
ISIS technical report series, Vol. 24, April, 2000

Practical tutorial for using Corba
A step-by-step introduction to the Common Ob-
ject Request Broker Architecture

Jan van Gemert

Intelligent Sensory Information Systems

Department of Computer Science

University of Amsterdam

The Netherlands

A compact step-by-step tutorial for creating a CORBA object

to get some hands-on experience with the Common Object Re-

quest Broker Architecture. Corba enables platform, language and

network transparency. How to use a C++ object created on a

Windows NT, in a Java program running on Unix.



Practical tutorial for using Corba

Contents

1 Introduction 1

1.1 Description of files used . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Applications used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Install Orbacus 4.0 beta 2 3

2.1 Installing Orbacus for the C++ server . . . . . . . . . . . . . . . . . 3
2.2 Installing Orbacus for the Java client . . . . . . . . . . . . . . . . . . 4

3 Environmental Changes 5

3.1 Variable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 MS visual C++ settings . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Orbacus configuration files . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Specify the object in IDL 9

5 Setting up the C++ Server 10

5.1 Compile IDL file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Implement the servant object . . . . . . . . . . . . . . . . . . . . . . 10

5.2.1 Example of Count i.h . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2 Example of Count i.cpp . . . . . . . . . . . . . . . . . . . . . 12

5.3 Implement the server . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Server.cpp code . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Setting up the Java Client 15

6.1 Compile IDL file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Implement the client . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2.1 Client.java code . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Running the example 17

Intelligent Sensory Information Systems

Department of Computer Science
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel: +31 20 525 7463

fax: +31 20 525 7490

http://www.science.uva.nl/research/isis

Corresponding author:

Jan van Gemert
tel: +31(20)525 7507
jvgemert@science.uva.nl

www.science.uva.nl/~jvgemert



Section 1 Introduction 1

1 Introduction

This small practical tutorial is a doorway to the world of the Common Object Re-
quest Broker Architecture. Yes young Java Knight, this will give you the powers
to use transparent inter-language client-server relationships between objects. This
document provides a framework for implementing a simple count object, containing
a number that can be set, read and incremented by 1. The idea of this simple object
was found in [1]. The choice for such an object, is based on its simplicity as its
display of client-server interaction.

What you have here, is no theoretical work, nor does it explain in detail how
CORBA uses its magic. It’s just a step by step practical tutorial for creating a
CORBA C++ server with a Java client. Its small steps are backed up with some
chunks of fast-food files, just waiting to be compiled and executed.

For further information about CORBA, check the included OB-4.0b3.pdf.zip file.
Additionally, I recommend these sites:

http://www.omg.org/ (creators of CORBA)
http://www.ooc.com/ (implementers of this CORBA version)
http://www.corba.net/

http://developer.java.sun.com/developer/onlineTraining/corba/

http://www.infosys.tuwien.ac.at/Research/Corba/homepage.html

From now on, the CORBA fundamentals are presumed as known. You do not
have to master the details of it, just a grasp of the basics is enough. Do you know
what an IOR is? What is IDL used for? Skeletons? Stubs? Etc. Furthermore, some
understanding of Java, C++ and Microsoft Visual C++ (MSVC) is required. For
information about them, I recommend these sites:

http://java.sun.com/docs/books/tutorial/

http://msdn.microsoft.com/visualc/technical/documentation.asp

Here also, no expertise is really required. Just know how to create and compile
a new Visual C++ project, compile and run Java code, and know how to write a
simple C++ class.

Exception handling is mainly not done in this tutorial, in order to focus on the
main goal of implementing a CORBA object. This document will allow you to create
a working implementation of the CORBA architecture, in a small amount of time.
The University of Amsterdam disclaims any warranty and takes no responsibility
for damages of any kind for the software based upon this tutorial.

Section 1 will guide you through the installation and compilation of Orbacus
4.0 beta 2. Where section 2 will let you adapt the environmental conditions to let
Orbacus flourish. section 3 specifies the Count object in the Interface Definition
Language. Where the IDL definition is compiled to C++ in order to set up the
server in section 4. The client is implemented in section 5. Whereas the execution
of the example is described in section 6.



