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ABSTRACT
The goal of this paper is event detection and recounting
using a representation of concept detector scores. Differ-
ent from existing work, which encodes videos by averaging
concept scores over all frames, we propose to encode videos
using fragments that are discriminatively learned per event.
Our bag-of-fragments split a video into semantically coher-
ent fragment proposals. From training video proposals we
show how to select the most discriminative fragment for an
event. An encoding of a video is in turn generated by match-
ing and pooling these discriminative fragments to the frag-
ment proposals of the video. The bag-of-fragments forms an
effective encoding for event detection and is able to provide a
precise temporally localized event recounting. Furthermore,
we show how bag-of-fragments can be extended to deal with
irrelevant concepts in the event recounting. Experiments
on challenging web videos show that i) our modest num-
ber of fragment proposals give a high sub-event recall, ii)
bag-of-fragments is complementary to global averaging and
provides better event detection, iii) bag-of-fragments with
concept filtering yields a desirable event recounting. We
conclude that fragments matter for video event detection
and recounting.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Video analy-
sis

Keywords
Event detection; event recounting; bag-of-fragments; dis-
criminative fragments

1. INTRODUCTION
In this work, we focus on detecting events in videos and

recounting why an event is relevant by providing the most
relevant semantic concepts. This problem is typically ad-
dressed by globally aggregating concept detector scores over
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(a) Attempting a bike trick.

(b) Non-motorized vehicle repair.

(c) Horse riding competition.
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Figure 1: We propose bag-of-fragments, a video represen-
tation that finds and encodes the most discriminative frag-
ments for event detection and recounting. The figure shows
the middle frame of five fragments for three events, ordered
by level of discrimination. The most discriminative frag-
ments are exemplary for the event and will be included in
the bag-of-fragments, while the more ambiguous and less
discriminative fragments are ignored.

the whole video [15, 16, 18]. Global aggregation of detector
scores poses two problems to event detection and recount-
ing. First, event videos are a complex interplay of various
sub-events with a varying degree of relevance [1] which are
blended into a single representation. Second, in a global ag-
gregation, the event recounting is unable to state where in
the video relevant concepts occur. Similar to related work,
we compute concepts scores for frames in a video as the
semantic representation, but we aim to perform event de-
tection and recounting on the level of video fragments.

We propose a pipeline to encode a video using fragments
that form discriminative sub-events for a complex event,
which we call bag-of-fragments. For such an encoding, we
first need to generate fragments from a video. As the search
space of all possible fragments in a video is vast, we propose
a hierarchical clustering algorithm to yield a concise set of
semantically coherent fragment proposals. The algorithm,
inspired by object proposals in images [10, 24], iteratively
merges only the most informative fragments. As a result,
fragments are generated across all temporal locations and
scales of a video, without exhaustively preserving the full
search space of fragments.
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Figure 2: The pipeline of our bag-of-fragments for event detection and recounting.

Based on the fragments proposals of a set of training
videos, we select the most discriminative ones of an event.
Fig. 1 highlights a number of fragments with various lev-
els of discrimination according to our selection. The se-
lected discriminative fragments form the basis of our bag-
of-fragments encoding. The discriminative fragments of an
event are matched and pooled over the fragment proposals
of a single video, resulting in an effective encoding for event
detection. What is more, as the encoding is performed per
fragment, information regarding the most informative frag-
ments of a video is retained. Event recounting can therefore
be performed by providing the most relevant concepts within
the most informative fragments of a video. Lastly, we show
how co-occurrence statistics from social tagged images can
aid our event recounting by filtering irrelevant concepts.

Experimental evaluation on challenging web videos from
the THUMOS [12] and TRECVID benchmarks [20] high-
lights the effectiveness of our bag-of-fragments for event de-
tection and recounting. First, we show that our fragment
proposals are able to retain the most informative fragments
at a fraction of full search space of fragments. Second, we
show the effectiveness and complementary nature of our bag-
of-fragments encoding for event detection compared to a
global aggregation of concept scores. Third, we show qual-
itatively that our bag-of-fragments with concept filtering
yields desirable event recounting results.

