
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Robust visual scene categorization in context

van Gemert, J.C.

Link to publication

Citation for published version (APA):
van Gemert, J. C. (2010). Robust visual scene categorization in context

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 17 Jun 2017

http://dare.uva.nl/personal/pure/en/publications/robust-visual-scene-categorization-in-context(8a5339d8-758b-44c4-b641-805b2073268e).html


R
obu

st
V
isu

al
Scen

e
C
ategorization

 in
 C

on
text

Jan
 van

 G
em

ert

Uitnodiging

Tot het bijwonen van de 
openbare verdediging van mijn 

proefschrift

Robust 
Visual Scene 

Categorization 
in Context

op vr. 24 September 2010
om 12:00 in de Agnietenkapel 

Oudezijds Voorburgwal 231 
te Amsterdam.

Na afloop bent u van harte 
welkom op de aansluitende 

receptie.

Jan van Gemert
Oudeschans 18

1011 LA Amsterdam
06-36179591

J.C.vanGemert@gmail.com

Robust Visual Scene Categorization
in Context

Jan van Gemert



Robust Visual Scene Categorization

in Context

Jan C. van Gemert



This book was typeset by the author using LATEX 2ε. The cover was created by the author with
python and matplotlib. The image represents local image features and the puzzle of what to put
in the hole in the water. It is taken in front of the Montelbaanstoren next to the author’s house in
Amsterdam.

Printing: F&N Boekservice

Copyright c© 2010 by J.C. van Gemert.
All rights reserved. No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopy, recording, or any information storage
and retrieval system, without permission from the author.

ISBN 978907867592 1



Robust Visual Scene Categorization

in Context

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,

op gezag van de Rector Magnificus prof. dr D. C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op vrijdag 24 september 2010 te 12.00 uur

door

Johannes Christianus van Gemert

geboren te Veghel



Promotiecommissie:

Promotor: Prof. dr ir A. W. M. Smeulders
Co-promotor: Dr J. M. Geusebroek

Overige leden: Dr ir R. P. W. Duin
Prof. dr Th. Gevers
Prof. dr D. G. Lowe
Prof. dr R. C. Veltkamp

Faculteit: Natuurwetenschappen, Wiskunde en Informatica

Advanced School for Computing and Imaging

The work described in this thesis has been carried out within the graduate school ASCI, at the
Intelligent Systems Lab Amsterdam of the University of Amsterdam.



Contents

1 Introduction 1
1.1 Robust Automatic Scene Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Episode-Constrained Cross-Validation in Video Concept Retrieval 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Classifier Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Cross-Validation in Video Classification . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Performance Estimation Between Unbalanced Sets . . . . . . . . . . . . . . . . . . . 8
2.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Evaluating Episode Constrained Cross-Validation . . . . . . . . . . . . . . . . 11
2.6.2 The Influence of Balanced Average Precision . . . . . . . . . . . . . . . . . . 13

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Visual Scene Categorization by Learning Image Statistics in Context 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Visual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Natural Image Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Color Invariant Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Contextures: Regional Texture Descriptors and their Context . . . . . . . . . . . . . 18
3.3.1 Region Annotation of Proto-Concepts . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Region descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 TRECVID video benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Caltech 101 object categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Pascal VOC datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4 Corel vs. ArtExplosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Comparing Compact Codebooks for Visual Categorization 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Compact Codebook Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Codebook Compactness by a Clustered Vocabulary . . . . . . . . . . . . . . . 30
4.3.2 Codebook Compactness by a Semantic Vocabulary . . . . . . . . . . . . . . . 31
4.3.3 Codebook Compactness by Soft-Assignment . . . . . . . . . . . . . . . . . . . 32

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Video Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Visual Categorization Implementation . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Compact Codebook Models Implementation . . . . . . . . . . . . . . . . . . . 34

i



ii CONTENTS

4.4.4 Supervised Machine Learning Implementation . . . . . . . . . . . . . . . . . . 35
4.4.5 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.1 Experiment 1: Soft-Assignment vs. Hard-Assignment . . . . . . . . . . . . . 36
4.5.2 Experiment 2: Semantic Vocabulary vs. Globally-clustered Vocabulary . . . . 37
4.5.3 Experiment 3: Semantic Vocabulary vs. Concept-specific Clustered Vocabulary 39
4.5.4 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.A Appendix: Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.A.1 Wiccest Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.A.2 Color Gabor Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Visual Word Ambiguity 45
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Visual Word Ambiguity by Kernel Codebooks . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Experiment 1: In-depth Analysis on the Scene-15 Dataset . . . . . . . . . . . 52
5.3.3 Experiment 2 and 3: Caltech-101 and Caltech-256 . . . . . . . . . . . . . . . 56
5.3.4 Experiment 4: PASCAL VOC07-20 and VOC08-20 Datasets . . . . . . . . . 58

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Color Invariant Object Recognition using Entropic Graphs 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Color Invariant Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Entropic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Summary and Conclusions 75
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Samenvatting 89

Dankwoord 91



Chapter 1

Introduction

Prrobly, u have no trouble understnd this sntence. Its syntactical and grammatical errors are easily
seen through. Similarly, humans see through noise, shadows, color variations, and depth/motion
ambiguities to perceive the world. Just how noisy the perceived world is can be appreciated when
trying to explain in detail ‘how to see’. When it comes to explaining such processes in detail,
there is no end to the incomprehension of a computer: a computer has to be told exactly what to
do. This algorithmic nature is well-suited for situations where all possible steps are clear. In such
formal settings, the computation speed of modern computers excels the power of the human brain,
as exemplified by the victory over the human chess world champion in May 1997. When it comes
to less formal situations, however, the human brain outclasses the computer. Consider for example
figure 1, illustrating some results of a winning method for a computational object recognition task
in 2008 [29]. Some of the unrecognized examples are so easy for a human that we lose sight of the
complexities involved in visual recognition. Whilst the human brain is defeated at calculations, the
trivial actions which we take for granted may be the hardest to perform for a machine.

In our increasingly digital world, automatic object and scene recognition is not merely an
academic pursuit. YouTube has millions of videos online, and film and TV broadcasters have
started to digitize their collections [118]. Hence, the ability to intelligently browse and query these
large visual collections is of significant practical use. Automatic visual recognition techniques such
as scene and object classification can benefit such tasks by providing the semantic handles to grasp
these large pixel collections.
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Figure 1.1: Ten images with results of a state of the art object classification method. Next to each
image the 20 available objects are ranked by probability, with the correct object highlighted.

This thesis investigates the use of context to increase the robustness of automatic visual scene
classification. Several types of context are investigated: the global contextual configuration of
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2 Introduction

a b c

Figure 1.2: Example of the codebook model (a) Visual word vocabulary (b) Original image, (c)
Codebook representation of the image.

objects in an image, the local context of pixel representations and the narrative context of an
image frame in a video sequence. Increased robustness is measured by improved classification
performance on large image and video collections.

1.1 Robust Automatic Scene Recognition

A robust and well-known visual scene classification method is the bag-of-visual-words, or codebook,
model. The codebook model describes an image as an unordered bag of discrete prototypical
patches (visual words) selected from a predefined vocabulary [114, 146]. Each feature in an image
is assigned its most similar visual word from the vocabulary under the assumption that a visual
word is a prototypical representative of this image feature. Subsequently, the number of visual
words in an image are counted, and a histogram of these visual word counts is input to a classifier.
Figure 1.1 illustrates the codeword model. The model has, among others, the following robust
traits. First, the unordered visual words in an image are translation invariant. Hence, the absolute
positions of objects in an image are considered unimportant. Further, the model represents an
image feature by a prototype, under the supposition that similar image features will be assigned
to the same prototype. Thus, the model can deal with slight appearance variations. The third
robust trait is the dimensionality reduction from numerous image features to a sparse set of visual
word counts. Such a compact representation allows efficient storing and indexing of large image
and video collections. These robust properties of the codebook model have made it the de facto
standard for state of the art scene classification [29, 27], and therefore, is the model of choice in
this thesis.

The visual words in the codebook model require some form of robust feature representation.
Using raw pixel values for such a representation will incorporate unwanted variations unrelated to
the content of the scene, as for example, camera rotations, camera distance, global intensity changes,
shadows and shading effects. Such issues may be dealt with by a feature representation that is
invariant to the unwanted variation. For example color invariants [44, 46], scale invariants [69]
and affine transformation invariants [71, 80]. A particularly successful feature descriptor for the
codebook model is SIFT [71] and its variations [6, 22]. The SIFT descriptor includes intensity
invariants, and has recently been extended to include color invariants [18, 132]. Other invariant
feature representations focus on shape [7], self-similarity [112], statistical distinctiveness [39] and
color regularities [55]. When these invariant feature representations are used in the codebook model
they lead to state-of-the-art results [29, 27, 132] and in the following chapters, we will use SIFT,
as well as other invariant feature descriptors.

Apart from the image feature representation, there is the question of which image patches
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a b

Figure 1.3: (a) Example of an object that is ambiguous without context, (b) The object in (a) as
a hole in the water.

to use. The answer for scene recognition is different from the one for object recognition. For
object recognition—where the same object is recorded under varying imaging conditions—it is
beneficial to focus on distinctive patches such as corners [51], blobs [71], color points [133], stable
patches [75] or statistically different patches [63]. These salient points or patches can be detected
under varying imaging conditions [81]. Rather than focusing on interest points, the best approach
for scene recognition is to use many to all available patches. For scene recognition—where the
imaging conditions as well as the objects themselves may vary—a rich source of information is
found in image context [4, 94]. The use of context is as old as Adam’s fig leaf, and as illustrated
in figure 1.3, an object’s surroundings may be more revealing then the object itself. For scene
recognition the use of context by densely sampling image patches is beneficial over interest point
detection [93, 129] and thus adopted in this thesis.

The performance of the codebook model depends on the ability of the machine to learn to
separate the scene categories. A popular and well-performing classifier is the Support Vector
Machine (SVM) [17]. The SVM aims to maximize the classification margin between positive and
negatively labeled training images. This maximum margin can subsequently be used to classify a
new, unseen image. Besides the choice of the classifier, however, the final performance evaluation
depends on the choice of performance metric. This choice depends on the application at hand. For
a classification application [32, 49] the average classification rate is suitable. Alternatively, for a
retrieval application [29, 116] a score dependent on a ranked list such as Area Under the ROC-
Curve (AUC) or Average Precision (AP) is more relevant. These two measures differ in that AP
emphasizes the beginning of a list more than does the AUC. In this thesis we will use and evaluate
several classifiers and performance metrics.

1.2 Organization of the Thesis

This thesis is concerned with the theory and practicalities of visual word model. The theoretical
intentions behind such a model may be clear, however, the road to hell . . . i.e. an unsuccessful
practical application, is often paved with good intentions. Consider the simple idea of averaging
the performance score on a rotating hold-out set to estimate scene classification performance in
video. The practical application of this simple idea is studied in Chapter 2. We investigate the
effect of the narrative context in video on classifier performance estimation and how the estimation
itself affects the final classification performance. Furthermore, we introduce a new intermediate
performance measure and experimentally evaluate our approach for two different classifiers on a
large video collection.

In Chapter 3 we present a scene classification method by incorporating several robust elements
in the codebook model. We explore alternatives to only using the histogram of visual word counts
and also use a codebook vocabulary of semantically meaningful elements to express image context
like vegetation, water, sky, etc. These meaningful elements are expressed by color invariant features
that take advantage of natural image statistics for a compact representation. We evaluate on a
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large video set and five image sets, where we demonstrate robustness by training our method on
one set while evaluating it on another set.