2 Jan van Gemert

1.1 Description of files used

File: Description:

LearnCorba.doc This tutorial document;
Licence.doc License agreement for free use of Orbacus;
OB-4_0b2.zip Orbacus source code for C++;

JOB-4_0b2_jars.zip Orbacus precompiled .Jar files for Java;
OB-4.0b3.pdf.zip Documentation file for Orbacus ;

Count.idl Language independent definition of the object;
Count_i[.cpp .h] C++ Implementation of the count-object;
Server[.cpp .h] Code of the C++ Server;

server.* MS visual C++ project and workspace files;
orbacus.cfg System Properties for Orbacus for C++;

orbacusVars.bat Batch file for Sever Variable settings;
Client.* Code of the Java Client;

orbacus.properties System Properties for Orbacus for Java;
orbacusClient.bat Batch file for Client variable settings.

1.2 Applications used

• MS Windows NT

• MS Word

• Acrobat reader

• WinZip

• Microsoft visual C++

• JDK1.2.2.



Section 2 Install Orbacus 4.0 beta 2 3

2 Install Orbacus 4.0 beta 2

The first thing to do, is to install Orbacus. Without it, not much corbaing can be
done. The Orbacus files were downloaded from the Object Oriented Concepts site,
the implementers of Orbacus. The URL of their site: http://www.ooc.com/. This
ORB, (Object Request Broker, a Corba implementation) is free for non-commercial
use, like in this tutorial. For more details about this, take a look at the file
licence.doc.

2.1 Installing Orbacus for the C++ server

Supplemented with this package is a .zip file called OB-4_0b2.zip. This file con-
tains the C++ source code of the Orbacus 4.0 for C++. To properly install Orbacus,
we have to unzip, configure and compile the source code. 1

To Do:

1 Unzip the file OB-4_0b2.zip to a directory of your choice (e.g.
D:\OrbacusSrc). A sub-directory is created, called OB-4.0b2;

2 Edit the file config\Make.rules.mak according to the instruc-
tions in the comments in that file and make the appropriate
changes. At least set the installation directory. For example set it
to prefix = D:\OOCb4;

3 Open a DOS box, and run the batch file vcvars32.bat (included
in MSVC) to set compilation environmental variables;

4 In DOS, Go to the Orbacus source directory (OB-4.0b2) Com-
pile Orbacus, using ’nmake /f Makefile.mak install’ (this
will take some time, for me about 50 minutes, but you should
be able to continue with this tutorial until IDL-file compilation).
This will install Orbacus in the prefix directory (e.g. D:\OOCb4);

5 Recommended, use ’nmake /f Makefile.mak clean’ to delete
files used during compilation which are no longer needed (will
create some space on your drive).

If all goes well, you should now have a compiled pile of about 75 MB of fresh
Orbacus in your installation directory. The source code is no longer necessary, so if
youŕe lacking hard drive space you can delete at will.

For more information about installing Orbacus, see the files INSTALL.WINDOWS,
OB\README.WINDOWS and the file Makefile.mak.

1According to the OOC help file, you need approximately 150 MB of free disk space (250 MB
to be sure), and Windows NT (not win95/win98).



4 Jan van Gemert

2.2 Installing Orbacus for the Java client

The file JOB-4_0b2_jars.zip contains all the pre-compiled .jar files needed to use
Orbacus for Java. So, all we need to do is to unzip the Jars and adapt the Classpath
variable used by Java to locate .jar files.

To Do:

1 Unzip the file JOB-4_0b2_jars.zip to a directory of your choice (e.g.
D:\OOCb4\jars\);

2 Create a batchfile (e.g.OrbacusClient.bat) which adds
the OB.jar and the OBNaming.jar to the Classpath vari-
able, and for example contains this line: SET CLASSPATH=

%CLASSPATH%;d:\oocb4\jars\ob.jar;d:\oocb4\jars\obnaming.jar;
3 Add to this bath file a line which inserts the executable directory in the

search path (e.g. PATH=%PATH%;D:\OOCb4\BIN). For easy access to the
executables in this directory.



Section 3 Environmental Changes 5

3 Environmental Changes

The working environment has to be adapted, in order to let Orbacus and Microsoft
visual C++ work together. Some variables need to be set, some MSVC settings got
to change and a configuration file has to be created.