2. RELATED WORK
Video encodings for event and action detection typically

use low-level features that describe the spatio-temporal sig-
nal [7, 14, 26]. While these features are well-suited for recog-
nition, they lack any semantic interpretation which compli-
cates recounting why a video is recognized. A solution is
offered by Videostory [8], that learns a representation to
jointly embeds user tags with video features. The features
of a new video can be mapped to this joint feature-tag space
and the embedded tags allow recounting the detection ev-
idence. Instead of user tags, which may be noisy, we use
high-quality concept classifiers to allow recounting. We will
experimentally compare against Videostory [8].

Instead of low-level features, recent video encodings ap-
ply a bank of concept classifiers to individual frames and
average the frame-based responses for forming a video rep-
resentation [15, 16, 18]. Such a representation has shown
excellent accuracy for event recognition [16, 18] with the
added benefit that the concept classification scores provide
valuable clues for recounting why the whole video is rele-

vant [8, 15]. Where these works recount a complete video,
we instead recount on video fragments, which offer a more
precise fine-grained temporal granularity. Rather than av-
eraging concept scores over the whole video, we aggregate
scores on coherent video fragments and use them for event
detection and recounting.

Although a complex event consists of various sub-events,
it can be recognized by a human after seeing only a few
well-chosen discriminative video fragments [1]. In automatic
event recognition, fragments have been used as latent vari-
ables in an SVM optimization [23, 25]. Since latent-SVM
is computationally expensive, only a limited number of la-
tent fragments can be used. Instead, our method can ex-
ploit a larger set of possible discriminative fragments, which
increases the likelihood of finding the most discriminative
ones. We draw inspiration from mid-level parts as used in
image classification [5, 13]; we automatically discover dis-
criminative video fragments and use them to encode full
videos as a bag of their best matching fragments.

To perform a bag-of-fragments encoding of a video, we
need to first split a video into coherent fragments that are
likely to contain a discriminative sub-event. Instead of a
brute-force sliding window [19] or detecting shot bound-
aries [27] we base our fragments on proposal methods [10,
11, 24]. We propose a fast clustering method to generate
a small set of fragment proposals with a high sub-event re-
call. We will experimentally evaluate our proposals against
sliding windows and shot boundary detection.

For event recounting, the highest scoring concept scores
in a video are typically used as evidence [4, 15]. Because the
highest score is sensitive to noise, Sun et al. [22] propose a
manually defined white-list of acceptable concepts per event.
We extend this work by replacing the manual white-list with
an automatically found list based on co-occurrence statistics
using a high-level event description and tagged images, as
recently proposed for zero-shot image classification [17]. Au-
tomatic white-listing eliminates any manual effort, which is
labor intensive and may be prone to errors or subjectivity.

3. BAG-OF-FRAGMENTS
The key contribution of this paper is an encoding of dis-

criminative fragments, which we call bag-of-fragments, for
event detection and recounting. The pipeline consists of four
major stages. The first stage generates fragment proposals
by splitting a video into a set of fragments. The second
stage performs fragment selection, by identifying the most
discriminative fragment proposals for provided event exam-



Figure 3: A video of Making a sandwich, where the fragment proposals are hierarchically merged using the combined similarity.
Note how semantically more correlated proposals of the video are merged earlier (indicated by the colors of the bars).

ples. In the third stage we utilize the discriminative frag-
ments to generate a bag-of-fragments encoding of a video.
The encoding forms the basis for both event detection and
recounting. The fourth component, concept filtering, is in-
troduced to generate a relevant event recounting. We sum-
marize the pipeline in Fig. 2 and detail the stages next.

3.1 Fragment proposals
To generate a set of fragment proposals for a video, we

employ a hierarchical clustering algorithm to cluster frag-
ments into proposals. The main idea behind the hierarchical
clustering is to iteratively merge only the most informative
fragments, rather than considering all fragment merges. For
the clustering, we employ two similarity measures, a seman-
tic and syntactic similarity. The two similarity measures
aim to merge the most semantically similar fragments (se-
mantic similarity), while maintaining a balanced cluster tree
(syntactic similarity).

