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ABSTRACT

To make informed decisions, an expert has to reason with multidi-
mensional, heterogeneous data and analysis results of these. Items
in such datasets are typically represented by features. However, as
argued in cognitive science, features do not yield an optimal space
for human reasoning. In fact, humans tend to organize complex in-
formation in terms of prototypes or known cases rather than in ab-
solute terms. When confronted with unknown data items, humans
assess them in terms of similarity to these prototypical elements.
Interestingly, an analogues similarity-to-prototype approach, where
prototypes are taken from the data, has been successfully applied
in machine learning. Combining such a machine learning approach
with human prototypical reasoning in a Visual Analytics context
requires to integrate similarity-based classification with interactive
visualizations. To that end, the data prototypes should be visually
represented to trigger direct associations to cases familiar to the
domain experts. In this paper, we propose a set of highly interac-
tive visualizations to explore data and classification results in terms
of dissimilarities to visually represented prototypes. We argue that
this approach not only supports human reasoning processes, but is
also suitable to enhance understanding of heterogeneous data. The
proposed framework is applied to a risk assessment case study in
Forensic Psychiatry.

Keywords: dissimilarity based classification, dissimilarity based
visualization, prototypes, interactive visualization, visual analytics

1 INTRODUCTION

In many applications in medicine, security or forensics [29, 15],
predictions and decisions are made by domain experts based on
the analysis of multi-dimensional, heterogeneous data. Typically,
the items in these datasets are represented by features which cap-
ture one characteristic of an item in a nominal, ordinal, or numeric
value. These features may then be used by automated data analy-
sis and visualization systems supporting experts in their decision
making process [3, 2]. We identify three problems with such a
feature-centered approach. First, those systems have to deal with
the problem of many dimensions. Second, they have to represent
different types of feature heterogeneity, like mixed types or differ-
ent measurements units. Third, features represent data in absolute
terms, which, as argued in cognitive science, are not easy to process
[14, 25].

Where humans are weak at extracting information from features,
they are very good in analogies and case-based reasoning, often ex-
clusively based on personally experienced past cases. This view is
related to cognitive prototype theory [25], where humans abstract
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out a prototypical example of all the ones experienced and use it
for further decision making. This suggests that people do not cat-
egorize based on a list of descriptive features, but rather in terms
of similarity to known examples. They perform even better when
multiple prototypes are used [25].

Since a dataset can be characterized by prototypes, a degree
of similarity to these prototypes can replace feature values as the
dataset description. Such a description would represent each dataset
element by their similarity to a fixed set of prototypes. Such sim-
ilarities are uniformly measured for each dataset item on a single,
shared scale as a directly comparable distance value. Hence, a de-
scription by prototype similarities helps to overcome the problem
of data heterogeneity. In such a uniform representation there are
no mixed feature types nor varying measurement units. This natu-
rally allows a simpler visual representation without the need to step
back and convert scales or to look up feature types. A uniform data
representation, based on distance to prototypes, allows the user to
directly compare patterns leading to homogeneous visual thinking.

The similarity-to-prototypes approach has been successfully
adopted in pattern recognition [21, 22]. In pattern recognition
the prototypes are chosen to best represent different groups in the
dataset and the classifier is trained on pairwise dissimilarities of
each element in the dataset to those prototypes. If a good simi-
larity representation is chosen, only a small number of prototypes
are needed to build a good classifier [22]. This approach has been
applied for classification in many domains such as prediction of
cancer, toxicity and schizophrenia [6, 20, 30].

To our knowledge, there is no literature on using a similarity-to-
prototypes approach in a Visual Analytics context, but some steps
in this direction have been made. On the one hand, the dissim-
ilarity space used for classification has been visualized [22], but
merely to illustrate the workings of a classification technique. On
the other hand, a dissimilarity space has been used to visualize a
multi-dimensional datasets using 2D embeddings [17, 28]. Integrat-
ing these two approaches in an interactive expert-oriented frame-
work would constitute a powerful Visual Analytics tool and fill the
gaps as identified in [29, 15, 5]. To this end, the prototypes should
be exploited as the driving force of the Visual Analytics system.
When the prototypes characterizing the dataset have a clear mean-
ing to the expert they trigger direct associations for the expert user.
In many cases the expert user knowledge, which is not included in
the data, can provide additional insight about an item which can be
extracted by such visual associations. Such a visual representation
of a prototype might be of various types, e.g. symbols or images. In
this paper we propose to combine the associative power of images,
with the cognitive strength of prototypes, integrated with interactive
dissimilarity-based classification. To this end, a set of visualiza-
tions are used that allow to explore different aspects of information
space induced by prototype dissimilarities.