3.1 Variable settings

In order to let MSVC find Orbacus-libraries and includes, some variables have to be
set. For this, the batch file OrbacusVars.bat is included in this package. This file:

• Sets a helpful MS-DOS variable OBC_ROOT, not needed for Orbacus but makes
life easier in MSVC. This variable should contain the path to the installation
directory of Orbacus (e.g. D:\OOCb4). This, so we can easy reference the path
to Orbacus in MSVC;

• Sets MSVC environment variables, (calls vcvars32.bat, which is included in
the bin directory of MSVC);

• Adds the Orbacus executables (OBC_ROOT\bin) in the search path;

• Sets the ORBACUS_CONFIG variable, which points to a configuration file used
by Orbacus. (this configuration file isnt́ standard included with Orbacus, so
we have to create it ourselves, more about this in section 3.3).

OrbacusVars.bat:

@echo off

if not defined INCLUDE call vcvars32

echo Setting environment for using ORBacus 4.0 beta2 for C++

rem if not already done, set MS-visual C++ vars,

if not defined INCLUDE call vcvars32

rem set root directory to 1e parameter, or to the default

set OBC_ROOT=%1

if not defined OBC_ROOT set OBC_ROOT=D:\OOCb4

rem add Orbacus binaries to search-path

set PATH=%PATH%;%OBC_ROOT%\bin

rem set location of configuration file.

set ORBACUS_CONFIG=%OBC_ROOT%\etc\orbacus.cfg

To Do:

1 Open a DOS box;
2 Call OrbacusVars.bat. Make sure vcvars32.bat is in your path;
3 Start MS Visual C++ (type msdev at the DOS prompt, so the dos-box

environment settings (variable values) sustain within MSVC).



6 Jan van Gemert

3.2 MS visual C++ settings

Microsoft Visual C++ also has to be configured, in order to work with Orbacus:

• The OBC_ROOT variable has to be added to the include-path;

• The corresponding libraries have to be added to the project;

• Multithreading DLL has to be set;

• Run Time Type checking has to be enabled.

To Do:

1 Start an empty workspace and a new win32 console project (e.g.
server)

2 Open the menu project settings;
3 Set settings for: to all configurations (both debug and release);
4 In tab C/C++, category: Pre processor Set additional include Directory

to: ’., $(OBC_ROOT)\include’ (Yes, include the current directory (
’.’ ) );

5 In tab C/C++, category code generation change the setting
use runtime library set to Multithreaded DLL;

6 In tab C/C++, category C++ language change the setting
Enable Run-time Type Information (RTTI) to yes;

7 Orbacus uses wsock32.lib so, add this library to tab Link, cate-
gory Input add to the setting object/library modules the library
wsock32.lib;

8 Add to the project, for example in the folder Resource files the
needed libraries ob.lib and CosNaming.lib. You can find these files in
OBC_ROOT\lib.

Details:

The reason for including the current directory in the include directory path, is
that Orbacus will generate files, which use the statement: #include <count.h> in-
stead of #include "count.h". This does mean that the source files have to be in a
system directory of MSVC. By including the current directory, it is added to the sys-
tem directories. The source files can now be in the same directory as the project files.

Because we compiled Orbacus with the default settings, the compiler setting
Multithreading DLL was used. We have to keep doing this in our project. To
change this default compilation option, change the file config\Make.rules.mak

and re-compile Orbacus. For more details about multithreading options, refer to
the MSVC documentation and the file: OB\README.WINDOWS.

Orbacus makes use of the wsock32.lib and uses Run Time Type checking Infor-
mation.



Section 3 Environmental Changes 7

3.3 Orbacus configuration files

In order to let Orbacus work with the naming service, which allows human object
naming, instead of IOR strings, we have to specify some more settings.

The naming service converts an object name to an IOR. In order to let Orbacus
find this naming service in its initial references, the IOR of the naming service has
to be known. Also, the IP-port on which the naming service will listen has to be
set. This can be any free IP-port (e.g. 8001). For an example of an Orbacus
configuration file, see below. Remember that the exact IOR of your naming server
will differ from the example specified below.

In the \BIN directory you can find the executable Nameserv.exe corresponding
with the naming service. By typing Nameserv -h you can see the options. Fur-
thermore, the program nsadmin.exe lets you manage the naming service from the
commandline. Also, by typing nsadmin -h the options of the naming service ad-
ministration program appear on the screen.