Efficiency by a compact representation is the subject of Chapter 4. In this chapter, we argue that
indexing large image and video collections in practice benefits from a compact image representation,
i.e., a compact visual word vocabulary. To this end, we compare various improvements to the
codebook model under a compactness constraint. We experimentally compare the improvements
with the standard codebook implementation for two classifiers on a large video collection.

In Chapter 5 we exploit context in feature space by soft-assignment of image features to visual
words in the codebook model. We evaluate 4 types of feature assignment and investigate the effect
of image feature dimensionality, the size of the visual word vocabulary and the size of the data set.
We rigorously evaluate on five image sets.

An object recognition method is studied in Chapter 6. We use color invariant features with an
entropy based similarity measure. We evaluate our method on a large image collection consists of
1,000 objects recorded under various imaging circumstances.



Chapter 2

Episode-Constrained Cross-Validation
in Video Concept Retrieval1

2.1 Introduction

Machine learning techniques have proven to be a valuable addition to the repertoire of a multimedia
researcher. Applications of machine learning techniques in multimedia are found in semantic video
labeling [122], video shot detection [99], audio classification [72], scene recognition [135], sports
analysis [24], and in many other areas. Moreover, multimedia researchers have contributed to
specifically designed classifiers for multimedia analysis [38, 88].

Several machine learning techniques rely on accurate performance estimation [25]. The esti-
mated performance may be used in finding the best parameters of a classification model and helps
when deciding between different features. Thus, accurate performance estimation influences the
quality of the machine learning method.

The central issue addressed in this Chapter is the following: How is classification performance
estimation affected by the narrative structure in multimedia data? Much multimedia data is nar-
rative in nature. For example, popular music has a verse and a chorus, multimedia presentations
have slides designed with a message in mind, and shots in video data may be part of a storyline.
Such narratives typically build a story by repeating similar elements. In separating narrative data
in a test and training set, these highly similar elements may easily end up in both the test and the
training set. Hence, commonly used classifier performance estimation techniques need special care
when applied to multimedia classification.

In this Chapter we exploit the narrative structure present in multimedia data to achieve accu-
rate classification performance estimation. We show that more accurate performance estimation
increases the final classification performance. Furthermore, we investigate how unbiased perfor-
mance indicators can be constructed, resulting in unbiased and accurate estimation of classification
performance in a narrative. As an instantiation of narrative multimedia data we will focus on se-
mantic concept detectors in video. However, the described techniques readily apply to other types
of data that share a narrative structure.

The idea of exploiting the narrative structure in video is not novel [122, 50, 59, 151, 152], though
using narrative units for unbiased classification performance estimation is novel to the best of our
knowledge. Our earlier work [137] also noted the influence of narrative structure on classification
performance estimation. This current Chapter, however, provides a more in-depth analysis of this
earlier work while also presenting a new unbiased performance indicator for narrative data.

The organization of this Chapter is as follows. The next section revisits standard classifier
evaluation techniques. Then, section 2.3 introduces an evaluation technique that respects narrative
structure in video concept retrieval. This narrative structure introduces unbalanced data, which
is discussed in section 2.4. Section 2.5 presents the experimental setup followed by the results in
section 2.6 and the conclusions in section 2.7.

1Published in IEEE Transactions on Multimedia [139].
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Video 1 Shot 1

Video 3 Shot 9

Video 3 Shot 15

Video 4 Shot 4

…

Video 1 Shot 3

Video 2 Shot 1

Video 3 Shot 24

Video 4 Shot 15

…

Video 1 Shot 4

Video 2 Shot 21

Video 2 Shot 17

…

Fold 1 Fold 2 Fold 3

Video 5 Shot 11

Video 6 Shot 42

Video 4 Shot 28

Video 5 Shot 43

Video 6 Shot 29

Video 5 Shot 32

Figure 2.1: An example of partitioning a video set by using shot based 3-fold cross-validation.

2.2 Classifier Performance Evaluation

Correct classification error estimation not only provides a quantitative assessment of the classifier,
it also influences classifier performance. Classifier performance depends on the quality of the
classifier model, which in its turn relies on the input features and classifier parameters. These
classifier parameters and features are typically tuned by maximizing the estimated performance over
various input features and parameter settings. For example in a semantic video concept retrieval
task, Snoek et al. [122] use the estimated classifier performance to select the best low level features.
Furthermore, they find the best parameters for a Support Vector Machine (SVM) by maximizing the
estimated classifier performance. In their framework, inaccurate classifier performance estimation
might result in choosing the wrong features, or in sub-optimal parameter settings. Hence, classifier
performance estimation affects the selected classifier model, and thus the quality of the tuned
classifier.

Estimating classification performance is typically done by training a classifier on one set, and
testing the classifier on an independent hold-out set. Thus, a straightforward approach to classifier
performance estimation is keeping a random sample of the available data in an unseen hold-out
set. This hold-out set should be as large as possible, to accurately represent the class variation
that may be expected. However, keeping a large part of the data from the training set gives the
classifier less data to train on. Hence, a balance between the size of the training set and the size of
the hold-out set must be struck.

In contrast to a single hold-out set, the cross-validation method rotates the hold-out set over all
available data. Cross-validation randomly splits the available data in X folds, where each of these
X folds is once used as a hold-out set. The performance estimates on all rotating hold-out folds are
averaged, yielding an estimate of the classifier performance. The cross-validation procedure may be
repeated R times, to minimize the effect of the random partitioning. An example of cross-validation
for a set of shots in a video is shown in figure 2.1. The advantage of using cross-validation is the
combination of a large training set with several hold-out sets. Therefore, cross-validation is the
standard procedure for classification performance estimation [25].

2.3 Cross-Validation in Video Classification

Machine learning is heavily used in semantic video indexing [88, 122]. The aim of semantic video
indexing is retrieving all relevant shots in a dataset to a given semantic concept. Some examples
of semantic concepts are Airplane, Car, Computer Screen, Bill Clinton, Military Vehicle, Sports.
Machine learning techniques, and specifically classifiers, are commonly used to rank a list of shots
according to their probability of being relevant to a semantic concept. These machine-indexed se-
mantic concepts provide a user with automated tools to browse, explore, and find relevant shots in
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Video 156 shot 249 Video 156 shot 250 Video 156 shot 251 Video 156 shot 252

Figure 2.2: An example of narrative structure in video: four consecutive shots showing an interview
with the former Lebanese President Mr. Lahoud.

a large collection of video. With growing digital video collections, there is a need for automatic con-
cept detection systems, providing instant access to digital collections. Therefore, machine learning
techniques are vital to automatic video indexing.

For semantic video concept indexing, a video is typically represented as a set of single shots [91,
122]. However, a video document is the end result of an authoring process [122], where shots are
used to convey a message. For example, a topic in news video, may consist of several similar shots,
as shown in figure 2.2. This temporal co-occurrence of similar shots in a topic may be exploited
for video indexing [59, 151, 152]. Nevertheless, the video indexing task is oriented towards single
shots, whereas a semantic concept might span several shots.

The granularity difference between the indexing task that focuses on single shots, and semantic
concepts that may span several shots requires special care in estimating retrieval performance.
Consider figure 2.2, and note the high similarity between shot 250 and shot 252. The similarity
between these two shots can be expected, since they are part of the same narrative structure.
However, the retrieval task focuses on single shots, and does not take this semantic relation between
shots into account. Therefore, the common practice [91, 122] of estimating retrieval performance
by cross-validation on shots is biased. Cross-validation on shots will mix shots in a single topic
to different folds while randomly partitioning the data. Thus, shots that belong to the same
semantic concept will be present both in the training set and in the rotating hold-out set. This
leaking of near-identical information creates a dependency between the training set and the hold-
out set, which will manifest in too optimistic estimates for retrieval performance. Moreover, if
cross-validation is used for classifier parameter tuning, the parameters will be biased towards near-
duplicate data and might consequently fail to find the best parameters for true independent hold-out
data. Therefore, the narrative structure of video data should be taken into account when estimating
retrieval performance.

In order to preserve the narrative relation between shots in a semantic concept, we propose
an episode-constrained version of cross-validation. In contrast to a shot based partitioning of the
video data, an episode-constrained partitioning aims to keep shots together if they are part of the
same episode. In the context of a semantic concept retrieval task, an episode ideally consists of

Video 1:

50 shots

Video 6

70 shots

…

Video 3

150 Shots

…

Video 2

25 Shots

…

Fold 1 Fold 2 Fold 3

Video 4

30 Shots

Video 5

50 Shots

Figure 2.3: An example of a partitioning a video set by using episode-constrained 3-fold cross-
validation.
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Figure 2.4: Average precision for a worst-case retrieved list of 1000 elements, where all relevant
items are found at the bottom of the list. Note that the worst-case average precision score increases
with the number of relevant items.

all constituent shots of the concept at hand. However, video story segmentation is an unsolved
problem [50, 144]. Therefore, we resolve to using whole videos as atomic episodes. With videos
as atomic elements, all shots in a video are kept together, preventing the leaking of near-identical
information to the hold-out set. Whereas the traditional method randomly distributes shots, our
method randomly distributes videos. An example of episode-constrained cross-validation for a
video set is shown in figure 2.3. The episode-constrained version of cross-validation creates truly
independent hold-out data, and will yield more accurate performance estimates of video concept
classification.

2.4 Performance Estimation Between Unbalanced Sets

In semantic video retrieval, the performance measure of choice is average precision [91, 103, 122].
For a ranked list of elements, average precision denotes the area under the precision recall graph.
Let Lk = {s1, s2, . . . , sk} be the top k ranked elements from the retrieved results set L, and let R
denote the set of all relevant items, then average precision (AP) is defined as

AP(L) =
1
|R|

|L|∑
k=1

|Lk ∩R|
k

IR(sk) , for |R| > 0, (2.1)

where | · | denotes set cardinality and the indicator function IR(sk) = 1 if sk ∈ R and 0 otherwise.
Average precision places a high emphasis on the top of the retrieved results list. The bottom of the
results list is weighted less heavy and retrieval system benchmarks often truncate after a couple of
thousand results. This practical approach to truncation and the high emphasis on the top retrieval
results may explain the popularity of average precision in the video retrieval community.

Average precision describes the shape of the retrieved results list. However, average precision
does not take the a-priori probability of relevant elements into account. Hence, average precision
is not normalized for the number of relevant elements, and will give high scores when there are
many relevant elements. Consider a worst-case retrieval system, that consistently places all relevant
elements R at the bottom of the retrieved result list L. When the cardinality of L is fixed, |L| = c,
the worst-case average precision (WAP) depends only on the number of relevant elements |R|,
reducing equation 2.1 to

WAP(|R|) =
1
|R|

|R|∑
k=1

k

(|L| − |R|) + k
, for |R| > 0. (2.2)
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Figure 2.4 illustrates the worst-case average precision for an increasing number of relevant elements.
Note that a growing number of relevant elements results in an increasing a-priori average precision
score. Thus, average precision scores are hard to compare between sets with a varying number
of relevant elements because the average precision score is biased towards high-frequency relevant
elements.

