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ABSTRACT

Current work on lane detection relies on large manually
annotated datasets. We reduce the dependency on annotations
by leveraging massive cheaply available unlabelled data. We
propose a novel loss function exploiting geometric knowledge
of lanes in Hough space, where a lane can be identified as a
local maximum. By splitting lanes into separate channels, we
can localize each lane via simple global max-pooling. The lo-
cation of the maximum encodes the layout of a lane, while the
intensity indicates the the probability of a lane being present.
Maximizing the log-probability of the maximal bins helps
neural networks find lanes without labels. On the CULane
and TuSimple datasets, we show that the proposed Hough
Transform loss improves performance significantly by learn-
ing from large amounts of unlabelled images.

Index Terms— Lane detection, Hough Transform, semi-
supervised learning

1. INTRODUCTION

One key component of self-driving cars is the lane-keeping
assist [1, 2], which actively keeps the vehicles in the marked
lanes. The lane-keeping assist relies on accurate lane detec-
tion in the wild, which is a highly challenging task because of
illumination and appearance variations, traffic flow, and new
unseen driving scenarios [3].

State-of-the-art deep learning methods for lane detection
perform remarkably well on benchmark datasets [3, 4, 5, 6].
However, they rely on deep networks powered by massive
amounts of labelled data. Although the data itself can be
obtained at relatively low cost, it’s their annotations that are
laborious and thus expensive [7]. Moreover, the existing cu-
rated datasets do not cover all the possible driving scenarios
that could be encountered in real-world situations. Being able
to leverage additional realistic unlabelled training data would
allow for a more robust lane detection system.

To make effective use of additional unlabelled data, we
propose a semi-supervised Hough Transform-based loss
which exploits geometric prior knowledge of lanes in the
Hough space [8, 9].

Lanes are lines, thus we propose a semi-supervised Hough
Transform loss that parameterizes lines in Hough space, by
mapping them to individual bins represented by an offset and

an angle. Inspired by the work in [9], we rely on a trainable
Hough Transform and Inverse Hough Transform (HT -IHT )
module embedded into a neural network to learn Hough rep-
resentations for lane detection. We subsequently extend its
use for semi-supervised training, by noting that the presence
of lanes leads to Hough bins with maximal votes. Maximizing
the log-probability of these Hough bins requires no human su-
pervision, enabling the network to detect lanes in unlabelled
images.

This paper makes the following contributions: (1) we
present an annotation-efficient approach for lane detection in
a semi-supervised way; (2) to this end, we propose a novel
loss function to exploit prior geometric knowledge of lanes
in Hough space; (3) we experimentally show improved per-
formance on the CULane [10] and TuSimple [11] datasets,
given large amounts of unlabelled data.

2. RELATED WORK

Lane detection methods. Classic work on lane detection is
based on knowledge-based manually designed geometric fea-
tures. Examples include grouping image gradients [12, 13,
14, 15], or line detection techniques through Hough Trans-
form [16, 17, 18, 19] relying on local edges extracted us-
ing image gradients. A main drawback of such knowledge-
based methods is their inability to handle complex scenarios
where traffic flow and illumination conditions change dramat-
ically. Here, we address this by learning appearance variation
of lanes in a deep network, while still relying on the Hough
Transform as prior knowledge for line detection [8, 9].

Recently, deep neural networks have been employed for
efficient lane detection, replacing well-engineered features.
Typically, the learning-based methods treat the lane detection
as a semantic segmentation task and learn semantic features
from large datasets [1, 20, 21, 22, 23, 24]. In contrast to these
works we improve the prediction accuracy by leveraging mas-
sive unlabelled data through semi-supervised learning.

Semi-supervised methods. Semi-supervised methods solve
the learning task by relying on both labelled and unlabelled
data [25], and are divided into: inductive approaches con-
structing a classifier over labelled and unlabelled data [26,
27, 28], and transductive approaches propagating where the
task information is shared between data points [29, 30, 31].



Fig. 1: Overview of our model. We have an encoder, a de-
coder, and a fully connected layer inspired by the ERFNet
[4, 5] with a trainable Hough-Transform (HT) and Inverse
Hough-Transform (IHT) module [9], on top of which we build
ourHT -based semi-supervised loss maximizing the probabil-
ity of the maximal bins in Hough space, where Llane, Lseg ,
and LHT are the optimized loss functions.