To Do:

1 Print the IOR of the name service listening on port 8001 by typing
Nameserv -i -OAport 8001 (this will automatically start the naming
service, use ctrl-c to abort);

2 For the Server: Create a textfile with a filename specified as
in the variable ORBACUS_CONFIG in the variable settings (e.g.
OBC_ROOT\etc\orbacus.cfg );

3 Specify the ooc.service.NameService= to the IOR just read of the
naming service in step 1;

4 Save the file, and make sure it has the same name and path as in the
variable ORBACUS_CONFIG, and be sure not to break up the IOR, but
leave it as a whole string;

5 For the Client: Create a textfile for example Orbacus.properties

in for example the java.home\lib directory (e.g.
C:\Java\JRE\1.2\lib\orbacus.properties);

6 Set Orbacus as the ORB, insert the following lines in this file:
ooc.omg.CORBA.ORBClass=com.ooc.CORBA.ORB

ooc.omg.CORBA.ORBSingletonClass=com.ooc.CORBA.ORBSingleton;
7 Also, specify in this file, the IOR of the name service in

ooc.orb.service.NameService=. Just like the server configuration.

Two different configuration files (one for C++ and one for Java) have no apparent
use on just one machine. When using a network, distributed file locations have their
advantages over central stored settings.

The Client configuration file, is just a system property list for Java, which can
and will easily be loaded using the method java.util.Properties.load (more on
this in section 6).

The location of the configuration files is not compulsory, just an easy way to store it.



8 Jan van Gemert

Example of the Orbacus configuration file for C++ sever:
(Lines starting with # are comment, and ignored)

file: orbacus.cfg:

# Initial references:

ooc.service.NameService=IOR:010000002a00000049444c3a6f6f632e636f6

d2f436f734e616d696e672f4f424e616d696e67436f6e746578743a312e300000

0002000000000000004c000000010102001600000070632d6373797330392e776

96e732e7576612e6e6c00411f24000000abacab305f526f6f74504f410049494f

504c4f43504f4100004e616d655365727669636500000000010000007c0000000

101020001000000010000006c00000001000000010001000a0000000200010003

00010004000100050001000600010007000100080001000900010001000105200

00100090101000c00000000010100010001000200010003000100040001000500

0100060001000700010008000100090001000100010520000100

Example of the Orbacus configuration file for the Java client:
(Lines starting with # are comment, and ignored)

file: Orbacus.properties:

# Using ORBacus ORB:

org.omg.CORBA.ORBClass=com.ooc.CORBA.ORB

org.omg.CORBA.ORBSingletonClass=com.ooc.CORBA.ORBSingleton

# set IOR of the nameservice:

ooc.orb.service.NameService=IOR:010000002a00000049444c3a6f6f632e6

36f6d2f436f734e616d696e672f4f424e616d696e67436f6e746578743a312e30

00000002000000000000004c000000010102001600000070632d6373797330392

e77696e732e7576612e6e6c00411f24000000abacab305f526f6f74504f410049

494f504c4f43504f4100004e616d655365727669636500000000010000007c000

0000101020001000000010000006c00000001000000010001000a000000020001

00030001000400010005000100060001000700010008000100090001000100010

520000100090101000c0000000001010001000100020001000300010004000100

05000100060001000700010008000100090001000100010520000100



Section 4 Specify the object in IDL 9

4 Specify the object in IDL

The methods and properties of an object have to be known to both the server as the
client. The object has to be described in the Interface Definition Language (IDL).
This description forms the foundation on which the server, client and objects are
built. The IDL file (Count.idl):

module Counter

{ interface Count

{ attribute long sum;

long increment();

};

};

The object described, is a Count object. It is a simple object with only 1 method
and 1 attribute. An attribute in IDL is not like a real member variable of a class. It
generates a read and a write function with the same name of the attribute specified
in IDL, which effect the servant objectś attribute. This attribute is a long called
sum, which can be incremented using the method increment, which also returns the
new value of the attribute.

To Do:

1 Create a text file count.idl and save it in the same directory as the
project (this in order to let MSVC find the include files in the current
directory, see section 3.2 );

2 Add the IDL file to the project;
3 Choose settings of the IDL file;
4 Select the settings for all configurations (both debug and release)

5 Select custom build and add to command:
cd /D \$(InputDir)

$(OBC_ROOT)\bin\idl $(InputPath);
6 Add to output:

$(InputDir)/$(InputName).h

$(InputDir)/$(InputName).cpp

$(InputDir)/$(InputName)_skel.h

$(InputDir)/$(InputName)_skel.cpp.