Given average precision as the performance measure for semantic video retrieval, it stands to
reason to adopt average precision as the performance measure in cross-validation. In episode-
constrained cross-validation, however, shots are kept together to prevent leaking of similar shots
to a rotating test set. These atomic sets of shots hamper an equal distribution of the relevant
shots over the cross-validation folds. For example, one news episode may contain several shots of a
popular sports event, whereas other episodes may contain none. Hence, episode-constrained cross-
validation yields an unbalanced distribution of relevant elements over the folds. Since the estimated
performances on the folds are averaged to give a final cross-validation performance estimate, the
folds that are randomly endowed with a high number of relevant-item episodes will dominate the
cross-validation performance estimation. The effects of this will manifest itself in the classifier
model selection that fit best to the fold that has the most relevant elements. Thus, in general, and
for episode-constrained cross-validation in particular, an alternative to average precision is required
that normalizes for unbalanced folds.

A performance measure for cross-validation should optimize average precision and allow equal
weights when averaging cross-validation folds. Hence, this performance measure should scale be-
tween a fixed minimum and maximum, say 0 and 1, where 0 should represent the case where all
relevant elements are retrieved at the bottom of the list, and 1 should indicate that all relevant
elements are found at the top of the list. This normalization between 0 and 1 remedies the bias
of average precision towards a high number of relevant elements. Besides normalization, the per-
formance measure should guarantee that it optimizes the original average precision score. Any
alternative to average precision as a performance measure should follow these criteria.

Several alternatives to average precision may be found in the literature. In classifier evaluation
it is common to use receiver operating characteristic (ROC) curves for representing classification
performance [25]. The ROC-curve shows the variation between the ratio of correctly classified
positive elements and the incorrectly classified negative elements. As an alternative to average
precision, the area under the ROC curve (AUC) may be maximized [38]. Maximization of the AUC
optimizes the pairwise probability of retrieving a relevant element over a non-relevant element [21].
The AUC has the required property that an AUC value of 1 indicates perfect retrieval, and 0
denotes worst-case retrieval. However, optimizing the AUC does not guarantee to optimize average
precision [23]. Other performance measures like R-precision [2], normalized average rank [86],
normalized average precision [103], inferred average precision [154] or interpolated precision [102]
may optimize average precision, however they do not scale between a fixed minimum and maximum.
To the best of our knowledge, no performance measure exists that satisfies our demands. Hence,
for a retrieved results set L, we propose an unbiased version of average precision which we name
balanced average precision (BAP),

BAP(L) =
AP(L)−WAP(L)

1−WAP(L)
, for WAP < 1, (2.3)

where AP and WAP refer to average precision and worst-case average precision in equations 2.1
and 2.2 respectively. The balanced average precision merely rescales the average precision where
the worst possible result is set at 0, and the best possible results set at 1. Since balanced average
precision is a monotone rescaling of average precision, optimizing this measure also optimizes
the original average precision. Hence, balanced average precision allows a normalized comparison
between sets with an unbalanced number of relevant elements, while maintaining all properties of
average precision.

In figure 2.5 we show the relation between average precision (AP) and balanced average precision
(BAP). The figure illustrates the BAP score corresponding to a given AP value for various ratios
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Figure 2.5: The relation between average precision and balanced average precision. The solid
blue lines represent different ratios of the number of positive elements compared to the number of
negative elements in a retrieved list. In this example, the ratios range from 10% to 90% positive
elements. The dashed line y = x is included as an AP self-reference.

between positive and negative elements in a list. For a fixed AP score, an increasing positive ratio
yields a substantially smaller BAP score (vertical lines). Note that a larger difference between
positive ratios yields a larger difference between BAP scores. For example, at an AP value of 0.8,
the difference in BAP scores between the ratios of 80% and 90% is 0.35, whereas the difference
between the ratios 70% and 80% is 0.13. For cross-validation, therefore, BAP will have more
impact for folds with large differences between their positive elements ratios. What is more, the
inequality between varying positive ratios increases, as the BAP score decreases (horizontal lines).
For example, the difference between the ratio lines of 80% and 90% for a BAP value of 0.6 is 0.05,
whereas this difference is 0.12 for a BAP score of 0.1. Hence, the effect of BAP becomes more
pronounced for low classifier performance, i.e., with hard problems. We deem multimedia indexing
a hard problem. Moreover, episode-constrained cross-validation increased the inequality between
folds. Hence, we argue for using BAP for parameter estimation in multimedia classification.

2.5 Experimental Setup

We compare the episode-constrained version of cross-validation with the shot based version of cross-
validation on a large corpus of news video: the Challenge Problem [121]. The Challenge Problem
provides a benchmark framework for video indexing. The framework consists of visual features,
text features, classifier models, a ground truth, and classification results for 101 semantic concepts2

on 85 hours of international broadcast news data, from the TRECVID 2005/2006 benchmark [91].
The advantage of using the challenge framework is that the framework provides a standard set
of features to the TRECVID data. Furthermore, the framework is well suited for our experiment,
since there are a large number or shots, i.e. close to 45, 000, and an abundance of semantic concepts.

The Challenge data comes with a training set consisting of the first 70% of the video data, and
a hold-out set containing the last 30% of the data. We use the training set for training both a k-
nearest neighbor classifier (kNN) and a support vector machine classifier with an rbf-kernel [25]. We
opted for the k-nearest neighbor classifier because of its simplicity, its generally decent performance,
and the fact that it has a single tunable parameter. We included the SVM because it is a popular
classifier which performs well on this data [121]. The features we use are the visual features [136]

2We did not evaluate the concept baseball, since all the examples in the training set of this concept are found in
a single video.
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Figure 2.6: Performance estimates of episode-constrained and shot based cross-validation compared
to the true hold-out performance (a) for the SVM classifier, and (b) for the kNN classifier.

that are provided with the Challenge framework.

2.6 Results

The focus of the experiment is on comparing episode-constrained cross-validation versus shot based
cross-validation. To this end, we use both cross-validation methods to randomly partition the data
in 10 folds. These 10 folds are subsequently used to estimate the best value for k for a kNN
classifier, where k ∈ {1, 2, 3, 4, 5}. For the SVM classifier we preset the slack parameter C per
class to the inverse of the class frequency and logarithmically tune the rbf-kernel size γ, where
γ ∈ {1, 3.16, 10, 31.6, 100}. To evaluate the results, we computed the classification scores for all k
and γ parameters on the hold-out set. The estimates and true hold-out average precision scores
for the of the SVM and kNN classifier are displayed in figure 2.6.

2.6.1 Evaluating Episode Constrained Cross-Validation

The results in figure 2.6 clearly show the over-estimation of the average precision scores by the
shot based cross-validation method. This over-estimation is more evident for the kNN classifier
than for the SVM classifier. For the SVM classifier the episode-constrained estimation is closer
to the true hold-out performance for 81 concepts, and in case of the kNN classifier this holds
for 93 concepts. We show a more detailed figure for the kNN classifier in figure 2.7a. In this
figure we show concepts with a large difference between their scores on hold-out or between the
scores of the two cross-validation methods. Furthermore, we show the 7 concepts where shot based
cross-validation gives a closer estimate to the hold-out performance than episode-constrained cross-
validation. These 7 concepts either have very few examples or consist of shots that have near-copies
in the hold-out set. Concepts with few examples (i.e. Prisoner) cannot be distributed completely
over the 10 folds when videos are kept together. These concepts yield zero-scores for some folds,
which in turn leads to a low fold average. The near copies in the hold-out set are due to commercials
(Bird, Fish, Cycling, Waterfall) or due to little appearance variation (Soccer, Nightvision). Other
concepts score significantly lower on the hold-out set because they have too little appearance overlap
between the examples in the train set and the hold-out set (River, Motorbike, Mr. Nasrallah,
Horse racing, Horse). The remaining concepts (Cartoon, Drawing/Cartoon, Drawing) are made
up of highly repetitive shots within a video and therefore benefit most from episode-constrained
cross-validation as can be seen by its accurate performance estimation compared to shot based
cross-validation.

In figure 2.7a we show the estimated classifier parameters and the best parameters on the hold-
out set. For space considerations we only show the kNN classifier, since it gives the best results.
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Figure 2.7: (a) Performance estimates of episode-constrained and shot based cross-validation com-
pared to the true hold-out performance for some selected concepts with the kNN classifier. (b)
Selected parameters of episode-constrained and shot based cross-validation compared to the true
hold-out performance for the kNN classifier.

The first thing that is striking about the estimated parameters in figure 2.7b is the discrepancy
between methods in selecting the best classifier parameter. The shot based cross-validation method
for kNN selects k = 3 for 97 out of 100 concepts, whereas episode-constrained cross-validation
correlates better with the best parameter of the hold-out set. The parameter estimates influence
the final classification performance, and we summarize this in table 2.1. In this table we present
the mean performance in average precision over all concepts, for both cross-validation methods and
for both classifiers. We show the estimated results on training data, and the results on hold-out
data where we tune the classifier parameter by selecting the maximum performance according to
the cross-validation method at hand.

In analyzing table 2.1, we focus on two points: 1) the accuracy in estimating classifier perfor-
mance and 2) the final classification performance. Starting with point 1, we consider the difference
between the estimated performance on training data and the reported performance on hold-out
data. For shot based cross-validation there is considerable difference between the estimated per-
formance on training data and the performance on hold-out data. Specifically, the difference is
0.386 for the kNN classifier, and 0.273 for the SVM classifier. In contrast, for episode-constrained
cross-validation the difference between training data and hold-out data is only 0.097 for the kNN,
and 0.135 for SVM. This clearly shows that the estimated performance of the episode-constrained
cross-validation is more accurate than the performance estimate based on shots. Continuing with
the issue of final classification performance, we compare the performance on hold-out data for
both methods. An analysis of the hold-out results per concept shows that episode-constrained
cross-validation yields equal or better results for 85 concept with kNN and for 79 concepts for
SVM. Averaged over all concepts, the episode-constrained method outperforms the shot based
method by 14% for kNN, and 5% for SVM, as shown in table 2.1. The smaller improvement in
the case of the SVM is due to a large performance increase when near-duplicates are present in the
hold-out set. Since near-duplicates are very similar, the SVM with its parameters tuned by shot
based cross-validation is very well tuned to these duplicates. The large performance increase for
near-duplicates leads to a disproportional increase in the average value over all concepts. The near-
duplicates mostly consist of commercials: Bird (+0.09), Waterfall (+0.10), NightVision (+0.19),
SwimmingPool (+0.09), Beach (+0.06). Nevertheless, for the SVM the performance for 79 out of
100 concepts improves by using episode-constrained cross-validation. Therefore these results show
that performance estimation with episode-constrained cross-validation is considerably more accu-
rate than using shot based cross-validation, and that this improvement in performance estimation
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Shot Based Episode-Constrained
kNN SVM kNN SVM

Training set 0.573 0.474 0.310 0.345
Hold-out set 0.187 0.201 0.213 0.210

Table 2.1: The mean performance in AP over all concepts using the estimated parameters as
selected by each method.
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Figure 2.8: The difference per concept between estimated average precision (AP) and balanced
average precision (BAP) on training data.

directly translates to an improvement in final classification performance.