Semantic fragment similarity. Let fi ∈ Rd denote the
semantic representation of fragment i containing the scores
of d concepts. The semantic similarity between two frag-
ments i and j is then estimated as:

Sc(fi, fj) =

d∑
k=1

|fi(k)− fj(k)|, (1)

where fi(k) denotes the kth concept of fi. Using this equa-
tion as a similarity measure, the two consecutive fragments
to be merged at each iteration are the fragments for which
Eq. 1 is minimized. Such a clustering algorithm combines
the semantically most similar fragments at each iteration,
generating semantically coherent fragments. Updating frag-
ments i and j into fragment t can be done efficiently, as we
apply average pooling of the concepts within a fragment:

ft(k) =
r(fi)·fi(k)+r(fj)·fj(k)

r(fi)+r(fj)
, k = {1, .., d},

r(ft) = r(fi) + r(fj),
(2)

where r(fi) denotes the number of frames in fragment i.
Syntactic fragment similarity. To prevent that a sin-

gle video fragment gobbles up small fragments one by one,
we add another similarity measure that enforces a more bal-
anced cluster tree:

Ss(fi, fj) = r(fi) + r(fj). (3)

The idea behind the similarity measure of Eq. 3 is to penalize
large fragments from merging in favor of smaller fragments.

Combined similarity. A combination of semantic and
syntactic similarities is given by a linear combination of the

terms,

S(fi, fj) = Sc(fi, fj) + α · Ss(fi, fj). (4)

As the ranges of the two similarity measures are different,
the variable α is set to the sum of the concept scores di-
vided by the sum of the sizes for all consecutive fragments
at each iteration. This makes both similarity measures of
equal importance.

The hierarchical clustering with the combined similarity
measure results in a concise set of fragment proposals, ide-
ally retaining those fragment proposals that are semantically
coherent. An example of the fragment proposals generated
for a video with eleven sampled frames is shown in Fig. 3.

3.2 Fragment selection
From the set of fragment proposals P generated for a set of

event training videos, we aim to select the most discrimina-
tive ones. We utilize the training videos in two stages. In the
first stage, the training videos are used to select which frag-
ment proposals are most discriminative for a given event. In
the second stage, a bag-of-fragments encoding is generated
for each training and test video based on the discriminative
fragments. The encodings are then used to train an event
classifier with an off-the-shelf SVM classifier. During train-
ing, we are given N training videos X = [x1, ..,xN ], where
xi ∈ Rsi×d denotes the ith training video containing si frag-
ment proposals. Furthermore, video labels are provided as
Y = [y1, .., yN ], where yi ∈ {−1,+1} states whether training
video i contains the event. We outline a three step procedure
for selecting the discriminative fragments.

1) Generating event fragment classifiers. We first
compute an event classifier for each fragment proposal of the
positive event training videos. As negative examples we sim-
ply use the fragment proposals of negative videos. Rather
than explicitly training an SVM classifier for each (positive)
proposal separately, we prefer a faster alternative using dis-
criminative decorrelation [9]. We assume that the maximum
likelihood estimate of the covariance matrix Σ used in linear
discriminant analysis is the sample covariance over all the
fragments in the training set X, ignoring class labels. As a
result the linear discriminant analysis parameters µ and Σ
only need to be computed once over the whole training set.
Then, a classifier wij for xij , proposal j of training video i,
is efficiently computed as:

wij = Σ−1(xij − µ). (5)

Eq. 5 results in a classifier for each fragment proposal, ready
to be evaluated on all N training videos.

2) Matching fragment classifiers for video pooling.
For each fragment proposal p ∈ P , we perform a matching to



all the N training videos by computing the dot-product be-
tween the event fragment classifier of p and the fragment pro-
posals of the training video. After the matching we perform
a max-pooling operation, which simply retains the maxi-
mum dot-product value of the matching for the entire video.
The pooling value expresses how much the training video is
related to proposal p. By ranking the training videos accord-
ing to their max-pooled values and comparing the ranking
to labels Y , we are able to determine how well the fragment
proposal is able to distinguish positive from negative videos
containing a specific event. We note that each fragment pro-
posal has a bias in the matching and pooling, namely to the
video from which it has originally been retrieved. However,
as the bias is equal among all the proposals, it does not lead
to overfitting towards specific fragment proposals.