All this is necessary, to compile the IDL file with the Orbacus IDL to C++
compiler (idl.exe) within MSVC, and to update the generated files automatically.



10 Jan van Gemert

5 Setting up the C++ Server

To set up a CORBA server the IDL file has to be compiled, in order to auto-generate
Server Skeletons and Client Stubs. Also, the object implementation (servant) and
the server itself have to be written.

5.1 Compile IDL file

Compilation of the IDL file with the IDL-compiler as provided with Orbacus (BIN\idl.exe)
generates a number of files needed to successfully implement object transparency.

To Do:

1 Compile IDL file, with compile button, in MSVC.
(note, if you try to build the entire project, the linker will complain that
it has nothing to link with);

2 Add following generated files to your project:
Count.h

Count.cpp

Count_skel.h

Count_skel.cpp;

Count.* is used for the Client and for the Server. Count_skel.* is used only
for the server and contains the abstract class of the implementation of the object.
Count.h contains definitions of the IDL types.

5.2 Implement the servant object

The implementation of the object, which by definition, is done by the server, is called
a servant object. The task of the servant is to create the functionality required by
the object, as defined in the IDL definition.

To do so, we need to create a class, which inherits from the abstract server class
Count_skel. In the file Count_skel.h we can see the virtual functions which need
implementing. A description of these functions:

• To request the value of the property sum: virtual CORBA::Long sum() ;

• To set the value of the property sum: virtual void sum(CORBA::Long _itvar_sum) ;

• To increment the value of the property sum, and return this value, the method
increment: virtual CORBA::Long increment().



Section 5 Setting up the C++ Server 11

Now, we need to create the code for the implementation. Conform naming
conventions, we create the files Count_i.h and Count_i.cpp:

To Do:

1 Create a new file in the project directory, Count_i.h, and add it to the
project;

2 Implement this headerfile. With above functions and a con-
structor (and facultative a destructor) inherit from the class
public POA_Counter::Count\verb in the file Count_Skel.h. Include
a private member to contain the sum-value. (an Example of this file is
given below);

3 Create a new file in the project directory, Count_i.cpp and add it to
the project;

4 Implement this file with the required code as specified in the headerfile.
(An example of this file is given below.)

All files are included in the package, so you can either make your own implemen-
tation, or use the one supplied.

5.2.1 Example of Count i.h

#include <OB/CORBA.h>

#include "Count_skel.h"

#include "iostream.h"

// inherit from the Server class Count

class Count_i : public POA_Counter::Count

{ public:

// constructor

Count_i() ;

// destructor

~Count_i() ;

// get sum value

CORBA::Long sum() ;

// set sum value

void sum(CORBA::Long _itvar_sum) ;

// increment sum value

CORBA::Long increment() ;

private:

long The_Sum ;

};



12 Jan van Gemert

5.2.2 Example of Count i.cpp

#include "Count_i.h"

Count_i::Count_i(){

cout << "Created Count object" << endl ;

this->The_Sum = 0 ;

}

Count_i::~Count_i(){

cout << "Gone is the Count object" << endl ;

}

CORBA::Long Count_i::sum(){

// get value of sum

return this->The_Sum ;

}

void Count_i::sum(CORBA::Long value){

// set value of sum

this->The_Sum = value;

}

CORBA::Long Count_i::increment(){

// increment value of sum by 1

this->The_Sum ++ ;

return this->The_Sum ;

}



Section 5 Setting up the C++ Server 13

5.3 Implement the server

To setup the server we have to:

• Initialize the ORB;

• Find a reference to the RootPOA.
A portable object adapter (POA), provides the mechanism by which a server
process maps CORBA objects to language-specific implementation (servants);

• Create the servant object. The servant object is the implementation of the
object;

• Bind the servant object to a POA;

• Create and bind a name to the servant object;
The namingService lets you associate names with objects. The namingService
provides the IOR of an object;

• Activate the POA manager;

• Run the ORB.

See the next page, for an example of the server code.

Now, you should be able to build the server code. For running the example, re-
fer to section 7.



