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ABSTRACT

Estimating heart rate from video allows non-contact health
monitoring with applications in patient care, human interac-
tion, and sports. Existing work can robustly measure heart
rate under some degree of motion by face tracking. How-
ever, this is not always possible in unconstrained settings,
as the face might be occluded or even outside the camera.
Here, we present IntensePhysio: a challenging video heart
rate estimation dataset with realistic face occlusions, severe
subject motion, and ample heart rate variation. To ensure
heart rate variation in a realistic setting we record each subject
for around 1-2 hours. The subject is exercising (at a moder-
ate to high intensity) on a cycling ergometer with an attached
video camera and is given no instructions regarding position-
ing or movement. We have 11 subjects, and approximately
20 total hours of video. We show that the existing remote
photo-plethysmography methods have difficulty in estimating
heart rate in this setting. In addition, we present IBIS-CNN,
a new baseline using spatio-temporal superpixels, which im-
proves on existing models by eliminating the need for a visi-
ble face/face tracking. We will make the code and data publi-
cally available soon.1

Index Terms— Heart rate estimation, challenging new
dataset, spatio-temporal superpixels.

1. INTRODUCTION

Remote photo-plethysmography (rPPG) [1], allows non-
contact heart rate estimation. This facilitates applications
where contact sensors are difficult such as infant health
monitoring, or athlete monitoring in large scale events like
marathons, where access to individual sensors is unavail-
able. Initial methods of rPPG estimation [2, 3] needed
the subject to sit motionless in front of a camera. Other
approaches [4, 5, 6, 7] typically used face detectors and
Fourier analysis based techniques. Some methods addition-
ally use skin tracking/segmentation to estimate heart rate
[8, 9]. Other approaches cast heart rate estimation from
video as a blind source separation problem [10, 11]. Most
existing rPPG methods including recent deep learning based
approaches [12, 13] typically operate within a ‘constrained’
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Fig. 1. Methods tracking skin pixels and their color change
for heart rate estimation can perform poorly when the sub-
ject’s face is not visible. Here we introduce the Intense-
Physio dataset, which includes high heart rate variability and
is recorded in a relatively ‘unconstrained’ setting, making it
challenging for existing methods. We propose the IBIS-CNN
method which relies on spatio-temporal grouping of pixels in-
stead of face tracking, which improves on baseline models.

setting: minor pose and camera angle variations, subjects are
cooperative, are not occluded and do not perform high-speed
movements. Enforcing such constraints is not possible in
real-life situations. For instance in a sports scenario, it is hard
to control lighting conditions and rapid pose changes.

A recent analysis [14] shows that large, high speed mo-
tion, tracking based methods can fail. There are methods
that have been proposed to handle partial facial occlusion
[15][16], but these methods rely on extracting information
from other parts of the face that are visible and do not address
facial occlusion (as depicted in Fig. 1). To develop a method
for heart rate estimation from video in a practical setting (like
sports, for example the last image from the left in the second
row of Fig. 2), this must be addressed.

Early datasets, MAHNOB [17] and COHFACE [18] fea-
ture almost no subject motion. The PURE dataset features
minimal controlled head motion [19]. An important step to-
wards more realistic scenarios is the seminal ECG-Fitness
dataset [20] where subjects perform fitness-related motions

https://github.com/ynapolean/IBIS-CNN


Fig. 2. Samples from our IntensePhysio rPPG dataset. Note
the major pose changes, specular reflections on the back-
ground and on the subject’s skin and instances where the face
region is occluded or not fully in frame.

under varying lighting conditions, demonstrating that previ-
ous visual heart rate estimation methods performed poorly in
this scenario. This ECG-Fitness dataset, however, assumes
that faces are still strictly visible, allowing for solutions lim-
ited to face tracking.

In this work, we introduce IntensePhysio: a new, publicly
available, challenging dataset with ample variance in the heart
rate, fast motions, severe appearance changes. It presents
a completely unconstrained setting wherein subjects are al-
lowed exacerbated motion, causing their face to be sometimes
occluded, or they can go out of frame and exhibit greatly vary-
ing face angles. In addition to the new dataset, we analyze
existing rPPG approaches and provide an intentionally simple
baseline method called IBIS-CNN that replaces face tracking
with spatio-temporal superpixels. Bobbia[21] introduced an
algorithm called Iterative Boundaries implicit Identification
for superpixel Segmentation (IBIS) [21] for real-time com-
putation of temporal superpixels for rPPG. We propose IBIS-
CNN as a novel application of IBIS for heart rate estimation
in a deep learning setting. IBIS-CNN performs on-par to ex-
isting methods on existing datasets, but significantly outper-
forms existing work on more realistic scenarios as exempli-
fied in our new IntensePhysio dataset. The contributions of
this paper are: (i) The new, public, IntensePhysio dataset with
facial occlusions, and high speed motion (ii) A simple base-
line method using superpixels which does not rely on the face
to extract heart rate. (iii) We demonstrate the difficulty of the
dataset for existing rPPG work and (iv) show that our sim-
ple baseline performs equally well on existing datasets, yet
significantly better on our more realistic dataset.