This paper is organized as follows. The related work section
presents an overview of systems that combine classification with in-
teractive visualizations. Subsequently, we substantiate the integra-
tion of image prototypes into a Visual Analytics framework. From
there, we describe the dissimilarity-to-prototypes classification, to-
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gether with techniques to derive similarity measures from hetero-
geneous features and selected prototypes. Following the section
describing the visualization of the image prototypes in dissimilarity
space, we propose an intelligent way to integrate the described tech-
niques into a highly interactive framework and show its application
in Forensic Psychiatry.

2 RELATED WORK

In recent years the idea of combining classification with interactive
visualization has gained a lot of interest in literature. To structure
this section we follow Bertini and Lalanne [5] who divide the exist-
ing approaches in the following categories: 1) integrated Visualiza-
tions and Mining (VM), 2) visually enhanced Mining (M++) and 3)
computationally enhanced Visualizations (V++).

2.1 Visual Mining systems (VM)

A framework for Visual Mining/Analytics is formally described by
Keim [15]. It proposes a tightly coupled system with controlled
interaction between the automated data analysis and visualization
elements. Moreover it allows users to steer the visualization pro-
cess and to actively participate in the classification process. Build-
ing upon Keim’s framework, Yu et al [34] propose a smooth inter-
face between data mining and visualization for multimedia data in
social and behavioral studies. They visualize all intermediate and
final results of data mining, allowing the user to obtain new insights
and develop more hypotheses about the data. Ankerst proposes the
DataJewel architecture [3] coupling a visual, an algorithmic and a
database approach for temporal data mining. The system focuses
on the improvement of the discovery of useful temporal patterns.
Interactive construction of decision tree classifiers is proposed in
[24, 2]. Here, the user can interactively select the splitting attribute
from the dataset visualization after which the current decision tree
is visualized and the user can proceed with expanding the decision
tree. A way of improving and analyzing a classifier is described in
[10]. Starting from an initial hypothesis, created with linking and
brushing, the user steers a heuristic search algorithm to search for
alternative hypotheses.

All the above approaches tightly integrate classification and in-
teractive visualizations. They however only consider datasets repre-
sented by features. In this paper we build on these ideas by propos-
ing an interactive image prototype visualization which is tightly
coupled with dissimilarity-based data mining.

2.2 Dissimilarity to prototype classification (M++)

In [21, 22] Pekalska et. al. propose to use prototypes for
dissimilarity-based classifiers. A set of prototypes is chosen that
best characterizes the dataset. Classifiers are trained on the pair-
wise dissimilarities of each data-element to those prototypes. This
approach has been used in several application, for detection of
schizophrenia [30], for cancer prediction using gene expression
profiles [6] and for detecting hepatotoxicity [20]. Pekalska et. al.
include a few static visualizations in their article. They show the
dissimilarity to prototypes for two dimensional examples in a scat-
terplot. They also show the approximate 2D embedding of dissim-
ilarities. However, those statically generated plots serve only as
an illustration of their classification approach, and is not presented
to the end-user. The visual explanation of the dissimilarly based
classification could, however, contribute to the expert’s understand-
ing of a classifier, when incorporated into an interactive exploration
framework.

2.3 Visualization of dissimilarity to prototypes (V++)

To visualize multi-dimensional datasets, often projections to lower
dimensional spaces are used. For visualization, the projection

should preserve the resulting structure of the data in the low-
dimensional space. Common techniques to represent dissimilar-
ities between the items are multidimensional scaling and Isomap
[17]. Different variations of these algorithms are used. In [4] an
adapted, incremental projection algorithm is proposed to visualize
high-dimensional numerical data. In [19] Isomap is used to visu-
alize image collections represented by a high-dimensional feature
vector.

In the above techniques, the projection techniques to low-
dimensional space are treated as support to efficiently visualize
data. Their aim is a good visualization. However, by projecting a
high-dimensional dataset to lower dimensions it is nearly inevitable
to lose some information. Hence, we use such a visualization to
obtain a global overview while retaining visual access points to the
original high-dimensional data.

2.4 Contribution

From the related work we have studied, it appears that the dissimi-
larity based techniques have never been applied in the setting where
the exploration of data and classification are combined. To com-
bine the M++ and V++ approaches into a highly interactive Visual
Analytics framework we propose to make prototypes the primary
objects of dataset and classifier exploration. By intelligently inte-
grating the techniques proposed for dissimilarity classification, with
various visualizations in dissimilarity space by using prototypes we
respect and stimulate the cognitive economy of the expert-user.