14 Jan van Gemert

5.3.1 Server.cpp code

#include <OB/CORBA.h>

#include <OB/CosNaming.h>

#include "Count_i.h"

#include <iostream.h>

int main( int argc, char **argv) {

// initialise the ORB

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// finding rootPoa

CORBA::Object_var poaObject ;

PortableServer::POA_var poa ;

poaObject = orb->resolve_initial_references("RootPOA");

poa = PortableServer::POA::_narrow(poaObject) ;

// Create CORBA object and use it to register

// servant object reference with the POA

Count_i servant ;

poa->activate_object(&servant) ;

// Declare naming Context

CosNaming::NamingContextExt_var rootCxtExt ;

CORBA::Object_var objVarNaming ;

// get root NameService

objVarNaming = orb->resolve_initial_references("NameService");

rootCxtExt = CosNaming::NamingContextExt::_narrow(objVarNaming) ;

// add the count name to the root NameService

CosNaming::Name_var name ;

name = rootCxtExt->to_name("The counter");

// get object reference

CORBA::Object_var c = poa->servant_to_reference(&servant) ;

// add object reference to counter

rootCxtExt->bind(name, c);

// use REbind if the nameservice is already initialized

// only use bind the first time you bind an object

// rootCxtExt->rebind(name, c);

// print IOR of object, just in case...

CORBA::String_var str = orb->object_to_string(c);

cout << str << "\n" << endl ;

cout << "Activating the POA manager.\n" << endl;

poa->the_POAManager()->activate() ;

orb->run() ;

// the ORB will be waiting for requests

return 0 ;

}



Section 6 Setting up the Java Client 15

6 Setting up the Java Client

To set up a CORBA Client the IDL file has to be compiled, in order to automaticly
generate Client Stubs. Also, the client has to be written.

6.1 Compile IDL file

Compilation of the IDL file with the IDL-compiler as provided with Orbacus (BIN\jidl.exe)
generates a number of files needed to successfully implement object transparency.

To Do:

1 Compile IDL file, on the command line with
jidl --no-skeletons Count.idl

no skeletons are required, cause we already have a C++ server;
2 A directory Counter is created with the following files:

_CountStub.java

Count.java

CountHelper.java

CountHolder.java

CountOperations.java.

6.2 Implement the client

To setup the client we have to:

• Initialize the ORB;

• Find a reference to the naming service;

• Create and use the object.

See the next page, for an example of the client code.

This client can be executed on any machine connected to the server. Just make
sure the settings are correct.

Now, you should be able to compile the client code. For running this example,
refer to section 7.



16 Jan van Gemert

6.2.1 Client.java code

// importing the used Orbacus packages

import org.omg.CORBA.* ;

import org.omg.CosNaming.* ;

import java.io.* ;

import Counter.* ; // importing the compiled idl-code

public class Client {

public static void setOrbacusProperties(java.util.Properties props)

throws java.io.FileNotFoundException, java.io.IOException {

String javaHome = System.getProperty("java.home");

File propFile = new File("orbacus.properties");

if(!propFile.exists())

propFile = new File(javaHome+File.separator+"lib"+File.separator

+ "orbacus.properties");

if(!propFile.exists())

System.out.println("Cannot find file: orbacus.properties");

else {

FileInputStream fis = new FileInputStream(propFile);

System.out.println("Loading "+propFile.getPath());

props.load(fis);

fis.close(); }

} // end setOrbacusProperties()

public static void main(String args[]) {

try{

System.out.println("running client..\n");

// load properties for Orbacus, and the location of the NamingService

java.util.Properties props = System.getProperties();

setOrbacusProperties(props) ;

System.out.println("init ORB.\n");

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

// connect to nameservice, get IOR of nameservice

System.out.println("\n connecting to nameservice...\n");

org.omg.CORBA.Object objNaming = orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objNaming);

// find object ’The counter’

NameComponent nc = new NameComponent("The counter","");

NameComponent path[] = {nc};

// create a counter object

Count counter = CountHelper.narrow(ncRef.resolve(path));

// Set sum to initial value of 0

System.out.println("Setting sum to 0");

counter.sum((int)0);

// Calculate Start time

long startTime = System.currentTimeMillis();

// Increment 1000 times

System.out.println("Incrementing");

for (int i = 0 ; i < 1000 ; i++ ) { counter.increment(); }

// Calculate stop time; print out statistics

long stopTime = System.currentTimeMillis();

System.out.println("Avg = "+ ((stopTime - startTime)/1000f) + " msecs");

System.out.println("Sum = " + counter.sum());

} catch (Exception e) { System.out.println("!Exception...: " + e); }

} // end main()

} // end class Client



Section 7 Running the example 17

7 Running the example

For running this example, we have to do several things:

• Run the naming service, on the port earlier specified (e.g. 8001);

• Run the Server;

• Run the client.