A self-driving car has no access to the test statistics, therefore
we consider the inductive case.

3. SEMI-SUPERVISED LANE DETECTION

Given an input image, our model outputs a lane probability
and a semantic segmentation mask of lane pixels. We use as
a starting point the popular ERFNet [5]1. The ERFNet con-
tains a convolutional encoder for deep feature extraction, a
convolutional decoder for lane predictions, and a fully con-
nected layer for predicting the probability of a lane. We insert
a trainable Hough Transform and Inverse Hough Transform
(HT-IHT) block [9] between the encoder and decoder, and
utilize the Hough representations of lanes for semi-supervised
learning. Fig. 1 depicts the overall structure of our model.

3.1. Hough Transform line priors

We encode an input image to a semantic feature representa-
tions F which is mapped to the Hough space, through a train-
able Hough Transform module [9]. The Hough transformHT
maps a feature map F of size [H×W ] to an [Nρ×Nθ] Hough

1We rely on the implementation in [4]: https://github.com/
cardwing/Codes-for-Lane-Detection

histogram, where Nρ and Nθ are the number of discrete off-
sets and angles. Pixels along lines in F are mapped into dis-
crete pairs of offsets ρ and angles θ. Specifically, given a line
direction indexed by i with its corresponding pixels (xi, yi),
they all vote in the Hough space for the closest bin (ρ, θ):

HT (ρ, θ) =
∑
i

F (xi, yi), (1)

where the mapping is given by ρ = xi cos θ + yi sin θ.
We perform a set of 1D convolutions in Hough space over

the offset direction and apply an Inverse Hough Transform
IHT module mapping the [Nρ ×Nθ] Hough histogram back
to an [H ×W ] feature map [9]. The IHT maps bins (ρ, θ) to
pixels (xi, yi) by averaging all the HT bins where a certain
pixel has voted:

IHT (xi, yi) =
1

Nθ

∑
θ

HT (xi cos θ + yi sin θ, θ). (2)

We concatenate the features F with the IHT features, fol-
lowed by a convolutional layer merging these two branches.
We set H = 26, W = 122, Nρ = 125 and Nθ = 60.

3.2. Hough Transform loss for unlabelled data

A lane is composed of a set of line segments with a certain
width, that share the same orientation. For unlabelled im-
ages we rely on the observation that lanes correspond to local
maxima in the Hough space. Since the ERFNet [4, 5] predicts
a single lane in each output channel, the mapping to Hough
space recovers the lanes as global maxima in their respective
channels. Having a large global maximum indicates that pix-
els along that line direction are well aligned, thus falling in the
same bin. Based on this observation, we provide supervision
to unlabelled inputs by maximizing the log-probability of the
maximum bin (ρ̂, θ̂) in Hough domain. To give theHT bins a
probabilistic interpretation, we rescale the HT maps between
[0, 1] for each angle direction independently by applying an
L1 normalization over the offset dimension:

LHT = − log

(
HT (ρ̂, θ̂)∑Nρ

k=0HT (ρk, θ̂)

)
, (3)

where (ρ̂, θ̂) is the positions of the global maximum in Hough
space, calculated from the predicted segmentation masks.

3.3. Training with both labelled and unlabelled data

We train our model with both labelled and unlabelled data.
As in [3, 4] the network predicts for each channel a mask
used in a cross entropy loss Lseg over labelled data for pre-
dicting the semantic segmentation. Additionally, the network
predicts lane probabilities p which are used in a binary cross
entropy loss over labelled data Llane for optimizing for the ex-
istence of a lane. We also optimize the proposed LHT , only

https://github.com/cardwing/Codes-for-Lane-Detection
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when the predicted probability p of a lane is larger than a
threshold τ ; otherwise, we skip the corresponding lane. We
set τ = 0.9. The total loss is the combination of the three
losses:

Ltotal = Lseg + αLlane + βLHT (p, τ), (4)

where α and β are used to balance different loss terms.