3 VISUALLY REPRESENTED PROTOTYPES IN VISUAL ANA-
LYTICS

In Visual Analytics, an expert and his knowledge are an integral part
of the decision making process. We first need to understand how
experts perceive the presented data and how they assign meaning to
the patterns that they find. We want to understand and support the
visual thinking [32] of an expert.

3.1 On features

The very first step in Visual Analytics is data preparation. We need
to understand how a dataset is represented and how it can be trans-
formed to most effectively support the human expert. Since the
most important goal of the visualizations is to reveal assign mean-
ing to patterns, the main challenge is to transform data into a form
where important patterns are easy to interpret.

Typically, items in the dataset are represented by a feature vector
which describes measured properties of the items. A well-defined
feature vector constitutes a description of all relevant characteris-
tics of an item. Each feature characterizes an aspect of an item
in a nominal, ordinal, or numeric value type. The feature-based
representation of the data is commonly used in visualizations and
pattern recognition alike. The use of features has, however, several
limitations. First, in many applications, the domain expert is the
only person understanding the features, and he needs to be skilled
to interpret them fast and correctly. Second, in real applications
the number of features needed for a good description of the data
items can be large. This is a serious limitation, not only for humans
but also when designing the visualization and analysis tools. In
automatic pattern recognition the curse of dimensionality is a well
known problem. In visualizations it is hard to meaningfully repre-
sent the data in terms of features for more then a few dimensions.
Third, the description of the items’ characteristics can be very spe-
cific to each item, and the possibility exists of losing the context of
the data, when focusing on very specific characteristic of a particu-
lar item in the dataset. Fourth, the heterogeneity of features forms
a serious problem in visualization and data analysis. There can be
several sources of heterogeneity, like mixed types values or the dif-
ferent measurements units. These characteristics make it hard to
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visualize the features in such a way that they can be directly com-
pared with each other, without the loss of information. For auto-
matic analysis, such data has to be translated to a uniform measure
or type, which may also result in loss of information.

3.2 On human prototype perception
Humans do not excel at processing complex information due to the
limited size of our working memory [25]. Presenting humans with
visualizations of many heterogeneous features might be confusing,
and highly depends on the knowledge, and analytical skills of the
expert. This is related to the gestalt law, where the sum of many
low-level patterns have to be put into one whole. The more items
are included in the data set, the more cognitively expensive the in-
terpretation process becomes. Therefore, the main challenge is to
transform data into a form where important patterns are easy to in-
terpret.

Humans tend to focus on the fewest possible represented items
in order to reduce the cognitive burden. Humans primarily focus
on the items that are most characteristic and well-known: the pro-
totypical items. The details of prototypical items are fixated in our
memory and are linked to various kinds of information through a
network of associations, and therein lies the power of our proposed
system. Through semantic interpretation of prototypes it is possible
to extract high-level patterns.

In fact, to understand other instances in the dataset humans typ-
ically relate them to prototypes. On the one hand, it is easy for
human to make comparison between a prototype and another item
in the database. On the other hand, an exact specification and quan-
tification of these differences is difficult for an expert to give [14].
To facilitate the understanding of similarities, the contribution of
each separate feature to a similarity should be taken into account.
This allows the user to understand why items are considered similar
or dissimilar by the system.

3.3 Why visually represented prototypes?
In [32], Ware discusses concept-proxies, which can be given to the
user to visually represent prototypes. Once proxies are fixated in
the brain, the corresponding concepts become activated. This vi-
sual trigger mechanism allows for fast information retrieval of a
concept, opposed to accessing slow long-term memory without us-
ing such visual aids. The use of proxies is only useful if there are
learned associations to the visual representations. In fact, the ac-
tivation of meaning from a visual representation generally occurs
in a fraction of a second, which is much less time then it takes to
read a paragraph of text. Therefore, to support the prototype recog-
nition and comparison process, the prototypes should be visually
distinctive, represented in a such a way that they trigger direct as-
sociations.

In applications where decision making can be supported by Vi-
sual Analytics, the images associated with data items can be used.
In Forensic Psychiatry for example, features describing the patients
can be combined with pictures of these patients. We assume that
an expert can recall more about the patient when the associations
are triggered by presenting the photo of a patient, then just by look-
ing at the associated data. In the medical field the exploration of
radiology images of the liver, when diagnosing a certain disorder,
allows the expert to directly relate measures derived from an image
to the actual content of the image. In the applications, where data
items do not have associations with visual appearances, the trigger
mechanism can be used as well. In such case, the prototypes can
be represented by any meaningful visual representation that experts
agree upon.

In this paper, due to privacy reasons, we use photographs of the
authors, their colleagues and relatives. We use those photographs
merely to illustrate our approach, for actual association triggering
the actual photographs must be used.