2.6.2 The Influence of Balanced Average Precision

Here, we evaluate the assumptions and motivation of using balanced average precision. Balanced
average precision allows a fair comparison between collections with an unbalanced number of rel-
evant elements. We assumed that unbalanced collections are more likely to occur with episode
constrained cross-validation, since atomic sets of shots hamper an equal distribution of relevant
elements over the cross-validation folds. In order to test this hypothesis, we compare the spread
of the relevant elements over the folds for both episode-constrained cross-validation and the tradi-
tional shot based cross-validation. Specifically, we compute the standard deviation of the number
of relevant elements per fold, averaged over all concepts. Both methods of cross-validation have
on average 135.21 relevant elements per fold, where the average standard deviation of the shot
based and episode-constrained cross-validation method is 0.40 and 30.51 respectively. The dif-
ference between both standard deviations clearly shows that episode-constrained cross-validation
creates significantly more unbalanced folds than shot based cross-validation. Hence, the motivation
of using balanced average precision with episode-constrained cross-validation is sound.

The unbalanced folds in episode-constrained cross-validation necessitate the use of balanced
average precision. However, the difference between balanced average precision (BAP) and tradi-
tional average precision (AP) may not necessarily prove significant. We evaluate this significance
on the Challenge Problem. We employ episode-constrained cross-validation for classifier parameter
selection and compare the scores of average precision versus balanced average precision. The results
on the Challenge Problem show no difference in parameter selection for both the kNN as the SVM
classifier. Hence, for this dataset there is no difference between average precision and balanced
average precision. In figure 2.8 we show the difference between AP and BAP compared to the ratio
of positive examples for a concept. As illustrated in figure 2.8, there are 89 out of 100 concepts
with less than 10% positive examples. Such concepts with relatively few positive examples are less
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Fold AP BAP % Relevant shots

1 0.919 0.863 63
2 0.917 0.864 60
3 0.900 0.824 65
4 0.911 0.841 66
5 0.867 0.779 61
6 0.906 0.830 66
7 0.873 0.785 62
8 0.892 0.820 61
9 0.896 0.810 67
10 0.930 0.866 70

Table 2.2: Average precision (AP) balanced average precision (BAP) scores and the percentage of
relevant shots in each fold for the concept Face.

affected by unbalanced data. As we have shown in figure 2.5, the benefit of BAP comes into its
own with larger number of positive examples. As an example, the scores on the cross-validation
folds for the concept Face are given in table 2.2. This table shows that the over-estimation bias in
average precision does occur, however not often enough. For example, when comparing the scores
for fold 1 and fold 2, the AP in fold 1 is higher than the AP in fold 2, whereas the BAP for fold 1 is
lower than the BAP for fold 2. The same holds for fold 8 and 9. Therefore, despite that there is no
difference between AP and BAP for parameter selection on this dataset, the unbalanced data does
have a biased effect on average precision. Thus, when using episode-constrained cross-validation
balanced average precision is preferred over average precision.

2.7 Conclusions

In this Chapter, we compare two methods of cross-validation for estimating classification perfor-
mance for semantic concept detection in video. The traditional method of cross-validation is based
on shots, whereas we propose a method based on episodes. An episode-constrained method for
cross-validation prevents the leaking of similar shots to the rotating hold-out set. We use a whole
video as an episode. However, video story segmentation [50, 144] seems a likely alternative to
obtain natural episodes. Since episode-constrained cross-validation tends to produce sets with an
unbalanced number of relevant items, we introduce balanced average precision. Balanced average
precision is an unbiased alternative to average precision. In contrast to average precision, balanced
average precision normalizes for the number of relevant items and is therefore a theoretically better
choice when dealing with sets that contain an unbalanced number of relevant elements. Experi-
mental results show that the bias of average precision for unbalanced data does occur. However,
in our dataset, balanced average precision performs equal to average precision because of the low
ratio of positive examples in this dataset. Further experimental evaluation show that the episode-
constrained method yields a more accurate estimate of the classifier performance than the shot
based method. Moreover, when cross-validation is used for parameter optimization, the episode-
constrained method is better able to estimate the optimal classifier parameters, resulting in higher
performance on validation data compared to the traditional shot based cross-validation.



Chapter 3

Visual Scene Categorization by
Learning Image Statistics in Context1

3.1 Introduction

Often, real world images only make sense when captured in context. For example consider an
image of a harbor, a city skyline, or a conference meeting. Such scenes are captured more by
the ensemble of objects, rather than by individual objects. Therefore, scene recognition differs
from object recognition [32, 34, 71, 79] in that not only the foreground is the focus of recognition.
Object recognition concentrates on the important task of detecting features relevant to one instance
of an object, preventing as much as possible the inclusion of background features. Here we address
the problem of scene categorization, including background and surrounding objects, that is, the
context. Hence, we aim to contribute to content based image and video analysis by establishing a
robust method for the learning and subsequent classification of scene categories.

Instead of using image features directly for scene categorization [131], several approaches [33, 73,
94, 101, 124, 127, 130, 145] make use of an intermediate image description step. This intermediate
step consists of labeling a part of the image by its best representative out of a predefined codebook
vocabulary. Using a codebook allows for density estimation [130], latent class analysis [33, 101, 124],
and low level semantic grouping [73, 94, 127, 145]. An inherent problem of the codebook approach is
choosing the vocabulary. If the vocabulary is too large, each part of the image will match to a single,
unique, vocabulary element, which defies the purpose of a codebook. On the other hand, if the
vocabulary is too small, several different image parts will be represented by the same vocabulary
element. Thus, the codebook vocabulary determines the expressiveness and the discriminatory
power of the method. In contrast, we propose to use the similarity to all codebook vocabulary
elements, retaining expressiveness and discriminatory power.

In this Chapter, we exploit the statistical information locally available in images to categorize
the scene. As shown by Torralba and Oliva [94, 127], scene categorization has strong correlation
with the statistical structure within the image. Here, we provide a method for scene categorization,
which does not need the input to be centered and oriented in a similar direction. Furthermore, the
proposed method is robust over different datasets. We used one set of annotated video sequences
to model video categories, object images, and photo stock collections. Moreover, the experiments
are conducted with at least 50 categories using over ten thousand images. To our knowledge, this
is the largest experimental evaluation, in number of categories and number of images, present in
the literature.

The outline of the Chapter is as follows. The next section will give an overview of the visual fea-
tures which effectively capture local image statistics. Subsequently, section 3.3 shows our method
for learning context from local image statistics by learning the similarities of proto-concepts within
images. Section 3.4 experimentally demonstrates our method on 4 dataset: 1) We show catego-
rization results for 50 categories recognized on a large video collection of 160 hours of video. 2)

1Published in CVPR International Workshop on Semantic Learning Applications in Multimedia [136].
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To show the generality of our approach, we provide a comparison with state-of-the-art by learning
and recognizing the 101 object categories in the Caltech collection. 3) To compare against the
state-of-the-art we participated in the Pascal VOC object recognition challenge 4) to show the ro-
bustness of our approach, we will use the proto-concepts extracted from the video data to learn 89
categories from the Corel photo collection (16,500 images), and recognizing the learned categories
in a completely different photo stock (ArtExplosion, 62,000 images). Finally, section 3.5 concludes
the Chapter.

3.2 Visual Features

Modeling visual data heavily relies on qualitative features. Good features describe the relevant
information in an image while reducing the amount of data representing the image. To achieve
this goal, we use Weibull-based features [42]. By using Weibull-based features, we combine color
invariance with natural image statistics resulting in an effective but compact description of local
image content. Color invariance aims to remove accidental lighting conditions, while natural image
statistics efficiently represent image data.

3.2.1 Natural Image Statistics

The statistical content of the scene provides robust cues for scene recognition [94, 127]. Hence,
there is a direct relation between scene structure, and image statistics. In this Chapter, we exploit
the statistical information locally available in images to categorize the scene. An example of such
a categorization may be “close-up, indoor, outdoor, panorama”. At a higher level of semantics,
one may aim at categorizing the sort of objects in the image: “anchorman, explosion, boats, rural,
city view, traffic jam”. As will be demonstrated in this Chapter, both categorizations have strong
correlations with the statistical structure of the scene.

We capture the local statistics of the image by applying Weibull-based features [42] where
natural image statistics is used to effectively model texture information. For sake of completeness,
we provide a short overview of Weibull-based features.

Texture is described by the distribution of edges for a certain region in an image. Hence, a
histogram of a Gaussian derivative filter is used to represent the edge statistics. Since there are
more non-edge pixels then there are edge pixels, a histogram of edge responses for natural images
always has a peak around zero, i.e.: many pixels have no edge responses. Additionally, the shape of
the tails of the distribution is often in-between a power-law and a Gaussian distribution. The tail
emphasizes the long-range correlation between edge pixels in the image. A heavy power-law tail
indicates a strongly contrasting object-background edge, whereas a Gaussian tail indicates a noisy,
high-frequency texture region. The complete range of image statistics in natural textures can be
well modeled with an integrated Weibull distribution [42]. This distribution is given by

γ
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γ )
exp
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γ

∣∣∣∣r − µβ
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where r is the edge response to the Gaussian derivative filter and Γ(·) is the complete Gamma
function, Γ(x) =

∫∞
0 tx−1e−1dt. The parameter β denotes the width of the distribution, the pa-

rameter γ represents the peakness of the distribution, and the parameter µ denotes the origin of
the distribution. See figure 3.1 for examples of the integrated Weibull distribution.

The integrated Weibull distribution can be estimated from a histogram of filter responses with
a maximum likelihood estimator (MLE). The parameters µ, β and γ are estimated by taking the
derivatives of the integrated Weibull distribution to the respective parameters and setting them to
zero. The parameters β and γ are dependant on each other, therefore a binary search scheme is
utilized to estimate the best β and γ combination.
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Figure 3.1: Some examples of the integrated Weibull distribution for β = 1, µ = 0, varying values
for γ ∈ {1

2 , 1, 2, 4} .

Since the integrated Weibull distribution characterizes edge responses, the parameters of the
distribution correspond to different image properties. The β parameter represents the width of
the distribution. A high value of β corresponds to a wide distribution which indicates an image
with high contrast. The γ parameter denotes the slope of the distribution. A low value of γ (< 1)
represents a highly peaked distribution, which corresponds to an image with smooth surfaces. A
medium value of γ (1 < γ < 2) indicates a smooth distribution, which represents Gaussian noise-
like images. A high value of γ (> 2) is an indicator of a histogram that does not follow a Weibull
distribution. Specifically, an image with a regular pattern, for example the beams of the American
flag, produces a histogram that has multiple peaks. The MLE estimator of the integrated Weibull
distribution will represent multiple peaks in the histogram by a smooth and flat distribution,
represented by a high value of γ. The µ parameter represents the mode of the distribution. The
position of the mode is influenced by uneven illumination and colored illumination. Hence, to
achieve color constancy the values for µ may be ignored.

To assess the similarity between two integrated Weibull distributions, a goodness-of-fit test
is utilized. The measure is based on the integrated squared error between the two cumulative
distributions, which is obtained by the Cramér-von Mises statistic,

C2 =
∫ 1

0
[F (x)−G(x)]2 dF (x) , (3.2)

where F is the test distribution, and G represents the target distribution, where both are cumulative
distributions. For two Weibull distributions with parameters βF , γF and βG, γG a first order Taylor
approximation yields the log difference between the parameters. Therefore, we define a measure of
similarity between two Weibull distributions is given by the ratio of the parameters,

C2(F,G) =

√
min(βF , βG)
max(βF , βG)

min(γF , γG)
max(γF , γG)

. (3.3)

In summary, Weibull-based features provide a texture descriptor based on edges. Moreover, the
features rely heavily on natural image statistics to compactly represent the visual information. For
a more detailed elaboration on Weibull-based features, see [42].