3) Selecting discriminative classifiers. From the set
of all fragment proposals P , we aim to select a discrimi-
native subset F ⊂ P . This is performed by selecting the
fragment proposals with the best ranking scores. To avoid
inclusion of visually similar and therefore redundant propos-
als, we enforce a constraint on each fragment proposal. The
event fragment classifier of each fragment proposal should
have a cosine distance of at least 0.5 with respect to the
better performing proposals, otherwise, it is removed. Such
a constraint results in a diverse set of discriminative frag-
ments [13].

3.3 Video encoding
Now that we have the discriminative fragments for the

event, we utilize them to perform a fragment encoding for
both the training and test videos. The encoding is performed
with the same matching and pooling operation as in step 2
above. Let f denote the number of selected discriminative
fragments, i.e. f = |F |, then the fragment encoding results
in an f -dimensional feature vector for a video. The number
of discriminative fragments f is a hyperparameter. In the
experiments, we evaluate the influence of the number of se-
lected discriminative fragments per event on the detection
performance. The encoding is performed over all training
and test videos.

3.4 Concept filtering
Apart from a video representation for event detection, our

encoding is also able to perform event recounting. To that
end, the fragment proposals of the test video that have re-
sulted in the highest max-pooled values are selected as the
most informative fragments. For each of these informative
fragments we select the concepts that have contributed most
to the corresponding dot-product of the max-pooled value
as the informative concepts. For each test video this results
in a list of informative fragments and their corresponding
concepts.

As indicated by Sun et al. [22], directly selecting the top
scoring concepts as the recounting for each selected fragment
leads to noisy results, mostly because of concept detector
noise. The noise results in incorrect or irrelevant concepts in
the recounting, as they were erroneously given a high score.
Rather than manually determining which concepts are rele-
vant for an event [22], we propose to automatically filter con-
cepts. More specifically, we use co-occurrence statistics [17]
to compare the concepts used in our representation to a tex-
tual summary of the event.

As shown in Fig. 2, the concept filtering takes as input
a textual summary of the event and a collection of social-
tagged images from which we compute the co-occurrence
statistics. Each concept in the semantic representation is
compared to each concept in the textual event summary
using a co-occurrence score. Intuitively, the co-occurrence
statistic states that two concepts are related if they occur
together relatively often as tags in the same images. As
such, concepts with high co-occurrence scores are deemed
relevant with respect to the event.

For the social tag dataset, we have retrieved the available
subset of 4,770,156 Flickr images in ImageNet [3]. For the set
of Flickr images, we have in turn collected the corresponding
meta-data, in the form of 14,088,893 unique tags. Roughly
95% of the images contain multiple tags, which make the co-
occurrence practical. We have made the meta-data of the
Flickr images available online1.

Let Z denote the set of concepts from the textual sum-
mary of the event. Then for a concept i in the semantic
representation, we compute the co-occurrence score to all
concepts in Z using the Dice coefficient [17] and keep the
maximum score:

Ci = max
z∈Z

[
2

ciz
ci + cz

]
, (6)

where ci and denotes the number of images with tag i and
ciz the number of images with both tag i and z.

The final score Ci is used here as the relevancy score of
concept i with respect to the event. For the concept filter-
ing, we select the concepts with the highest scores according
to Eq. 6, where the number of concepts to retain is a pa-
rameter. Finally, the event recounting is altered by only
recounting the most informative concepts that are also rel-
evant according to the concept filtering. This makes for an
event recounting that is less sensitive to the noise in concept
detectors and more relevant for the event, as we will show
in the experiments.

4. EXPERIMENTAL SETUP

4.1 Experiments

4.1.1 Fragment proposal quality
In the first experiment, we evaluate the fragments gen-

erated by our fragment proposal algorithm. This evalua-
tion is performed on the THUMOS’14 temporal localization
dataset [12]. The dataset consists of 1010 validation videos,
each containing several semantically different action-related
events at different time intervals. The annotations of the
events and their time intervals are provided.

Evaluation. The quality of the fragment proposals is
evaluated by examining the recall ratio. For each video, we
compare our fragment proposals to the ground truth frag-
ments using the intersection-over-union [6]. Sufficient over-
lap is achieved if the maximum intersection-over-union is at
least 0.5. The ratio of the annotated fragments with suffi-
cient overlap forms the final score.