To Do:

1 Run nameserv.exe -OAport 8001 in the OBC_ROOT\BIN directory;
2 Execute the server project in MSDEV;
3 Compile the Client.java by typing javac Client.java. Be sure to

have set your CLASSPATH correctly;
4 Run the Client with java Client.

On the screen of the server something appears like:
init ORB.

Created Count object

connecting to namingservice..

IOR:01494f501600000049444c3a436f756e7465722f436f756e743a312e3000a

b3002000000000000004c000000010102501600000070632d6373797330392e77

696e732e7576612e6e6c00ba0424000000abacab31393535343531373937005f5

26f6f74504f410000cafebabe38f309950000000000000000010000007c000000

0170820001000000010000006c00000001000000010001000a000000020001000

30001000400010005000100060001000700010008000100090001000100010520

000100090101000c0000000001010001000100020001000300010004000100050

00100060001000700010008000100090001000100010520000100

On the screen of the Client something appears like:
running client..

Loading orbacus.properties

init ORB.

connecting to nameservice...

Setting sum to 0

Incrementing

Avg = 1.188 msecs

Sum = 1000



18 REFERENCES

References

[1] R Orfali and D Harkey. Client/Server Programming with Java and CORBA.
Wiley, second edition, 1998.





20 REFERENCES

ISIS reports

This report is in the series of ISIS technical reports. The series editor is Rein van
den Boomgaard (reports-isis@science.uva.nl). Within this series the following
titles are available:

References

[1] J.M. Geusebroek, A.W.M. Smeul-
ders, F. Cornelissen, and H. Geerts.
Segmentation of tissue architecture
by distance graph matching. Tech-
nical Report 16, Intelligent Sensory
Information Systems Group, Uni-
versity of Amsterdam, 2000.

[2] J.M. Geusebroek, F. Cornelissen,
A.W.M. Smeulders, and H. Geerts.
Robust autofocusing in microscopy.
Technical Report 17, Intelligent Sen-
sory Information Systems Group,
University of Amsterdam, 2000.

[3] J.M. Geusebroek, R. van den Boom-
gaard, A.W.M. Smeulders, and A.
Dev. Color and scale: The spatial
structure of color images. Technical
Report 18, Intelligent Sensory Infor-
mation Systems Group, University
of Amsterdam, 2000.

[4] J.M. Geusebroek. A physical basis
for color constancy. Technical Re-
port 19, Intelligent Sensory Informa-
tion Systems Group, University of
Amsterdam, 2000.

[5] J.M. Geusebroek, A.W.M. Smeul-
ders, and R. van den Boomgaard.

Color invariance. Technical Re-
port 20, Intelligent Sensory Informa-
tion Systems Group, University of
Amsterdam, 2000.

[6] L. Todoran and M. Worring. Seg-
mentation of color document im-
ages. Technical Report 21, Intel-
ligent Sensory Information Systems
Group, University of Amsterdam,
2000.

[7] A.W.M. Smeulders, M. Worring, S.
Santini, A. Gupta, and R. Jain.
Content based image retrieval at the
end of the early years. Technical Re-
port 22, Intelligent Sensory Informa-
tion Systems Group, University of
Amsterdam, 2000.

[8] C.B.J. Bergsma, G.J. Streekstra,
A.W.M. Smeulders, and E.M.M.
Manders. Velocity estimation of
spots in 3d confocal image sequences
of living cells. Technical Report 23,
Intelligent Sensory Information Sys-
tems Group, University of Amster-
dam, 2000.

[9] J.C. van Gemert. Practical tuto-
rial for using corba. Technical Re-
port 24, Intelligent Sensory Informa-
tion Systems Group, University of
Amsterdam, 2000.

You may order copies of the ISIS technical reports from the corresponding author
or the series editor. Most of the reports can also be found on the web pages of the
ISIS group (http://www.science.uva.nl/research/isis).