3.2.2 Color Invariant Edge Detection

Here we combine color invariant edge responses with natural image statistics to end up with color
invariant Weibull-based features. Color invariance aims to remove accidental lighting conditions,
while Weibull-based features efficiently represent image statistics.

We first decorrelate the RGB channels by a linear transformation to an opponent color represen-
tation. Advantage of the use of an opponent color space is that color values are decorrelated. Hence,
for a distinctive image content descriptor, we may as well use the marginal, one-dimensional, dis-
tributions for each of the color channels. This in contrast to the histogram of the full 2D chromatic
or 3D color space (see e.g. [26, 45]).

Further decorrelation of color information can be achieved by using photometric invariant edge
detectors. The invariant W (notation from [44])) measures all intensity fluctuations except for
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Sky Building Road

Figure 3.2: Three examples of annotated regions in video.

overall intensity level. That is, edges due to shading, cast shadow, and albedo changes of the
object surface. These invariants are equivalent to Gaussian derivative filters for color images,
where 6 orthogonal derivatives may be distinguished. Wx,Wy detect edges in intensity, whereas
Wλx,Wλy and Wλλx,Wλλy detect edges in the two orthogonal chromatic color components.

Thus, color invariant edge responses, are invariant to changes in intensity, and decorrelate the
RGB channels, allowing the weibulls to be computed on marginal densities.

3.3 Contextures: Regional Texture Descriptors and their Context

Building towards semantic access to image collections, we aim to decompose complex scenes in
proto-concepts like vegetation, water, fire, sky etc. These proto-concepts provide a first step to
automatic access to image content [145]. Given a fixed vocabulary of proto-concepts, we assign
a similarity score to all proto-concepts for all regions in an image. Different combinations of a
similarity histogram of proto-concepts provide a sufficient characterization of a complex scene. We
introduce the notion of contextures, where global texture and local texture information and their
context are used to describe visual scene information.

By using the similarity to all vocabulary elements, we introduce an alternative to codebook
approaches [33, 101, 124, 130, 145]. A codebook approach uses the single, best matching vocabulary
element to represent an image patch. For example, given a blue area, the codebook approach must
choose between water and sky, leaving no room for uncertainty. We propose to use the distances
to all vocabulary elements. Hence, we model the uncertainty of assigning an image patch to each
vocabulary elements. By using similarities to the whole vocabulary, our approach is able to model
scenes that consist of elements not in the codebook vocabulary.

3.3.1 Region Annotation of Proto-Concepts

In order to recognize concepts based on low-level visual analysis, we annotated 15 different proto-
concepts: building (321), car (192), charts (52), crowd (270), desert (82), fire (67), US-flag (98),
maps (44), mountain (41), road (143), sky (291), smoke (64), snow (24), vegetation (242), water
(108), where the number in brackets indicates the number of annotation samples of that concept.
These proto-concepts are chosen by their relevance for concept detection in the TRECVID video
benchmark. Although they seem to be tuned to the problem at hand, we will show these concepts
to generalize (including the annotation effort) to various datasets. Fig. 3.2 shows an example of
some regional annotations. We use the TRECVID 2005 [91] common annotation effort as a basis
for selecting relevant shots containing the proto-concepts. In those shots, we annotated rectangular
regions where the proto-concept is visible for at least 20 frames.

For each of the proto concepts, visual characteristics are captured by their Weibull-based fea-
tures as described above.
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Figure 3.3: An example of dividing an image up in overlapping regions. Here, the region size is a
1
2 of the image size for both the x- and y-dimension. The regions are uniformly sampled across the
image with a step size of half a region. Sampling in this manner identifies nine overlapping regions.

3.3.2 Region descriptors

The visual detectors aim to decompose an image in similarities to proto-concepts like vegetation,
water, fire, sky etc. To achieve this goal, an image is divided up in several overlapping rectangular
regions. The regions are uniformly sampled across the image, with a step size of half a region, see
figure 3.3 for an example. The region size has to be large enough to assess statistical relevance,
and small enough to capture local textures in an image. We utilize a multi-scale approach, using
small and large regions.

A visual scene is characterized by both global as well as local information. For example, a
picture with an aircraft in mid air might be described as ”sky, with a hole in it”, sky being globally
present in the image except for a local distortion: the aircraft. To model this type of information,
we use a proto-concept occurrence histogram where each bin is a proto-concept. The values in the
histogram are the similarity responses of each proto-concept, to the regions in the image.

We use the proto-concept occurrence histogram to characterize both global and local texture
information. Global information is described by computing an occurrence histogram accumulated
over all regions in the image. Local information is taken into account by constructing another
occurrence histogram for only the response of the best matching region. For each proto-concept,
or bin, b the accumulated occurrence histogram and the best occurrence histogram are constructed
by,

Haccu(b) =
∑

r∈R(im)

∑
a∈A(b)

C2(a, r) , (3.4)

Hbest(b) = arg max
r∈R(im)

∑
a∈A(b)

C2(a, r) , (3.5)

whereR(im) denotes the set of regions in image im, A(b) represents the set of stored annotations
for proto-concept b, and C2 is the Cramér-von Mises statistic as introduced in equation 3.2. We
denote a proto-concept occurrence histogram of an image as a contexture for that image. We have
chosen this name, as our method incorporates texture features in a context. The texture features
are given by the use of Weibull-based features, using color invariance and natural image statistics.
Furthermore, context is taken into account by the combination of both local and global region
combinations.

The contexture Haccu counts the relative amount of proto-concepts present in a scene, hence
how much of a proto-concept is present in a scene. The contexture Haccu is important in char-
acterizing, for example, airplanes and boats. In these cases, the accumulated histogram indicates
the presence of a large water body or a large area of sky. The contexture Hbest only indicates
the presence of proto-concepts, hence indicates which proto-concepts are present in a scene. In
this way, constellations of proto-concept indicate scene type without specifying the relative area
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each proto-concept should occupy. This is of importance in characterizing, for example, military
actions in the middle east, where the combined presence of road, desert, and fire, turns out to be
very effective. Note that, by using occurrence histograms and dense sampling over the image, the
proposed method is translation invariant, thus, the exact layout of the scene is not strictly enforced.
Opposed to [94], placing objects in the centre of the scene, and strictly aligning them in a similar
direction is not necessary for our categorization scheme.

In contrast to codebook approaches, our method is not limited to the visual categories that can
be described by the vocabulary of proto-concepts. Not every image contains proto-concepts like
’sky’, ’vegetation’, ’water’. Scenes where the specific proto-concepts do not occur can nevertheless
be described by contextures. This is the case, since the similarity to a proto-concept is used, not
the proto-concept itself. A robust and consistent similarity measure will give similar values for
similar scenes. For scenes that belong to the same visual category, there is some common visual
denominator that ties the scenes to the category. Hence, there will be a correlation between the
contextures of scenes that belong to the same category. For example, an office scene might consist
of large surfaces with sharp edges (desks) and multicolored highly textured and oriented regions
(books). The similarity to proto-concepts like ’sky’ and ’vegetation’ will not be high since none of
the proto-concepts are present. However, the responses of the proto-concepts will be the same for
another office scene, because this new scene will consist of similar regions. Thus, a scene can be
expressed in a degree of similarity to a vocabulary of proto-concepts, without containing any of the
proto-concepts.

Learning of scene categories is approached by default machine learning techniques. The con-
textures are extracted from example images, human labeled to belong to a given category, and
subsequently fed into a support vector machine (SVM) with a radial basis function for scene cate-
gory learning.

3.4 Experiments

Contextures can be computed for different parameter settings. Specifically, we calculate the con-
textures at scales σ = 1 and σ = 3 of the Gaussian filter. Furthermore, we use two different region
sizes, with ratios of 1

2 and 1
6 of the x-dimension and y-dimensions of the image. The combination

of all these parameters yields a single vector, which is used for scene classification.

3.4.1 TRECVID video benchmarks

The TRECVID video benchmark 2005 [91] provides nearly 170 hours of news video (English:
CNN, NBC, MSNBC; Chinese: CCTV4, NTDTV; Arabic: LBC). The goal is to retrieve shots
from this collection, which are relevant to a predefined topic. The National Institute of Standards
and Technology (NIST) provides the video collection to all participants, and scores the returned
rankings by human evaluation.

Video retrieval is evaluated by the relevance of a shot, while contextures are based on one image.
To generalize our approach to shot level, we extract 1 frame per second out of the video, and then
aggregate the frames that belong to the same shot. We use two ways to aggregate frames: 1) average
the contexture responses for all extracted frames in a shot and 2) keep the maximum response of
all frames in a shot. This aggregation strategy accounts for information about the whole shots,
and information about accidental frames, which might occur with high camera motion. However,
since we do not use keyframes, we lose information about exactly identical shots, like commercials.

We learned 50 categories on the video data, shown in figure 3.4(a). The results provided
here gives an impression of the quality of visual only detection by using our method of scene
categorization, compared to state-of-the-art video retrieval. For all 50 visual concepts we extracted
from the video, 10 categories are evaluated by NIST. In figure 3.4(b) we provide the average
precision for these 10 categories for our method against the best and the median result for all
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Figure 3.4: (a) Performance measured in average precision of 50 visual-only detectors on TRECVID
data. The score was computed by three fold cross-validation. (b) Best, median and our average
precision scores for the 10 concepts on TRECVID 2005 hold-out data, evaluated by NIST.

33 other participants. We do not get the best results however obtain competitive results to all
participants.

Overall, the proposed scene categorization turns out to work effectively for 1) scenes where
spatial context is uniform, like individual sports (soccer, tennis, basketball, football), 2) typical
studio settings (anchor, face, spitscreen), and 3) well constrained environments (e.g., “chairs” and
“tables” coincides with interview settings or political items in news). Performance for combinations
of these categories are not well learned from examples alone (see e.g. sports), and need a higher
level aggregation step. Furthermore, natural scene categories are well represented by the proposed
scheme, for example mountains, waterbody, vegetation, smoke. Visual inspection shows that the
scene categorization is well able to generalize learned concepts to an unseen test set. Note that for
the 10 evaluated concepts, TRECVID results for at least 3 concepts (waterbody, cars, mountains)
are dominated by commercials (identical copy detection), for which we did not make an additional
effort.

3.4.2 Caltech 101 object categories

In the previous section we gave an impression of our scene categorization on a large collection of
video data. From the training set of the TREC video collection, the proto-concept annotations have
been extracted. Hence, the proto-concepts are tuned to the type of data (compression, quality),
and possibly include domain specific information. An important research question is if the learned
similarity histograms of proto-concepts, at the heart of our method, easy generalize to other domains
and image qualities. Here, we compare performance on a standard collection of web-images: the
Caltech 101 object categories.

In figure 3.5 we compare classification performance against Serre et al. [110]. For recogni-
tion of each single categories against a background class of Google images, (one vs background),
performance is not as good as by Serre et al. This can be explained by the fact that the Caltech col-
lection contains several manipulation artifacts, in that objects have been centered and orientation
has been normalized within each category. Furthermore, several computer graphics and cartoons
are included in object categories, and, more important, convey a large portion of the background
class. Hence, our natural image statistics based description is not too adequate here. However, a
perfect classification of foreground-background gives no indication of performance if an unknown
scene has to be classified. You can have perfect one-vs-background, and at the same time being
poor in separating all 101 classes. We expect our method to perform better under one-against-all
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Figure 3.5: Performance histogram of one class vs. background class on the Caltech 101 object
dataset for different numbers of training examples.

since in that case the number of cartoon images becomes less dominant.
Our performance on multiclass classification for 15 training samples is 33.2% correct classifica-

tion, and for 30 training samples 42.3% correct classification (chance 1/101 is below 1%). Compared
to the paper by Fei Fei et al. [32], who reach 16% correct classification for 15 examples. Serre et
al. [110] has 35% for 15 examples, and 42% for 30 examples, comparable to our results. Holub
et al. [58] obtain 40% classification accuracy for 20 training examples. Berg et al. [8] reach best
performance of 45% with 15 examples.