4 ON CLASSIFICATION WITH DISSIMILARITIES TO VISUALLY
REPRESENTED PROTOTYPES

In this section we describe how the notion of prototypes and dissim-
ilarities is adapted for classification. We describe how to derive the
dissimilarity measure from the feature representation for the data of
mixed types. The methods to select the sufficient minimum number
of prototypes are discussed.

4.1 Classification
Suppose we have a dataset consisting of n items described by a
vector of f features, divided into two classes. According to the class
membership, a positive or negative label is assigned to each item in
the dataset. In the classification pipeline, the dataset is first divided
into a train and a test set, both described by all the features. The
classifier is trained on the training set resulting in the f -dimensional
decision boundary, that best separates the two classes. The classifier
can be then used for prediction on the test set, where based on all the
features the class membership of a new item is predicted, with the
corresponding classifiers accuracy. To performance of the classifier
is commonly represent by ROC curve that visualizes possible trade-
offs of the trained classifier. In the dissimilarity based classification,
as proposed in [21], the dataset is described in terms of pairwise
dissimilarities between items, instead of features. For n items in
the dataset, the dissimilarity input for classifier is of size n x n.
In [22] it has been shown, that only small number of prototypes for
such dissimilarity representation is enough to train a good classifier.
Therefore, first a set of prototypes is selected from the training set.
The classifier is trained on this set, and consecutively applied to the
test set, that only consists of the dissimilarities to the prototypes.
This procedure is visually represented in figure 1.
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Figure 1: Classification in dissimilarity space. Since we propose to
represent prototypes visually, we use images of prototypes (ie: pic-
tures of people).

4.2 Dissimilarity measure
To support prototype-based reasoning of humans we need to repre-
sent the prototypes in the relation to each other and in the relation
to other items comprising the dataset. We want to show how much
items differ from each other, or in other terms how similar they are
to each other.

A suitable similarity measure is not easy to derive from features.
The Euclidean distance is the most commonly used dissimilarity
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Figure 2: An example to illustrate how a dissimilarity scatterplot is
constructed. (a) Data elements from a multi-dimensional dataset are
represented in a 2D scatterplot of a sub-set of two numerical vari-
ables. (b) Two of the selected prototypes are chosen. Based on the
dissimilarities of all the data items to prototype 1 (on the X-axis) and
the dissimilarities of all the data items to prototype 2 (on Y-axis) a
scatterplot is created. The prototypes are represented by the asso-
ciative images on the axes.

Table 1: Similarity measure for different types of variables, as pro-
posed in [11, 23].

Type of variable Similarity measure si jk

nominal if( xik = xi j) then 1 else 0

ordinal |rank(xik)−rank(xi j)|
(kdistinct−ranks)−1

interval and ratio xik−xi j
rangei

measure when dealing with numeric features. For features of mixed
types this measure fails, as the Euclidean distance is not defined for
ordinal and nominal values.

As summarized in [23], there are several approaches to deal with
the mixed data types. One of them is to convert features a specific
coefficient that allows the use of different data types. This simi-
larity measure could be directly fed into the classifier as proposed
by [21]. It could also be visualized to show the relations between
the items. Podani [23] proposes to use Gower’s general coefficient
[11] of similarity for the analysis of the mixed data types. Podani
extends Gower’s coefficient to deal with ordinal data as well. The
similarity coefficient between items j and k is defined as follows:

G jk =

n
∑

i=0
wi jksi jk

n
∑

i=0
wi jk

(1)

where wi jk = 0 if items j and k can not be compared for vari-
ables i because the value of item j or k is unknown, 1 otherwise.
The value of si jk is a dissimilarity between the item j and k for the
feature i. The possible measures si jk for various types of features
are summarized in table 1.

Podani [23] points out that the ordinal variables must be fully
ranked because the ranks are used instead of scores. The differences
between the scores can not be calculated and the similarity between
them depends on the frequency of this score for a given feature in
the whole data set. For details, see Podani [23].
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Figure 3: The dissimilarity plot matrix, with images of the prototypes
on the diagonal.
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Figure 4: Projection of the dissimilarity space using MDS. The proto-
types are represented by images. The data items are assigned color,
according to the original label. They are assigned shape, according
to the result of classification. The circular dots are correctly classified
examples and triangles are misclassified examples. The approxima-
tion of the classifier, trained on the actual similarities, is plotted in the
projection space.