2. METHOD

2.1. The IntensePhysio dataset

We collected video recordings and heart rate as the ground
truth. The videos are recorded with a Go-Pro Hero 7 black
camera at a resolution of 1, 920×1, 080 pixels at ∼ 60 frames
per second. The ground truth heart rate (in beats per minute)
is measured every second, using the Polar Vantage-M heart
rate sensor (chest strap).

For illumination we use LED lights (47W), natural light is

Dataset Statistics

Mean heart rate (ground truth) 129
Std. deviation heart rate (ground truth) 25
Max. heart rate (ground truth) 186
Min. heart rate (ground truth) 51
No. of subjects 11
No. of videos 15
Avg. video runtime 1hr. 12min.
Frames per second 59.94

Table 1. Statistics of IntensePhysio. The dataset features a
wide range of heart rates, from resting to intense workout.
Heart rate values are in beats per minute.

also allowed to enter through a small window. Recordings oc-
cur during different times of the day, resulting in variation of
lighting conditions. There are a total of 11 subjects (3 female
and 8 male) and all participants are working out on an er-
gometer and are given no instructions except to do a workout.
This dataset features the largest heart rate range and variation:
from 51 bpm up to 186 bpm with a standard deviation of 25
bpm. IntensePhysio dataset statistics are presented in Table 1.
Subjects exercised at a moderate to high intensity. They did
not receive any camera-related instructions, such as to face
the camera or be in the frame. This means that the subject’s
motion is ’unconstrained’ and consequently the subject’s face
could be occluded or might not be visible at all, as illustrated
in Fig. 2.
2.2. Simple rPPG baseline: IBIS-CNN

To accompany the IntensePhysio dataset, we implement a
simple baseline method for rPPG estimation using tempo-
ral superpixels and a convolutional neural network. The
approach is shown in Fig. 3.

The model is trained to predict the scalar valued instanta-
neous heart rate in beats per minute (bpm) for an input video.
We break an input video sequence into non-overlapping clips
of one minute each. For each clip we generate K temporal
superpixels using IBIS [21] where K refers to a user-defined
value for the number of superpixels, which we set to 300.

The input images are converted to the CIE l∗a∗b∗ color
space. Then pixels are grouped iteratively based on their clos-
est ‘seeds’, which are the initial values for superpixel centers.
Pixel grouping is done according to both the chromatic sim-
ilarity Dlab and spatial proximity Dspatial of the pixel with
the associated seed. The metric used to quantify this distance,
Dtotal is given as

Dtotal = Dlab + θ ∗Dspatial, where

Dlab =
∥∥(l, a, b)ithpixel − (l, a, b)kthseed

∥∥
Dspatial =

∥∥(x, y)ithpixel − (x, y)kthseed

∥∥
for the ith pixel and the kth seed. ∥.∥ is a Euclidean distance
and θ is defined by θ = 1/c2 where c is a user-defined com-
pacity parameter. The seeds value is propagated temporally,



Fig. 3. An overview of the IBIS-CNN model. A clip is split into M windows of 10 seconds each. For each frame, K superpixels
are extracted and per superpixel, the average YUV color is stacked over time, where T is the number of frames and generate a
spatio-temporal map. The predicted heart rate per map from the CNN are averaged to estimate the HR per video.

to generate an output of average RGB color value per tempo-
ral superpixel per frame.

Let Cp(t) denote the 3-dimensional per-channel average
YUV color signal of a superpixel p in frame t. The 3 average
YUV values and grouping all K superpixels gives a 2d matrix
of size K × 3. Stacking these over a temporal window of T
frames, we obtain a 3 ×K × T tensor, which can be seen as
a K × T color image which we call a spatial-temporal map.
This map is 10 seconds long, while each clip lasts around 1
minute. We slide a temporal window over the clip to obtain M
maps per clip using a window of 10 seconds (stride = 0.5s).

3. EXPERIMENTS

We compare against two state of the art rPPG methods in HR-
CNN [20] and RhythmNet [12]. Both these methods involve
pre-processing the input video frames using face-detection
(with an additional alignment step in RhythmNet), cropping
and re-sizing using specific toolboxes. We use train-test splits
as specified by the authors. For our dataset, we make use of a
train-test split featuring 8 subjects in the train set and 3 in the
test set. The number of superpixels is K = 300.