4. EXPERIMENTAL ANALYSIS

Datasets. We evaluate our models on the TuSimple dataset
[11] and CULane dataset [10]. All video clips in TuSimple
dataset are taken on highways. There are 3,626 frames for
training and 2,782 frames for testing. The CULane dataset
contains images from 9 different driving scenarios, such as
lanes in shadow and at night with poor lighting conditions.
There are 88,880 images for training, 9,675 for validation,
and 34,680 images for testing. We follow the official evalua-
tion protocol to measure accuracy on the TuSimple, and use
F1 measure on the CULane dataset.
Baselines. We compare with the baseline ERFNet [5], and
with the ERFNet-HT using the HT-IHT block [9]. Both
models are trained from scratch with labelled data only. For
semi-supervised learning, we consider the ERFNet-pseudo
pseudo-labeling baseline, and our proposed ERFNet-HT-
LHT . The ERFNet-pseudo baseline first learns to predict
lanes on annotated data only, and subsequently uses the
predicted pseudo-labels to annotate unlabelled data, and
then retrains the model on all data. ERFNet-pseudo treats
the prediction with a confidence score larger than 0.9 as
”ground truth” and optimize the Lseg with pseudo-labels.
ERFNet-HT-LHT uses our proposed LHT loss. ERFNet-HT-
pseudo+LHT combines both pseudo-labelling and our pro-
posed LHT loss. Additionally, we also compare with s4GAN
[32], a state-of-the-art semi-supervised learning model for
semantic segmentation.
Implementation details. We follow the implementation and
hyper-parameters in [4]. We use SGD [33] to train ERFNet
and ERFNet-HT for 24 epochs. ERFNet-pseudo, ERFNet-
HT-LHT and ERFNet-HT-pseudo+LHT are trained with ex-
tra unlabelled data for another 12 epochs. The initial learning
rate is 1× 10−2, and is decreased by a factor of (1− t/T )0.9,
where t is the current training epoch and T is the total num-
ber of epochs, as in [4]. The batch size is set to be 16. For
our Ltotal, we set the weights α = 0.1 and β = 0.01 to ensure
that all loss terms have similar magnitudes. Following [4], we
multiply the Lseg for the background class by 0.4 to counter
the large number of background pixels. For s4GAN [32], we
directly use the official implementation 2.
Results analysis. To evaluate the effectiveness of our LHT
in utilizing unlabelled data, we randomly split the CULane

2https://github.com/sud0301/semisup-semseg
3For cross-road, we show only the number of false-positives, as in [10].

Table 1: Performance on TuSimple and CULane datasets
with various amounts of labelled and unlabelled data.
The first column indicates the proportion of labelled data
for training. The remaining data is treated as unlabelled for
semi-supervised learning. ERFNet-HT-LHT and ERFNet-
HT-pseudo+LHT show performance improvements on both
datasets. When the number of labelled samples decreases, the
advantage of ERFNet-HT-LHT is more pronounced.

Labels s4GAN
[32] ERFNet models

Baseline
[5]

HT
[9] pseudo

HT-
LHT

HT-
pseudo
+ LHT

Accuracy (%) on the TuSimple dataset
100% - 93.71 93.71 - - -
50% 88.82 92.97 93.47 93.37 93.63 93.70
10% 86.25 82.97 77.71 92.12 92.98 93.05

F1 scores on the CULane dataset
100% - 69.86 70.52 - - -
50% - 69.39 68.59 69.68 70.75 70.41
10% - 60.99 61.46 65.56 64.04 66.10
5% - 56.61 57.78 61.99 62.32 63.67
1% - 32.99 32.48 51.38 55.10 52.80

training data into {100/0, 50/50, 10/90, 5/95, 1/99} sets,
where the first digit indicates the proportion of labelled data,
while the second one is the proportion of unlabelled data. The
TuSimple dataset is split into {100/0, 50/50, 10/90} sets, as
it contains only 3,626 images. We use the same splits for all
models. We report accuracy on TuSimple and F1-measure on
the CULane dataset.