4.3 Prototype selection for dissimilarity based classi-
fier

The selection of prototypes is a crucial element of the dissimilar-
ity based classification and visualization. We need to represent the
dataset in its most characteristic items. Experiments show that a
random selection of prototypes works well [21]. A systematic pro-
cedure has also been investigated [22, 19, 8, 16, 12]. In [22] the
authors show that for two-class problem, the systematic approaches
have similar or better results than the random selection, especially
for a small number of prototypes. In general, we are interested in
a limited number of prototypes not to overload the expert’s cogni-
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tive processes, but also we want to build a good and reliable clas-
sifier. Following Pekalska et al.[22], we select the prototypes using
k-centers, which is one of the selection methods that she investi-
gates. K-centers is applied to each class separately. For each class
this algorithm tries to choose k items such that the maximum of the
dissimilarities over all items to the nearest center is minimized.

The prototypes must be selected from the data items that are
known to the experts. In this way we assure that the expert does
have associations with the visual representation of those prototypes.
If expert is not familiar with all the data items, the prototypes can
be chosen, according to experts familiarity to them. They must be
characteristic for the specific category of data items.
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Figure 5: Starplot of actual dissimilarities of selected item to all the
visually represented prototypes. The selected element is plotted in
the center of the plot. The color and shape indicate the accordingly
original and predicted label. The colors of the circumference for each
of the prototypes indicates the original label of the prototype, where
a blue color indicates the one class, and the red color the other.

5 VISUALIZATION OF PROTOTYPES IN THE DISSIMILARITY
SPACE

In this section we investigate possible visual solutions for the
dissimilarity-to-prototype space. We propose a set of visualizations
that address different aspects of this space. One of important as-
pects for the expert, that we take into account, is how to relate the
similarity-to-prototypes back to the feature space, which is familiar
to the experts. Throughout all the visual components of this frame-
work the prototypes are visualized using images. This supports the
visual thinking theory, as discussed by Ware [32].

5.1 Prototypes matrix
To explore the dissimilarities of data items to the prototypes a scat-
terplot is used. This fairly simple visualization technique is easily
understandable and therefore used in many systems, such as Spot-
fire [1], XmdvTool [31], Tableau/Polaris [26], GGobi [27]. To rep-
resent dissimilarities of two prototypes, a prototype P1 is plotted on
the X axis and the dissimilarity to prototype P2 on the Y axis. Each
item from the dataset is visualized in a scatterplot, based on these
two coordinates, x: dissimilarity to P1 and y: dissimilarity to P2.
To allow the user to explore the dissimilarity to all prototypes we
visualize a series of scatterplots for all combinations of prototypes,
and arrange them in a scatter matrix. To use the visualization space
efficiently we only show the part of the matrix under the diagonal,

since the matrix is symmetric we do not show redundant informa-
tion. Further, we follow the approach of [13] and use the diagonal
to show the scatterplot axis. Instead of names, we show images of
the prototypes for association purposes, as described in section 3.
In figure 3 we show the dissimilarity matrix for 8 prototypes.
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Figure 6: Details-on-demand revealing the contribution of the individ-
ual features to the similarity. (a) Regular textual details and image
of the inspected data item; (b) Bars showing difference in dissimi-
larities between two prototypes and selected item for each feature;
(c) Heatmap showing difference in dissimilarities per prototype, for
selected item, for each feature.

5.2 Dissimilarity space visualization

To make it possible for the expert to globally relate the prototypes
to each other and to all other items in the dataset, all the elements
should be presented in one single visual space. For this purpose a
method that projects data to a lower dimension can be used. Multi-
dimensional scaling (MDS) is a set of such techniques for exploring
similarities in data, that has been proven useful as a dimension re-
duction technique [17]. MDS projects items into low dimensional
space, providing a spatial configuration, preserving pairwise dis-
similarities between the items. Such mapping may reveal charac-
teristic structures in data, where similar item are close to each other
in the projected space. Given a pairwise similarity matrix, MDS
assigns a location to each item in p-dimensional space. P is the di-
mension of the smallest space in which the items can be embedded.
For visualization purposes 2- or 3-dimensional projections can be
calculated and directly displayed in a comprehensible way for the
expert. The representation of an MDS-mapping in 2D includes the
projected prototypes, visually represented as images. The projected
elements of the entire dataset are represented as dots. The axis
of the MDS-mapping are meaningless. The distances between the
projected elements and their relative position are what represents
the structure of the data. The interpretation of the MDS-mapping
is supported by the visual representation of prototypes (images),
which are known elements for the expert. It allows an expert to link
prior knowledge to the geometry of the projection. The distances
in MDS projection are approximated to represent the dissimilarity
space. The expert can visually assess the quality of the projection
by referring to the prototype matrix. Each projected distance in the
MDS map can be visually compared with the actual dissimilarity.
In figure 4 we show an MDS-projection of the dissimilarity space
to 2D.
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5.3 Detail-on-demand
The most important cognitive task for the expert is to explore in-
teresting data elements in the relation to prototypes in order to find
patterns. As Ware emphasizes [32], the most important and fre-
quent visual task needs the most support. Hence, the supporting
mechanism should be visually the most distinct. Therefore, we
propose a set of techniques that facilitate the expert in exploring
and interpreting the relation between the individual data elements,
the prototypes, and the classification model. As proposed so far, the
dataset can be either explored in a 2D projection of the dissimilarity
space or in the matrix, through the scatterplots of actual dissimilar-
ities to two chosen prototypes. To allow an expert to directly see
the dissimilarity between a single item of interest and all the pro-
totypes, we combine two important features from both the matrix
that presents the actual distances, and the 2D projection, that show
relation to all the prototypes. To this end we use a star plot, which
was first proposed by [9]. The star plot is primarily suited for show-
ing commonalities, which is exactly our aim. The item of interest
is visualized in the center of a circular plot. The prototypes are vi-
sualized according to actual dissimilarities to the item of interest.
An image representing a prototype is visualized on a circle with ra-
dius equal to the dissimilarity and a color corresponding with the
prototypes original class label, see figure 6.