Baselines. We compare our fragment proposals to two
baseline strategies. The first is a shot boundary detection
algorithm, where a video is split into a number of non-
overlapping fragments based on detected shots within the

1
https://staff.fnwi.uva.nl/s.h.cappallo/flickrnet.html



video. More specifically, we employ a graph partition model,
as proposed in [27]. Here, opponent color histograms are
used to represent frames and the continuity signal is thresh-
olded to get shot detections [27]. The second baseline is a
sliding window procedure, where a video is split into a num-
ber of fragments by sliding a temporal chunk across a video
at all temporal positions and scales.

4.1.2 Event detection
In the second experiment, we investigate the potential of

the bag-of-fragments in the context of event detection. We
rely on the TRECVID MED 2014 dataset [20]. This dataset
consists of 20 events, where 100 positive videos are provided
per event. A general set of 4991 background videos is pro-
vided as negative set.

Evaluation. We focus on two evaluations. First, we
examine the effect of the number of selected discrimina-
tive fragments in our encoding and compare it to a bag-
of-fragment encoding using all fragment proposals, instead
of the discriminative fragments. Second, we compare our
bag-of-fragments to baseline encodings and we evaluate their
fusion. The performance of a single event is measured using
the Average Precision (AP). At test time, roughly 24,000
videos are given for an event, where the goal is to rank the
videos displaying the actual event higher than the negative
videos. The quality measure on the whole dataset is in turn
measured by the mean Average Precision (mAP) across all
the events.

Methods. For the second evaluation, a total of four dif-
ferent methods are applied to the TRECVID MED 2014
dataset. The first is a global model, where the concept scores
of a video are averaged over the frames [15, 16, 18]. The sec-
ond is the state-of-the-art VideoStory, which uses a global
model as the visual representation [8]. In addition to these
two baselines we evaluate our bag-of-fragments. Finally, we
consider a fusion to show the complementary power of bag-
of-fragments. For each of the individual methods, the cor-
responding representations are `2 normalized and fed to a
linear SVM [2]. The SVM outputs are in turn converted to
probability values using Platt scaling [21] and the ranking
of the videos is performed on these probability values. The
fusion is simply performed by computing the product of the
probability values for each video.

4.1.3 Event recounting
The third experiment focuses on the recounting using the

same dataset as used for event detection. We use the model
trained for event detection to recount the semantic evidence
of a test video, in combination with our concept filtering.
We use the textual summary provided by TRECVID for
each event to compute the co-occurrence scores.

Evaluation. The evaluation of the event recounting is
completed on a qualitative basis. First, we examine the
quality of the co-occurrence method for concept selection
for 25 concepts in the semantic representation, compared to
all 20 events. Second, we show the event recounting results
for three test videos from different events, both with and
without concept selection.

4.2 Implementation details
Semantic representation. We apply convolutional neu-

ral networks to provide the frame-based semantic represen-
tations. More specifically, we employ an in-house implemen-
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Figure 4: Achieved recall scores as a function of the number
of video fragments. Our fragment proposals yield improved
recall scores using a fraction of the fragments.

tation of [28] trained on 15,293 ImageNet [3] concepts. The
frames in each video are sampled once every second. For
each frame, we extract the features from the third fully con-
nected layer, the layer before the soft-max, such that the
frame is represented by a 15,293-dimensional semantic vec-
tor. The aggregation of the frames in a single fragment is
performed by averaging the scores per concept [16, 18].

Bag-of-Fragments. For our discriminative fragments,
we first extract all the fragment proposals from the positive
videos, apply `2 normalization on each proposal, and com-
pute the efficient event fragment classifier. All the event
fragments classifiers are max-pooled over the train videos
and the top discriminative fragments are selected. For the
discriminative fragment selection, the Average Precision score
is used to evaluate the ranking of the max-pooled values per
fragment proposal.

5. EXPERIMENTAL RESULTS

5.1 Fragment proposal quality
An overview of the recall as a function of the number of

fragments is shown in Fig. 4. For our proposal algorithm and
for the sliding window, the number of fragments is varied by
varying the size of the initial temporal chunk. For the shot
boundary detection, the number of fragments is a function
of the shot threshold; the stricter the threshold, the more
fragments. We have also added a shot boundary baseline
that combines the fragments from multiple thresholds.