Due to lack of publicly available code for RhythmNet

Model PURE ECG-Fitness IntensePhysio

RMSE
HR-CNN 11.00 19.15 25.27

RhythmNet 19.67 20.47 32.67

IBIS-CNN (ours) 11.99 17.03 22.01

MAE
HR-CNN 8.72 14.48 22.19

RhythmNet 17.46 16.82 28.36

IBIS-CNN (ours) 9.39 13.75 16.53

Table 2. RMSE and MAE results for the proposed IBIS-CNN
and two baseline methods in HR-CNN and RhythmNet on the
test sets of PURE, ECG-fitness and IntensePhysio (ours).

[12], we re-implemented it as per the authors description in
their paper. The HR-CNN [20] model and code is publicly
available. We evaluate with mean absolute error (MAE) and
root mean square error (RMSE) calculated over the number
of spatio-temporal maps. Results in Table 2 show that our
method achieves similar performance to others on PURE
and ECG-Fitness, validating our baseline. Yet, our baseline
significantly outperforms others on our new IntensePhysio
dataset.

All models show poor performance on our dataset. To es-



Fig. 4. Predictions of the IBIS-CNN model compared with he ground truth and HR-CNN on subjects from the test set. The
HR-CNN model outputs a constant value, while our predictions exhibit learning behavior, following the ground truth.

tablish the challenging nature of the IntensePhysio dataset for
methods that rely on face tracking, we run an off the shelf face
detector (Dlib [22]) and find that on average we are able to
detect faces in ∼28% of frames per video in our dataset.On
the other hand we observed a successful face detection in
∼74% frames per video in ECG-Fitness. Since the face re-
gion (particularly the cheeks and forehead) contain the most
information on heart rate [13][20], this leads to a poor perfor-
mance when models rely on face detection and tracking.

The predictions of our IBIS-CNN model and HR-CNN
along with the ground truth are shown in Fig. 4. A few sam-
ple frames from the video are also presented with the dotted
lines connecting them to the minute of extraction. In these
frames, there is a lot of specular reflection on his skin (due
to sweating), the subject’s face is not visible. This happens
particularly around the 30th minute, where the error is larger.
The HR-CNN model outputs a constant value, indicating that
it might not be learning relevant rPPG features. The IBIS-
CNN model is able to predict heart rate reasonably well de-
spite occlusions, specular reflections etc. However, we also
note that the predictions from IBIS-CNN are not always cor-
related with the ground truth, especially in the second plot of
4. This could be because of rapid motion and would be inter-
esting future direction of research. IBIS-CNN does not solve
all the challenges posed by the IntensePhysio dataset but is an
alternative baseline with a new approach.

Comparison of input representations. We compare
two existing methods for temporal superpixel generation -
IBIS [21] and TS-PPM [23]. We find that the performance
of TS-PPM is lower than that of IBIS-CNN (as seen in Table
3 possibly because, in the IBIS method pixel membership is
constrained to not vary beyond a certain threshold to maintain
temporally coherent RGB traces.

As a pre-processing step, the IBIS superpixel generation
is more computationally efficient than the TS-PPM. To gen-
erate the superpixel results, IBIS processes 5.33 frames/sec
on average whereas TS-PPM was averages 0.56 frames/sec.
Thus, the IBIS method is more suited to the rPPG estimation
task. These results were obtained using PURE dataset.

Model Validation error for PURE

RMSE TS-PPM [23] 13.97

IBIS-CNN (ours) 11.99

MAE TS-PPM [23] 10.81

IBIS-CNN (ours) 9.39

Table 3. Comparison between temporal superpixel methods
for heart rate estimation.

4. CONCLUSIONS

We present IntensePhysio, a challenging new dataset for heart
rate estimation. The dataset features large subject motion
with frequent face occlusions and cases of facial region ab-
sent from the frame entirely. Through a comparative study,
we observe a considerable degradation in the performance of
the existing state of the art methods on this new dataset, espe-
cially methods relying on face detection and tracking. This
highlights IntensePhysio as a challenging dataset for heart
rate estimation, indicating that occlusion and non-visible fa-
cial regions are key factors for this performance degradation.
Hence, we propose IBIS-CNN as a new baseline method for
heart rate estimation (using temporal superpixels) which sig-
nificantly outperforms state of the art methods on our chal-
lenging new dataset in addition to the existing ones. How-
ever, the IBIS-CNN baseline predictions are not strongly cor-
related with the actual ground truth always.This shows that
there are further problems posed by our dataset that require
addressing. Also, there is a need for a thorough hyperparam-
eter tuning while generating these temporal superpixels using
IBIS, specific to our task. So, it would be of significance to
investigate the possibility of developing IBIS-CNN as an end
to end learnable pipeline.
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