To support investigating the contribution of single features and
relate to the conceptual feature-based framework of the expert, we
show how much each of the features contributes to a prototype’s
similarity. When an expert poses a query, in terms of exploring
a single element in the 2D projection or in the scatterplot, the set
of feature-related visualizations are provided. Three feature-related
visualizations are proposed, see figure 6. First, the ’regular’ details-
on-demand are provided, with the features values in text, to be ex-
plored. Second, the dissimilarity to each prototype is provided for
each of the features. In fact, this shows the dissimilarity between
the item of interest and the prototype for each feature. Combina-
tion of those values constitute the final dissimilarity between the
item of interest and the prototype. To show the contribution for
each feature, a heatmap is visualized for the item of interest. For
each feature, the heatmap represents the dissimilarity values of the
item of interest to each of the prototypes. The darker the color of
a single square, the higher value of similarity it represents. Hence,
the lighter the color of a single square, the lower the value of dis-
similarity. Note that the heatmap does not show feature values, but
the differences in feature values of a single item under investigation
and all prototypes, as illustrated in figure 6. Third, the difference
in dissimilarities is shown for the item of interest and two proto-
types, as selected in the matrix. Those dissimilarity differences are
presented per feature. This allows to directly observe which feature
contributes to one prototype being more similar to the item of inter-
est than the other. We propose to visualize those differences using
bars. The color of the bar indicates the original label of the proto-
type that the item of interest is more similar to. Note that again we
show the differences between the features’ values of the item, and
the two prototypes, see figure 6.

6 INTERACTIVE DECISION MAKING

6.1 Classifier visualization and cost selection
To enhance understanding of the model, the visual representation
of its decision boundary should be placed in the space as where the
model has been trained. Since in our framework we use classifica-
tion in the dissimilarity-to-prototypes space, we would like to vi-
sualize decision boundary in the dissimilarity to prototypes scatter-
plots and the 2D MDS projection. To this end we use the Voronoi-
based approximation of the decision boundary as proposed by [18].
From the same framework, we integrate the interactive ROC curve
to allow interactive exploration of the result of classifier for differ-
ent trade-offs.

The performance of the classifier is visualized using a perfor-
mance curve, which represents the rate of miss-classifications on
both sides of the decision boundary. An interactive operating point
is visualized on the curve allowing the expert to explore all possi-
ble trade-offs for a given classifier on the whole data set. Notice the
difference that for the training of the classifier we use an indepen-
dent test set to evaluate the classifier. However for the visualization
purposes, the whole data set is visualized in relation to different
classifiers. Those are all classifiers possible for the given classifier
and train set, so changing the operating point is allowed on the test
set as well because it does not change the classifier. Therefore we
can visualize the whole dataset in one plot, and it can be explored
in relation to the dissimilarities for the whole dataset.

From the same framework we also adopt the notion of critical
elements. However, in our setting those are no longer all the data
elements influenced by classification, but only the prototypes. If
an expert requires to move a certain prototype onto the different
side of the decision boundary this should be possible, as it might
be in agreement with expert’s knowledge. This leads to interactive
selection of the prototypes. That would require re-training of the
classifier after the selection process, and updating the visualizations
as new prototypes are chosen. This is however a topic of future
work.