Table 1 compares all models on various training sets.
ERFNet-HT-pseudo+LHT achieves the best performance on
both 50% and 10% subsets of TuSimple dataset. The im-
provement over the supervised baseline is more than 15%
on the 10% subset. All semi-supervised ERFNet models
improve accuracy, indicating the potential of exploiting mas-
sive unlabelled data. Pseudo-labeling allows learning from
high confidence predictions explicitly, while LHT optimizes
line feature representations in Hough space in an implicit
way. However, s4GAN [32] shows inferior performance
to other models, due to the fact that s4GAN is not specif-
ically optimized for lane detection, where image content
differs substantially from its origin usage. In general, semi-
supervised models perform similar on the TuSimple dataset
as it only includes the highway scenario. On the CULane
dataset, ERFNet-HT-pseudo+LHT consistently outperforms
ERFNet-pseudo, validating the usefulness of the Hough
priors (LHT ) in exploiting lane representations in the semi-
supervised setting. The s4GAN is lacking since we are unable
to produce reliable prediction on this dataset.

We observe that ERFNet-HT-LHT improves over all other



Fig. 2: Visualizations of predicted lanes on the CULane dataset. Only 10% annotated data is used for training. ERFNet-
HT-pseudo+LHT performs better on challenging samples and better localizes lane boundaries. The inference speed of the
ERFNet-HT is around 13 frames per second on a NVIDIA GTX1080Ti GPU.

Table 2: F1 scores for different scenarios, with 1% labelled
data. ERFNet-HT-LHT outperforms other models in most
scenarios, indicating that the LHT loss exploits useful geo-
metric knowledge of lanes when adding unlabelled samples.

ERFNet models Baseline
[5]

HT
[9] pseudo

HT-
LHT

HT-
pseudo
+LHT

Normal 49.24 51.25 69.72 75.06 71.83
Crowded 31.74 31.49 49.53 52.52 50.97
Night 22.36 21.67 45.27 50.77 45.42
No line 18.78 17.54 28.05 32.02 30.12
Shadow 24.71 17.69 36.63 38.50 35.97
Arrow 39.39 38.22 57.28 63.33 59.18
Dazzle 26.25 23.76 40.29 40.28 39.42
Curve 33.62 34.53 46.56 50.52 46.42
Cross 3 6949 8711 3355 5292 3676

Avg F1 33.00 32.48 51.38 55.10 52.80

models on the 1% subset by a large margin. On the 1% sub-
set, there is not sufficient labelled data (less than 1K train-
ing images), and therefore the ”ground truth” produced by
pseudo-labelling in ERFNet-pseudo is noisy and imperfect.
In this case, learning from pseudo-labelled data explicitly can
be harmful, while the LHT avoids this problem by exploit-
ing useful prior geometric knowledge about lines, in Hough
space. In comparison, on the 50% subset, the differences
among all models are marginal, when ample training data is
available. The experiment demonstrates the potential of our
LHT loss for data-efficient learning in Hough space in a semi-
supervised setting.

We compare the performance of all ERFNet models in
various driving scenarios in Table 2. ERFNet-HT-LHT shows
considerable improvement over other models in most scenar-
ios in Table 2, and the advantage accentuates (up to 5%),
where the amount of labelled data is decreased to 1% only.

The superiority of ERFNet-HT-LHT demonstrates the capa-
bility of LHT to exploit geometric lanes information from un-
labelled data. We also notice that the ”No line”, ”Shadow”
and ”Dazzle” scenarios are more challenging for all methods,
compared with the other scenarios.

We visualize line predictions from different models in
Fig. 2. Our ERFNet-HT-pseudo+LHT better localizes lanes,
especially when a lane extends away from the image bound-
ary, as in the first two examples. As shown in the second
example, due to occlusion, ERFNet and ERFNet-HT miss the
two middle lanes, while ERFNet-HT-LHT only predicts one.
In the third example there is an annotation inconsistency,
where the opposite lane at the image border is not anno-
tated. Overall, ERFNet-HT-pseudo+LHT produces sharper
and more precise predictions, in both simple and challenging
scenarios.

5. LIMITATIONS AND CONCLUSIONS

We propose semi-supervised lane detection by exploiting
global line priors in Hough space through the use of an addi-
tional loss. We can incorporate unlabelled data during train-
ing thus overcoming the need for expensive and error-prone
annotations. Currently our method assumes a single lane in
each channel, and therefore we can optimize for the global
maximum in Hough space. This assumption may not always
hold and an extension to multiple local maxima is future
research. However, our proposed Hough loss adds valuable
prior geometric knowledge about lanes when annotations are
too scarce even for pseudo-labelling based methods. We ex-
perimentally demonstrate the added value of our proposed
loss on TuSimple and CULane datasets for limited annotated
data.
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