen that SSIG indeed compensates for ’failures’
in IoU and GED. For example in the last row of Fig. 8,
the first 4 retrieval results, even though having a low IoU
value, are compensated by GED, while the 5th retrieval is
compensated by IoU, even though having a low GED value.
Similar compensation for failures can be found back in the
retrievals of deeply learned metrics, see [13, 4, 8].

5. Conclusion and future work

In this work, we showed that image- as well as graph-
based similarity metrics alone are likely not enough to ro-
bustly measure structural similarity between floor plans. We
overcome the shortcomings by combining IoU and GED
into one metric, called SSIG. We qualitatively showed that
a floor plan database which is ranked on SSIG shares simi-
lar characteristics to results of state-of-the-art methods that

use GMNs to compute the ranking.
This work is however limited to investigating IoU and

GED and does not consider other well-known image- and
graph-based similarity metrics. Moreover, we did not con-
duct any user study to rigorously assess our claims further.
In future studies we hope to address both limitations.

The formulation of similarity as defined in Eq. 1 is setup
in a task-agnostic manner - the formulation addresses floor
plan similarity as a single overall measure. In many cases,
however, a more realistic way to setup similarity might be
dynamic (e.g., based on categories), hence, allowing for dif-
ferent similarity scores across multiple use cases whether
used in floor plan tailored search engines, evaluation of floor
plan generation, etc. Our aim is to work on such formula-
tions in the future.

We believe that SSIG will pave a way towards improved
data-driven research on floor plans, such as for providing a
more natural objective to train deep metric learning frame-
works that do not necessarily require information sharing
across branches.
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