6.2 Interaction Design
The interaction design in our framework is structured according to
[33]. To explore the dissimilarities to prototype the system uses
at the basis a CONNECT interaction. All visual components are
connected to each other, meaning then whenever the user interacts
with one of the components, his actions will be propagated and the
connect of other visual components is updated. ELABORATE in-
teraction is build up of nested details-on-demand. Those, not only
visualize data information in textual information, but also represent
details visually. For exploration of data, in relation to dissimilar-
ity based classification results, a set of interactions, as proposed in
[18], is integrated into the system. This extends the basic set with
the interaction associated with exploration of classification models
and performance. The interaction design is shown in figure 7.

6.3 Visual Design
The system we propose consists of several visual components. The
implementation of the system is shown in figure 8.

The main components of the system are:

• Scatter Matrix: serves both as an overview and a navigation
tool. Miniature versions of the individual plots are shown as
the cells of the matrix, and one selected plot is shown in detail.
This plot serves as navigation tool for details-on-demand. In
each plot all the data elements are visualized together with the
decision boundary.

• Projection Plot: displays the 2D MDS projection together
with the decision boundary. This plot as well serves as navi-
gation tool for detail-on-demand.

• ROC curve: includes ROC curve with interactive operating
point and critical elements.

• Details-on-demand: includes all the visualizations that show
information on a particular interactively selected data item.
Those include regular text detail-on-demand, starplot with
dissimilarities to all the prototypes, and heatmap and differ-
ence bar plot showing contribution of each feature to similar-
ity.

The spatial arrangement of the visual components corresponds to
their functionality. The ROC curve is placed in the direct neighbor-
hood of projection plot and scatterplot matrix. A set of details-on-
demand visualizations, represents details of interactively selected
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Figure 7: Our framework for a prototype-based visual decision making system, with the proposed visualization solutions and interaction tech-
niques. Both system and user actions are indicated. This system extends the one proposed in [18].

elements on the projection plot or on scatterplots of dissimilarity,
and is therefore placed in their direct neighborhood.

7 CASE STUDY

7.1 Implementation details
The system is implemented using ProtoVis [7]. Protovis is a free
and open-source, JavaScript and SVG based, toolkit for web-native
visualizations. The 2D projection space is pre-computed using
MDS in Matlab. The classifiers and ROC curve are pre-computed
in Matlab.

7.2 Forensic Psychiatry application
In a case study we use a dataset of forensic psychiatric patients in
the Netherlands provided by the Expertise Center for Forensic Psy-
chiatry (EFP). In the Dutch legal system, a forensic expert often has
to advise the court whether a mentally disordered criminal should
be released back to the society or should be treated in the closed
mental institution. In fact, the expert has to assess the risk that the
patient will re-offend (recidivism). This decision has to be taken
very consciously, as it might have great consequences. Therefore,
the expert has to understood his data and the predictive models very
well. A system for exploring the data and the models is an impor-
tant contribution in this field.

The dataset consists of 103 offenders who, at the time of the
alleged crime, suffered from mental disorder and received what is
called a ’disposal to be involuntarily admitted to a forensic psy-
chiatry hospital on behalf of the state’ (a so called ’TBS-order’ in

Dutch). The termination of the TBS-orders are based exclusively
on the professional expertise of the clinicians. Each patient is as-
signed a class label indicating whether he has been convicted for a
new crime after his TBS-order has been terminated. Of the 103 de-
fendants, 38 were convicted again, whereas 65 are non-recidivists.
There are 20 ordinal features and 7 numeric features, which are
the scores of the PCL-R (Psychopathic Checklist-Revised) test. Pa-
tients were retrospectively scored with these risk assessment mea-
sures and recidivism data was retrieved from the documentation of
the Dutch Ministry of Justice.

For this dataset we calculate the dissimilarity matrix, using
Gower’s coefficient [11] with Podani’s extension [23]. We select
4 prototypes per class, using the k-centers algorithm. A fisher lin-
ear discriminant classifier is trained with the dissimilarities to the
selected prototypes on a train set and evaluated on the test set. Note
that a linear classifier in dissimilarity space is a non-linear classi-
fier in the original feature space. The accuracy of the classifier is
72%. The classifier is then applied to the entire dissimilarity ma-
trix and visualized in the dissimilarity scatter matrix and in the 2D
MDS of the dissimilarity space. To visualize the patients we assign
red color to recidivists and blue color to non-recidivists. As we can
not use the real photos due to privacy reasons, we use again photos
of the authors, their colleagues and relatives. The corresponding
ROC curve for fisher classifier is also visualized as can be seen in
figure 8.
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Figure 8: Screenshot of the system.