Note that we obtain a similar performance as the methods cited above, with a limited feature
set derived from only 12 Gaussian derivative filters. Hence, our method generalizes generalizes
beyond the original domain of video to web images.

3.4.3 Pascal VOC datasets

We performed additional categorization experiments on the 2006 and 2007 Pascal VOC object
categorization datasets [30, 28]. These datasets contain 5,304 images in the 2006 collection and
9,963 images in the 2007 set. For both of these sets, half of the collection is used for training,
and the other half for testing. Note that at the time of the competitions the ground truth for the
test-set was not available.

VOC 2006 evaluation

For the Pascal VOC 2006 challenge [30], we submitted two methods. The first method is the
Weibull-features with contextures as presented earlier. The second method uses a combination
of several detectors and descriptors. The output of several image descriptors on the train+val
set is clustered with a radius-based clustering algorithm. These clusters are subsequently used to
characterize an image in the whole set. The four detectors consist of: 1) An overlapping 2D grid,
2) Maximally Stable Extremal Regions (mser), 3) Harris Laplacian and 4) Hessian Affine.

The five image descriptors consist of: 1) Wiccest Features, 2) Sift, 3) Spin, 4) Gloh, and 5)
Shape Context.

Based on cross validation performance on the train set, we selected the best representative for
each descriptor. The best results were given by these five: mser.spin + grid.weibull + mser.shapeCtx
+ harlap.sift + hesaff.gloh. Early fusion of the image characterizations based on the clusters were
used to train a Support Vector Machine classifier on the train set, which was used to predict scores
on the test set. The results are given in figure 3.6. The results show that the combination of
methods always outperforms the single method. Furthermore, it can be seen that our approach is
not the best, but performs competitively
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Figure 3.6: Comparing Wiccest-only features with a fusion of popular descriptors and detectors
in the VOC 2006 and 2007 challenge. (a) VOC 2006, UVA weibull denotes the Wiccest features,
whereas the UVA big5 indicate the fusion of the five image descriptors. (b) VOC 2007, UVA WGT
denotes the Wiccest features, whereas the UVA FuseAll indicate the results for late fusion.
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Figure 3.7: The 89 base concepts, with corresponding categories in Corel and Artexplosion. The
main concept is followed by its constituent categories in brackets. The concepts in brackets are the
corresponding categories in Corel and ArtExplosion, respectively.

VOC 2007 evaluation

For the Pascal VOC 2007 challenge [28], we again focus on two methods. The first is again the
Weibull-features with contextures as used before. The second method, however, uses late fusion
of several descriptors. This late-fusion consists again of several interest point detectors and image
descriptors. The results are shown in figure 3.6. Again, the fusion method outperforms the single
method, and our performance is competitive with the state-of-the-art.

3.4.4 Corel vs. ArtExplosion

To further evaluate the robustness of our approach, we applied scene categorization on a photo
stock. In this experiment, we investigate if scene categories learned from one collection can be
applied to a different collection. Note that, from a machine learning perspective, this is a more
challenging task then obtaining a training and test set by subdividing a homogeneous collection.
We use the Corel and ArtExplosion commercially available photo stock, and take the intersection
in categories between the two as dataset, see figure 3.7. Hence, we have 89 categories, on one
side 16,499 Corel images, ranging from 99 to 700 examples per category; on the other side 62,072



24 Visual Scene Categorization by Learning Image Statistics in Context

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
ve

ra
ge

 p
re

ci
si

on
 E

va
lu

at
io

n

Average precision Cross validation

Corel on Art Explosion
Art Explosion on Corel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
ve

ra
ge

 p
re

ci
si

on
 C

or
el

 m
od

el
s 

on
 A

rt 
E

xp
lo

si
on

Average precision Art Explosion models on Corel

(a) (b)

Figure 3.8: (a) Performance measured in average precision on training and evaluation sets. The x-
axis is the inter-set cross validation performance, where the y-axis displays the performance scored
on the other set. (b) Performance of models evaluated on different sets.

ArtExplosion images ranging from 26 to 4,896 examples per category.
We learned the categories for the Corel collection and ArtExplosion collection separately, and

applied the models learned from the one collection to retrieve the categories from the other col-
lection, see figure 3.8(a) and figure 3.8(b). Main result is that geographical locations (countries,
cities) are not performing well: for 43 location concepts, there are 39 performing below 0.1 average
precision. The remaining 4 locations are (average precision on cross validation between brackets):
Italy (0.11); Yemen (0.12); Egypt (0.16); Utah (0.26). The relative high scores are explained by a
large overlap in similar places photographed in both Corel and ArtExplosion. Hence, we draw the
conclusion that geographical locations can only be categorized by learning and retrieving typical
landmarks.

To evaluate categories which do perform well, we made a human judged ground truth of the
top-100 results of the non-geographical locations categories. The results are given in figure 3.9,
and some examples are shown in figure 3.10. Note that in these 46 categories, still 11,000 Corel
images and 50,465 ArtExplosion images are available. For the top 100 results the Corel models
evaluated on ArtExplosion score on average better than the ArtExplosion models evaluated on
Corel. On average, the Corel on ArtExplosion measured with strict category membership has 21%
correct, while manually counting the output of the methods shows it has 33% correct. Conversely,
the ArtExplosion evaluated on Corel, with strict categories has 17% correct, and with manual
counting of the output shows 24% correct. Categories that are consistently well performing are:
architecture, people, wetsport, waterscape, mountain, subsea, flags, balloon, signs, boats, forest,
aviation, fireworks, flower, and sunset. Note that building, water, flag, sky, vegetation are proto-
concepts learned from the TRECVID video collection. These concepts appear to be transposed to
the stock photo collection, increasing performance for related categories.

3.5 Conclusions

In this Chapter we have presented scene category classification by learning the occurrence of proto-
concepts in images. We compactly represent these proto-concepts by using color invariance and
natural image statistics properties. By exploiting similarity responses as opposed to strict selection
of a codebook vocabulary, we have been able to generalize these proto-concepts to be applicable in
general image collections. We have demonstrated the applicability of our approach in a) learning
50 scene categories from a large collection of news video data; b) a collection of 101 categories
of web images; c) two instances of the Pascal VOC object recognition challenge and d) two large
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Figure 3.9: Percentage correct classification in the Top 100 results for 46 categories. The ground
truth is contrasted with the given categories, where countries and cities are not included as a ground
truth can not be established.

Architecture Boats

Forest Africa

Figure 3.10: Examples of top 10 results. Only for Africa, according to the categories, none are
correct.

collections of photo-stock images, comprising 89 categories, where categories are learned from one
and categorized from the other.

In conclusion, we have provided an effective scheme for scene categorization. An important
contribution is scalability, showing that the proposed scheme is effective in capturing visual char-
acteristics for a large class of concepts, over a wide variety of image sets. Where specific methods
may have better performance for specific datasets, we have shown a method which is neither tuned
nor optimized in parameters for each collection, other than the TRECVID video dataset. Hence,
the method has proven to robustly categorize scenes from learned context.





Chapter 4

Comparing Compact Codebooks for
Visual Categorization 1

4.1 Introduction

Today, digital video is ubiquitous. This omnipresence of digital video material spurs research in
automatic content-based indexing. However, given the sheer quantity of available digital video, the
applicability and quality of current video indexing algorithms severly depends on their efficiency [52,
108]. One approach to achieve efficiency is by means of a compact, yet powerful representation of
the visual data. To this end, this Chapter compares various methods which obtain compact and
expressive models for video indexing.

As an instantiation of video indexing, we focus on automatic concept categorization [64, 88,
119, 120, 147]. Applications are mainly found in content-based retrieval and browsing. The goal
of concept categorization is to rank shots according to their relevance to a set of predetermined
semantic concepts. Some examples of these concepts are airplane, beach, explosion, George Bush,
people walking, etc.

Many visual concepts are captured as a typical contextual arrangement of objects [4, 57, 66, 87,
94, 127]. For example, consider an image of a beach, a city skyline, or a conference meeting. Such
concepts are portrayed by a composition of the image as a whole, rather than characterized by one
specific part in the image. Moreover, the background context of an object may provide considerable
recognition cues. Consider figure 4.1 where an object is cut out of its surroundings. Without
the background information, recognition becomes ambiguous even for humans. Alternatively, in
figure 4.2(a), a white patch is placed over the object, where the identity of a hidden object may be
derived with high accuracy from the context and nothing but the context. Hence, the background
context of an object can be more informative than the object itself. Therefore, in this Chapter we
model the whole image for concept categorization, purposely including the context provided by the
background.

We describe visual concepts in context with the codebook, or bag-of-visual-words, model. The
codebook model is inspired by a word-document representation as used in text retrieval [105]. An
schematic of the codebook model is given in figure 4.3. The codebook model treats an image as a
distribution of local features, where each feature is labeled as a discrete visual prototype. These
prototypes, or codewords, are defined beforehand in a given vocabulary, which may be obtained by
unsupervised clustering [13, 33, 62, 67, 95, 100, 114, 125], or manual, supervised annotation [14, 82,
136, 146]. Given a vocabulary, the codebook model allows visual categorization by representing an
image by a histogram of codeword counts. The codebook model yields a distribution over codewords
that models the whole image, making this model well-suited for describing context. This Chapter
strives towards efficient concept categorization by investigating qualitative and compact codebooks.

1Published in Computer Vision and Image Understanding [138].
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Figure 4.1: Example of an object that is ambiguous without context.

4.1.1 Contribution

In this Chapter, we experimentally evaluate various codebook methods to obtain a small, compact,
vocabulary that discriminates well between classes. The size of the vocabulary is linked to the
discriminative power of the model. A too small vocabulary does not discriminate well between
concept categories [140]. Hence, current state-of-the-art methods typically use several thousands
of codewords [132, 74]. In a practical application, however, it may not be feasible to use such
large number of codewords. Practical objections to a large vocabulary are its storage requirements,
working memory usage, and the computation time to train a classifier. Moreover, it has recently
been shown that a too large vocabulary severely deteriorates the performance of the codebook
model [140]. Therefore, we selected four state-of-the-art methods that each individually focus on
improving performance and evaluate these algorithms under a compactness constraint. The com-
pactness constraint is typically ignored by systems who focus solely on performance. The four
compacting methods consist of 1) global vocabulary clustering; 2) concept-specific vocabulary clus-
tering; 3) annotating a semantic vocabulary and 4) soft-assignment of image features to codewords.
Methods 1-3 deal with vocabulary building, where method 2 is a variant of method 1. Method 4 is
a generic approach to increase the expressive power of the codebook vocabulary. We evaluate each
of these methods against each other, on a large shared dataset over two different feature types, and
two different classifiers.