As the graph of Fig. 4 shows, our fragment proposal algo-
rithm compares favorably in terms of recall to the two shot
detection baselines. Our algorithm yields a peak recall of
0.89, while the shot boundary detection yields a peak re-
call of 0.52. The limited recall scores of the shot boundary
detection are caused by its non-hierarchical nature. By split-
ting videos solely into non-overlapping fragments, important
information is missed. This is further confirmed by the com-
bined shot boundary detection baseline, which yields higher
recall scores. The peak recall is however not only 8% lower
(at 0.81), but also requires roughly three times as many
fragments as our algorithm.



Global This paper

Event Average [16, 18] VideoStory [8] Bag-of-Fragments Combination

Attempting a bike trick 5.6% 12.0% 10.6% 20.9%
Cleaning an appliance 5.3% 15.6% 13.2% 25.0%
Dog show 56.6% 74.5% 73.8% 76.5%
Giving directions to a location 6.8% 5.6% 2.4% 9.9%
Marriage proposal 0.6% 0.8% 0.9% 1.4%
Renovating a home 4.3% 10.8% 11.5% 16.7%
Rock climbing 7.3% 14.9% 8.6% 19.7%
Town hall meeting 53.8% 42.2% 37.9% 52.8%
Winning a race without a vehicle 19.3% 17.7% 15.2% 30.4%
Working on a metal crafts project 8.1% 9.5% 18.2% 23.0%
Beekeeping 72.1% 70.3% 78.1% 91.7%
Wedding shower 25.1% 20.4% 30.4% 45.6%
Non-motorized vehicle repair 43.0% 42.6% 52.9% 60.9%
Fixing musical instrument 38.3% 44.2% 58.5% 66.0%
Horse riding competition 50.2% 50.1% 45.0% 64.7%
Felling a tree 12.3% 11.4% 22.5% 28.7%
Parking a vehicle 17.8% 24.1% 16.8% 30.4%
Playing fetch 3.2% 8.0% 4.2% 10.9%
Tailgating 29.6% 30.1% 40.7% 54.3%
Tuning a musical instrument 4.8% 12.2% 10.4% 17.4%

mean 23.2% 25.9% 27.6% 37.3%

Table 1: Event detection results on TRECVID MED 2014 for global averaging, VideoStory, and our bag-of-fragments in
average precision. We also report the combination between global averaging and bag-of-fragments. Bag-of-fragments is best
and highly complementary to existing encodings.

The peak recall of the sliding window baseline is equal to
our algorithm, but sliding window requires far more frag-
ments (3.2x). This result highlights the effectiveness of our
method. Rather than going through all possible fragment
combinations, we only examine the most promising combi-
nations across the hierarchy. This results in less fragment
proposals, without sacrificing recall.

5.2 Event detection
For the event detection, we first evaluate the primary bag-

of-fragments parameter, namely the number of selected dis-
criminative fragments. Fig. 5 shows the effect of the number
of fragments on the mean Average Precision (mAP) score.
Using only two discriminative fragments yields a mAP of
6.0%. The performance increases monotonously as the num-
ber of discriminative fragments increases, indicating that
a rich set of fragments to represent an event is beneficial.
At roughly 2000 discriminative fragments, the performance
starts saturating, with an mAP of 27.6% and we will use
this setting for the rest of the experiments. Furthermore, we
have evaluated the performance using all fragment propos-
als, which resulted in a mAP of 26.6%. This result indicates
that only using discriminative fragments not only results in a
more compact encoding, but also leads to improved results.

For the comparative evaluation we show an overview of
the results for the four different methods for the 20 events
Table 1. Compared to the global averaging baseline, our
algorithm yields improved Average Precision scores for 15
of the 20 events, with an absolute increase of 4.4% in mean
Average Precision, from 23.2% to 27.6%.

Noteworthy is the difference in performance across differ-
ent events. Our discriminative fragments improves upon the
baseline with 20.2%, 17.2%, and 10.2% (absolute difference)
for the events Fixing a musical instrument, Dog show, and
Felling a tree. The baseline method performs 15.9% and
5.2% better for the events Town hall meeting and Horse
riding competition. This indicates a complementary nature
between the two models. Indeed, a fusion between the two
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Figure 5: The influence of the number of discriminative frag-
ments for event detection.

improves the performance significantly with a mean Aver-
age Precision of 37.3%, an notable absolute improvement of
14.1% over the baseline model. Note that from the fragment
point-of-view, the fusion with the global averaging baseline
comes computationally for free, as the global average is al-
ways the last merge in our hierarchical clustering.