7.3 Usage Scenario

We now demonstrate how our system can be used for visual ex-
ploration of the prototypes in the dissimilarity space and the cor-
responding fisher classifier trained on the criminal patients dataset.
We describe a basic scenario. For additional details, please refer
to submitted video-demo of our implemented system. The usage
scenario is based on the first exploration round done by the expert.
The expert was already familiar with implemented techniques and
with the feature representation of the dataset.

Analyst X is asked to explore the system, in particular to look
for patterns in the prototypes space and explore the classification
model. The expert is familiar with all the prototypical patients.
Other patients do not necessary have to be known to the expert.
First, the dataset is loaded, without the visualization of the classifi-
cation model. The images of the prototypical patients are visualized
on the diagonal of the matrix. The analyst starts to explore from the
Scatter Matrix Window to get an overall view of the selected pro-
totypes and the general patterns visible from the plots. She hovers
over the scatterplots highlighting several items. Those items are
highlighted in all the plots in the Scatter Matrix. She comes across
a plot of dissimilarities to prototypes that directly draw her atten-
tion, as she knows those prototypes very well. One of them is a
recidivist, the other not. From the photographs she directly recalls
the cases of these patients and the general characteristic of their
criminal profiles. She selects this plot to explore all other data el-
ements in relation to those patients, in detail. She is interested in
the data element that is the least similar to prototypical recidivist
and she is intrigued why exactly they are dissimilar. By looking at
the details-on-demand she sees that for two features that patient is

actually quite similar to the prototypical recidivist. She finds this
an interesting discovery. She recalls, that the prototypical recidivist
patient had indeed a low score for those characteristics. Further,
she moves to the projection view and discovers the neighbors of
the previously selected patient. By hovering over those patients she
explores their details and discovers that they do not differ much
from the selected patient in the dissimilarities and in the contribu-
tion of the features. Next, the analysts explores the classification
model. She would like to have less wrongly classified recidivists.
She manipulates the operating point on the ROC curve to include
less wrongly predicted recidivists. The decision boundary is up-
dated in the scatterplots and in the projection plot. One of the pa-
tients has now assigned different label. She explores the details of
this patient and his similarity per feature to the most similar proto-
type. Based on the features similarity to the nearest prototype, she
assesses that this patient should indeed be classified as a recidivist.
She decides that this classification model is more suitable.

7.4 Evaluation and discussion
The framework proposed in this paper was developed in collabora-
tion with the experts in Forensic Psychiatry. The system has been
introduced to several forensic psychiatry experts from the Nether-
lands and United Kingdom. Based on the conversations with the
experts, during which they were shown the system, several inter-
esting discussion points emerged. In this section we describe the
most important comments of the experts and how they influenced
the design of the system.

The most important issue is a conceptual difference in interpret-
ing similarities and dissimilarities. The experts indicated that they
can interpret the relation between the prototypes and data items bet-
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ter when they are visualized in terms of similarities. From technical
point of view there is no difference between those two. However
from perception point of view it appeared to be an important issue.
Therefore, we explicitly make a choice to visualize the difference
in similarity to two prototypes in the barplot, see figure 6(b).

In addition, the experts indicated that the colors corresponding
with degree of similarity were misleading. Experts consistently in-
dicated red as the color they associate with high degree of similarity.
We have taken it into account in our visualizations.

We acknowledge the fact, that these were merely primary inter-
views. The most important next step is to conduct systematic em-
pirical evaluation of the system. We plan to use multiple rounds of
evaluation with the end users to test the usefulness of the approach
and identify the areas of improvement. However user evaluation
is difficult for such broad tasks as visual exploration, so we antic-
ipate performing time consuming qualitative studies. The experts
themselves indicated the difficulties that they foresee. The most
concerns of the experts involved the ethical, privacy and legal is-
sues.

8 CONCLUSION

This papers proposes to primarily focus on dissimilarities to visu-
ally represented prototypes instead of features. We argue that from
a human’s visual thinking point of view this is a more suitable ap-
proach. We propose an interactive framework to explore visually
represented prototypes space and results of classification in this
space. We propose to represent the data visually in terms of the
most characteristic elements -images of prototypes- and all other
data items in terms of dissimilarity to those prototypes. The dissim-
ilarity to visually represented prototypes is visualized together with
the results of the classification, and allow interactive exploration
of costs of classification. In particular, we focus on supporting in-
teractive exploration by representing the dissimilarity to prototypes
in various visualizations. Those visualizations aim at highlighting
different aspects of the dissimilarity to prototypes space and rela-
tion between dissimilarity space and features. We have shown how
the existing techniques can be tightly coupled in a structured and
highly interactive way, revealing patterns in terms of similarities to
visually represented prototypes.
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