This Chapter is organized as follows. In the next section we give an overview of the related
literature. In section 4.3 we describe the four evaluated methods. We present our experimental
setup in section 4.4, whereas we highlight the results in section 4.5. Section 4.6 concludes the
Chapter.

4.2 Related Work

Several techniques exist for efficiently retrieving high-dimensional image features in large image
collections. Nistér and Stewénius [92] use hierarchical k-means clustering to quantize local image

a b

Figure 4.2: Example showing the influence of context. (a) The surroundings of an object, (b) the
whole image. Note that the category of the hidden object in (a) can easily be inferred from the
context.
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Figure 4.3: An example of the visual word, or codebook model. An image is represented as a
bag-of-regions where each region is represented by the best fitting codeword in the vocabulary. The
distribution of the codeword-counts yields the image model.

features in a vocabulary tree. This vocabulary tree demonstrates efficient feature retrieval in as
many as 1 million images. A tree structure is also used by [78] who obtains efficiency gains by
reducing the dimensionality of the features by a truncated Mahalanobis metric. Moreover, novel
quantization method based on randomized trees is used by [97]. In contrast to a tree structure,
Grauman and Darrell [48] present an approximate hashing scheme based on pyramid matching.
The pyramid matching allows multi-resolution image matching while the hashing technique allows
sub-linear retrieval in large collections of features. Hashing is also used by Kise et al . [65] who
show that a simple binary representation of feature vectors can result in an efficient approximate
nearest neighbor algorithm. Tree and hashing algorithms are well-suited for assigning features
to extremely large vocabularies, with millions of centroids. These algorithms, however, do not
consider categorization. They focus on recognition of (close to) exact image and feature matches.
For categorization with the codebook model, a vocabulary of a million codewords is no longer
practical when training a classifier, and a tree-structure does not help out there. The classifier is
still left with storing a feature vector of a million codewords for each image. Therefore, we focus
on compact vocabularies for efficiency.

A compact codebook model can be achieved by modeling codeword co-occurrence. Under the
assumption that frequent co-occurring codewords describe similar information, the vocabulary size
may be reduced by merging these codewords. Codeword co-occurrence is typically modeled by a
generative probabilistic model [10, 56]. To this end, Fei-Fei and Perona [33] introduce a Bayesian
hierarchical model for scene categorization. Their goal is a generative model that best represents the
distribution of codewords in each concept category. They improve on latent dirichlet allocation [10]
by introducing a category variable for classification. The proposed algorithm is tested on a dataset
of 13 natural concept categories where it outperforms the traditional codebook model by nearly 30%.
The work by Fei-Fei and Perona is extended by Quelhas et al . [100], who investigate the influence
of training data size. Moreover, Bosch et al . [13] show that probabilistic latent semantic analysis
improves upon latent dirichlet allocation. Further contributions using co-occurrence codebook
models are by [125]. Typically, a generative model is built on top of a codebook model. Hence,
the techniques proposed in this Chapter can easily be extended with co-occurrence modeling. The
extra modeling step requires ample additional processing which is less practical for large datasets.
Moreover, an additional step makes it harder to evaluate which part of our algorithm is responsible
for what. Therefore, in this Chapter, we focus on compact codebook models, without introducing
additional co-occurrence modeling steps.
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Apart from co-occurrence modeling, a compact codebook may be achieved directly by reducing
the vocabulary size or by carefully selecting the vocabulary elements. Such a careful selection can
be achieved with a semantic vocabulary [14, 136, 82, 146] that describes an image in meaningful
codewords. A semantic vocabulary can be constructed by manually selecting image patches with
meaningful labels, for example sky, water or vegetation. The idea of meaningful codewords, is
that they allow a compact, discriminative, and semantic image representation. In contrast to
annotating a vocabulary, Jurie and Triggs [62] compare clustering techniques to obtain a vocabulary.
Specifically, they show that radius-based clustering outperforms the popular k-means clustering
algorithm. Furthermore, Winn et al . [150] concentrate on a global codebook vocabulary, whereas
Perronnin et al . [95] focus on concept-specific vocabularies.

In this Chapter we concentrate on compact vocabulary construction while trying to retain the
ability to discriminate well between concept categories. Note that this is more general than vocabu-
laries that are built by a discriminative criterion [84]. Such methods assume that the discriminative
ability of a single feature carries over to the whole vocabulary. Hence, a vocabulary created by
discriminative criteria of single features also aims at a final vocabulary which is discriminative
between concept categories.

Instead of reducing the size of a vocabulary, the expressive power of the vocabulary may be
increased. With higher expressive power, a vocabulary needs less codewords to obtain similar per-
formance which in turn leads to a more compact vocabulary. The expressive power can be increased
by disposing of the hard-assignment of a single codeword to a single image features. Instead of
using hard-assignment, some weight may be given to related codewords. To this end, Tuytelaars
and Schmid [128] and Jiang et al . [61] assign weights to neighboring visual words. Whereas a visual
word weighting scheme based on feature similarity is used in Agarwal and Triggs [1] and in our
previous work [136, 140]. This soft-assignment increases the expressiveness of a vocabulary. We
will test the influence of soft-assignment on vocabulary compactness. In the next section we will
present the details of the method.

4.3 Compact Codebook Models

In the codebook model, the vocabulary plays a central role. The expressive power of the vocabulary
determines the quality of the model, whereas the size of the vocabulary controls the complexity of
the model. Therefore, vocabulary construction directly influences model complexity. We identify
two methods for constructing a vocabulary: a data-driven approach characterized by unsupervised
clustering and a semantic approach which relies on annotation. Besides the construction of the
vocabulary, the expressive power may be increased. To this end, we consider replacing the hard-
assignment of codewords to image features with soft-assignment. This soft-assignment aims for a
more powerful vocabulary, which in turn leads to a more compact model.

4.3.1 Codebook Compactness by a Clustered Vocabulary

A codebook vocabulary consists of discrete visual codewords, which are described by high-dimensional
features. In order to obtain discrete codewords, the continuous high-dimensional feature space needs
to be discretized. A common approach to discretizing a continuous feature space is by uniform his-
togram binning. However, in a high-dimensional feature space a histogram with a fixed bin size for
each dimension will create an exponentially large number of bins. Moreover, since feature spaces are
rarely uniformly distributed, many of these bins will be empty [128]. We illustrate the partitioning
of a continuous feature space with a uniform histogram in figure 4.4(a).

An alternative to a uniform partitioning of the high-dimensional feature space is unsupervised
clustering. The benefit of using clusters as codewords is a small vocabulary size without empty
bins. A popular clustering approach for finding codewords is k-means [13, 33, 62, 67, 95, 100, 125].
K-means is an unsupervised clustering algorithm that tries to minimize the variance between k
clusters and the training data, where k is a parameter of the algorithm. The advantages of k-
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(a) Histogram (b) K-means (c) Radius-based

Figure 4.4: Three examples of continuous space partitioning, using (a) a uniform histogram, (b)
k-means clustering, and (c) radius-based clustering. Note the empty bins in the histogram, the
cluster centers in densely populated areas of k-means, and the uniform partitioning of radius-based
clustering.

means are its simple and efficient implementation. However, the disadvantage of k-means is that
the algorithm is variance-based. Thus, the algorithm will award more clusters to high-frequency
areas of the feature space, leaving less clusters for the remaining areas. Since frequently occurring
features are not necessarily informative, this over-sampling of dense regions is inappropriate. For
example, in analogy of text retrieval, the most frequent occurring words in English are the so
called function words like the, a, and it, despite their high frequency these function words convey
little information about the content of a document. Therefore a codebook vocabulary based on
variance-based clustering may not be as expressive as it could be.

In contrast to variance-based clustering, Jurie and Triggs [62] argue that the codewords for a
codebook vocabulary are better represented by radius-based clustering. Radius-based clustering
assigns all features within a fixed radius of similarity r to one cluster, where r is a parameter of the
algorithm. This radius denotes the maximum threshold between features that may be considered
similar. As such, the radius determines whether two patches describe the same codeword. Hence,
the influence of the radius parameter r on the codebook model is clear where the number of clusters,
k, in k-means clustering is typically chosen arbitrary. The difference between radius-based clustering
and k-means is illustrated in figure 4.4(b) and figure 4.4(c). Note that the codewords found by
k-means populate the densest part of the feature space, whereas the radius-based method finds
codewords that each represent a distinct part of the feature space. Hence, radius-based clustering
results in a non-empty, uniform sampling of a continuous feature space. Therefore, we will adopt
radius-based clustering for data-driven codebook vocabulary creation.

Concept-specific Vocabulary

A vocabulary formed by unsupervised clustering offers us the opportunity to construct a different,
tuned, vocabulary for each concept [67, 95]. This tuning endows each concept with its own unique
vocabulary. For example, it might be beneficial to model the concept boat with a different vocab-
ulary than the concept office, since scenes with a boat will contain water and sky, whereas office
scenes hold tables and chairs. The idea behind concept-specific vocabularies is to obtain a reduced
vocabulary, while retaining expressive power. We will experimentally compare the compactness
and expressiveness of the concept-specific vocabularies against a global vocabulary obtained by
clustering the whole feature space.

4.3.2 Codebook Compactness by a Semantic Vocabulary

Whereas the previous section described a clustering approach for obtaining a codebook vocabulary,
this section will focus on a semantic vocabulary. The use of semantic codewords builds on the prin-
ciple of compositionality, stating that the meaning of an image can be derived from the meaning
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of the constituent parts of the image [14, 82, 136, 146]. For example, an outdoor image is likely to
contain vegetation, water, or sky. A semantic vocabulary consists of meaningful codewords. There-
fore, the creation of the vocabulary requires a human annotator. This annotation step typically
consists of drawing bounding boxes around a meaningful patch of pixels [136, 146]. The rationale
behind meaningful codewords is that local image semantics will propagate to the global codebook
image model, leading to compact visual models

Both the semantic vocabulary and the clustered vocabulary have specific advantages and disad-
vantages. The semantic vocabulary approach is based on manual selection of visually meaningful
codewords. However, this approach has the underlying assumption that images can be decomposed
in these semantic codewords, which may not hold for all images. For example, an indoor image is
unlikely to contain any sky or buildings. In contrast to semantic labeling, clustering uses statistics
to determine descriptive codewords. However, these codewords lack any meaningful interpreta-
tion. Such an interpretation may be important since humans typically decompose complex scenes
into meaningful elements. Both approaches of acquiring a vocabulary of low-level descriptors have
their merits. We will experimentally compare both methods to determine their compactness and
expressiveness.

4.3.3 Codebook Compactness by Soft-Assignment

In order to take the continuous nature of image patches into account, we have proposed [136] to
base the codebook model on a degree of similarity between patches. Similarity between patches is
a more suitable representation than assigning only one visual word to an image patch. Labeling
an image patch with the single best visual word ignores all ambiguity regarding the meaning of
the image patch. In contrast, assigning a degree of similarity to an image patch will model the
inherent uncertainty of the image patch. For example, instead of labeling a blue pixel patch as
sky, the patch is better represented by saying that its similarity to sky is 0.9, and its similarity to
water is 0.8. By using soft-assignment to model the uncertainty of the meaning of an image patch,
we foresee improved expressive and discriminative power while maintaining a constant vocabulary
size [136]. To evaluate this claim we will test soft-assignment versus hard-assignment as used in
the traditional codebook model. If this claim is sound, the vocabulary size may be reduced, which
in turn yields a more compact codebook.