Table 1 also shows the result of VideoStory on the same
dataset [8]. Although VideoStory similarly improves upon
the global baseline, it does not match the bag-of-fragments
result, indicating the effectiveness of the bag-of-fragments.

To further highlight the effectiveness of fragment-based
event detection, we show a fragment ranking for three events
in Fig. 1. The Figure shows that the most discriminative
fragments of an event are exemplary snapshots of the event.
Examples of this include a person on a BMX for Attempt-
ing a bike trick, a bicycle tire for Non-motorized vehicle re-
pair, and a person on a horse for Horse riding competition.
Also, the Figure shows that more ambiguous fragments are
deemed less discriminative for the event.
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Bike trick
Cleaning appliance

Dog show
Giving directions

Marriage proposal
Renovating home

Rock climbing
Town hall meeting

Winning a race
Metal crafts
Beekeeping

Wedding shower
Vehicle repair

Fixing instrument
Horse riding
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Parking vehicle
Playing fetch

Tailgating
Tuning instrument

Figure 6: Plot of the maximum co-occurrence value for
25 concepts with respect to the 20 TRECVID MED 2014
events.

5.3 Event recounting
For event recounting, we first highlight the effect of co-

occurrence for a number of concepts in the semantic rep-
resentation. In Fig. 6, the maximum co-occurrence values
are shown for 25 concepts with respect to all 20 TRECVID
MED 2014 events. For a number of peaks in the plot, the
concept-event relation is as expected. Examples include the
relationship between rodeo/jockey and Horse riding com-
petition, between kitchen and Cleaning an appliance, and
between saw and Felling a tree. These discovered concept-
event relationships indicate that visual co-occurrence from
social tagged image data may serve as a fruitful proxy for
automatic concept selection.

However, Fig. 6 also indicates a limit of our use of co-
occurrence. The concept elevator fires on the event Dog
show, while they are seemingly uncorrelated. However, the
textual summary of the event contains the concept lift. In
the context of Dog show, lift is a verb (to lift; to move up-
ward), but the co-occurrence statistics use the concept as a
noun (lift; elevator). As the co-occurrence statistic is obliv-
ious to the ambiguity of concepts, seemingly uncorrelated
concepts might yield a high co-occurrence value.

Second, we perform a qualitative evaluation on the effect
of concept filtering for event recounting. In Fig. 7, the re-
counting results of our discriminative fragments are shown
for three videos from different events, both with and without
concept selection. For each video, the three most informa-
tive video fragments are selected and for each selected frag-
ment, the two most informative concepts are shown. The
discriminative fragments are able to select the fragments of
the test video that are correlated to the event. Without
the concept filtering, the recounted concepts are at times
incorrect or over-specific. This is exemplified in Fig. 7a and
Fig. 7b, with noisy concepts such as millipede and abacus
for Tuning an instrument and guillotine for Renovating a
home. These results indicate the negative influence of the
noise, as these concepts do not help to convince a user that
the corresponding event is in the video.

However, if our concept selection is added to the recount-
ing, the resulting concepts become both more generic and
more relevant. This is for example visible in Fig. 7c. With-

out concept filtering, incorrect concepts such as dulcimer
and wildcat are recounted. Upon adding the concept selec-
tion, concepts that are more relevant to the event Beekeeping
are shown, such as honeycomb.

6. CONCLUSIONS
We propose encoding of videos using fragments. We show

how to generate a concise set of fragment proposals for a
single video. From the set of fragment proposals of the
training videos for an event, we select the most discrimi-
native ones. By matching and pooling these discriminative
fragments over the fragment proposals of a video, we ar-
rive at our bag-of-fragments encoding. Experimental evalu-
ation shows the effectiveness of the encoding for event de-
tection, as well as its complementary nature to a global ag-
gregation of semantic concepts. Furthermore, we propose
an automatic algorithm to filter relevant concepts in the
semantic representation with respect to an event by leverag-
ing co-occurrence statistics from a social tag image dataset.
Qualitative evaluation highlights the capability of our bag-
of-fragments in combination with concept filtering for event
recounting.
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