Soft-assignment is easily incorporated in the codebook model. For each codeword, or bin, b in
the vocabulary V the traditional codebook model constructs the distribution of codewords over an
image by

H(b) =
∑

r∈R(im)

{
1 if b = arg max

v∈V
(S(v, r)).

0 otherwise,
(4.1)

Here, R(im) denotes the set of regions in image im, and S(v, r) is the similarity between a codeword
v and region r. The similarity S(b, r) is specific to the type of image features that are used. The
similarities are given with the image features in appendix 4.A. The similarities allow replacing
hard-assignment with soft-assignment by

H(b) =
∑

r∈R(im)

S(b, r). (4.2)

This soft-assignment weights each codeword according to the similarity of an image region to
this codeword. Figure 4.5 illustrates this advantage.

4.4 Experimental Setup

The experiments focus on the relation between codebook compactness and codebook quality. Code-
book compactness is given by the size of the vocabulary, whereas codebook quality is measured by
its categorization performance. To reduce dependency on a single visual feature, we show results
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Figure 4.5: Two examples indicating the difference between hard-assignment and soft-assignment
of codewords to image features. The first row shows two images with each 5 samples (dots) around
two codewords ’a’ and ’b’. The second row displays the normalized occurence histograms of hard-
assignment and soft-assignment for both images. Note that hard-assignment is identical for both
examples, whereas soft-assignment is sensitive to the position of the samples.

over two visual features (Wiccest features and Gabor features, see appendix 4.A). Furthermore,
we investigate the effect of the linear and light-weight Fisher classifier against a computationally
more intensive non-linear SVM classifier. We identify three experiments:

• Experiment 1: Soft-Assignment versus Hard-Assignment;

• Experiment 2: Semantic Vocabulary versus Globally-clustered Vocabulary;

• Experiment 3: Semantic Vocabulary versus Concept-specific clustered Vocabulary;

The experiments are conduced on a large video dataset where each shot is annotated if a concept
is present. This fixed ground-truth allows repeatable experiments.

4.4.1 Video Datasets

The experiments are evaluated on the TREVID 2005 development set [115]. This video set contains
nearly 85 hours of English, Chinese and Arabic news video. In addition to the video data, we use
the standard ground truth provided by the MediaMill Challenge [121]. This ground truth defines
101 semantic concepts with shot labels for each category, where the video data is split in 70% for
training, and the remaining 30% for testing. In total there are 43,907 shots, where 30,630 are in the
training set, and 13,277 in the testing set. The shots are indexed by their representative keyframe,
as defined by the MediaMill Challenge. We selected the MediaMill Challenge because it is a realistic
and challenging dataset with a shared ground truth, allowing repeatable experiments. In figure 4.6
we show some concepts defined by the MediaMill Challenge. Note the wide variety of concepts,
i.e.: Graphics (Drawing, Maps, Weather), objects (Bird, Chair, Flag USA), scenes (Duo-anchor,
Meeting, Night fire, River, Sky, splitscreen, Studio, Tennis ), persons (Anchor, Mr. Lahoud,
Prisoner), and emotional (Entertainment). The video data is a realistic subset of broadcast news,
containing commercials, e.g. (Bird, River), and concepts with little variation in their appearance
for this set, e.g. (Night fire, Tennis, Chair, Weather, Anchor). In contrast to simplified datasets
recorded in a laboratory setting [85], the MediaMill Challenge allows a more truthful extrapolation
of our conclusions to other real-world datasets.
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Figure 4.6: Some examples of the concepts defined by the MediaMill Challenge, which we use to
evaluate categorization performance.

4.4.2 Visual Categorization Implementation

Image Features

To evaluate if a method generalizes over visual features, we conduct all experiments with two
different image features: Wiccest and Gabor. Wiccest features rely on natural image statistics
which makes them well suited to describe natural images. On the other hand, Gabor features
respond to regular textures and color planes, which is beneficial for man-made structures. Both
these image features measure colored texture, where the Gabor features also takes non-textured
color into account. Each feature is calculated on two scales, making them sensitive to differently
scaled textures. We selected texture features because of their ability to describe the foreground
as well as the contextual background of an image. More details about the image features are in
appendix 4.A.

Image Sampling

The codebook model represent an image as a distribution over codewords. To build this distribution,
several regions are sampled from an image. Since grid-based sampling is shown to outperform
interest points in scene categorization [33, 62], we use a grid for region sampling. Specifically, this
grid is constructed by dividing an image in several overlapping rectangular regions. The regions
are uniformly sampled across the image, with a step size of half a region. We use two different
region sizes, with ratios of 1

2 and 1
6 of both the x-dimension and y-dimensions of the image.

4.4.3 Compact Codebook Models Implementation

Semantic Vocabulary

A semantic vocabulary consists of meaningful elements, obtained by annotation. We use the se-
mantic vocabulary by [136]. This vocabulary consists of 15 different codewords, namely: building
(321), car (192), charts (52), crowd (270), sand/rock (82), fire (67), flag USA (98), maps (44),
mountain (41), road (143), sky (291), smoke (64), snow (24), vegetation (242), water (108), where
the number in brackets indicates the number of annotation samples of that concept. We use the
train set as a basis for selecting relevant shots containing the codewords. In those shots, we anno-
tate rectangular regions where the codeword is visible for at least 20 frames. Note that a vocabulary
of 15 codewords, evaluated for two scales and two region sizes will yield a descriptor of 4× 15 = 60
elements.



4.4. EXPERIMENTAL SETUP 35

Globally-clustered Vocabulary

A globally-clustered vocabulary is created on all image features in the train set. We build a such
a global vocabulary by radius-based clustering. Radius-based clustering aims to cover the feature
space with clusters of a fixed similarity radius. Hence, the algorithm yields an even distribution
of visual words over the feature space and has been shown to outperform the popular k-means
algorithm [62]. Whereas Jurie and Triggs [62] use mean-shift with a Gaussian kernel to find the
densest-point, we maximize the number of features within its radius r for efficiency reasons.

Since each image features is calculated at two scales for two region sizes there are 4 image
descriptors per feature. We cluster each descriptor separately, yielding 4 different clustering steps.
The final vocabulary consists of the resulting clusters for a single radius as found by all these four
clustering steps. Note that the number of clusters may vary per scale and region size combination.

Concept-Specific Clustered Vocabulary

A concept-specific vocabulary is designed for a single concept. Such a specific vocabulary may
be found by limiting the radius-based clustering algorithm to images in a single class only. This
makes the resulting clusters depend on only that subset of the feature space which is relevant
for the concept. Note that the images are labeled globally, whereas the clustering is based on
local codewords. The clustering step itself is identical to the globally-clustered vocabulary, and is
performed separately for each of the four feature scale and region size combinations.

4.4.4 Supervised Machine Learning Implementation

Automatic concept categorization in video requires machine learning techniques. For each semantic
concept, we aim for a ranking of shots relevant to this concept. To evaluate this ranking, we employ
two classifiers: a strong and computationally intensive SVM classifier and a weak but fast Fisher
classifier. Fisher’s linear discriminant [35] projects high-dimensional features to a one-dimensional
line that aims to maximize class separation.The most important reason why we use Fisher’s linear
discriminant is its fair categorization performance with high efficiency. This efficiency is mostly due
to its linearity and the benefit that this classifier has no parameters to tune. The other classifier
is the popular discriminative maximum-margin SVM classifier. The reason for choosing an SVM
is because it generally gives good results on this type of data [121]. For the SVM we use a non-
linear χ2 kernel, where we use episode constrained cross-validation [139] to tune the best C-slack
parameter.

4.4.5 Evaluation Criteria

We evaluate compactness and categorization performance. Compactness is measured in by the size
of the codebook vocabulary. For measuring categorization performance, we adopt average precision
from the Challenge framework. Average precision is a single-valued measure that summarizes the
recall-precision curve. If Lk = {s1, s2, . . . , sk} are the top k ranked elements from the retrieved
results set L, and let R denote the set of all relevant items, then average precision (AP) is defined
as

AP(L) =
1
|R|

|L|∑
k=1

|Lk ∩R|
k

IR(sk) , (4.3)

where | · | denotes set cardinality and IR(sk) = 1 if sk ∈ R and 0 otherwise. In our experiments we
compute AP over the whole result set.

Average precision measures the categorization performance for a single concept. The MediaMill
Challenge, however, defines 101 concepts. As the performance measure over multiple concepts, we
report the mean average precision (MAP), given by the average precision averaged over all concepts.
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Figure 4.7: Comparing hard-assignment versus soft-assignment for all 101 concepts, over two dif-
ferent visual features with a semantic vocabulary.

Experiment 1
Wiccest Gabor

SVM Fisher SVM Fisher

Hard-Assignment 0.120 0.113 0.100 0.097
Soft-Assignment 0.179 0.157 0.187 0.175

Table 4.1: The mean average precision over all 101 concepts in experiment 1. Results are shown
for hard-assignment versus soft-assignment for Wiccest features and Gabor features and the Fisher
and SVM classifier, using a semantic vocabulary. Note that soft-assignment outperforms hard-
assignment for both feature types and for both classifiers.

4.5 Experimental Results

4.5.1 Experiment 1: Soft-Assignment vs. Hard-Assignment

The first experiment compares soft-assignment with hard-assignment in the codebook model for a
semantic vocabulary over two classifiers and over the two visual features. In appendix 4.A we detail
both features and their respective soft assignment functions. In figure 4.7 we show the results for
the Wiccest and Gabor features. The figure illustrates that performance for nearly all concepts
improves by using soft-assignment. This improvement is in line with the expectations in [136]. In
the few cases where soft-assignment is outperformed by hard-assignment, the performance difference
is marginal. On average over the two features and two classifiers there are 92± 2.71 concepts that
increase and 8.75 ± 2.87 concepts that decrease. Over both features and both classifiers there are
78 of the 101 concepts that always improve. In contrast, there is no concept whose performance
always decreases. For the four feature-classifier combinations, there are 28 concepts that decrease
in performance for at least one of these combinations. Note that this is the absolute worst-case
performance. In contrast, all 101 concepts are found to increase at least once or more in the four
feature-classifier combinations. The average performance over all 101 concepts for the two visual
features is shown in table 4.1. The table shows that using soft-assignment improves performance
for both feature types and for both classifiers.

The difference per concept between soft-assignment and hard-assignment is given in figure 4.8.
Here we show the five most increasing concepts and the five most decreasing concepts by replacing
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Figure 4.8: The difference between soft-assignment and hard-assignment for the top and bottom five
concepts in experiment 1.

hard-assignment with soft-assignment. Note that the performance gain by the improving concepts
is several magnitudes higher than the decrease in performance. There are four concepts that con-
sistently decrease in the bottom five. The concepts PrisonerPerson, HassanNasrallah, Bicycle are
found in the bottom five of the Gabor features for both the Fisher as the SVM classifier. These
concepts are sensitive to exact color matching. The Bicycle concept is a sparse but repetitive com-
mercial, and the PrisonerPerson, HassanNasrallah concepts contain shots of highly discriminative
colors, like an orange prisoner uniform. Since the gabor features take the color of an image patch
into account, these features are more effected than the Wiccest features. The six concepts Bird,
River, DuoNewsAnchorPersons, GraphicalMap, EmileLahoud, SplitScreen consistently increase in
the top five. Of these six concepts the concepts GraphicalMap and EmileLahoud are found in
the Gabor features top 5 for both the Fisher as the SVM classifier. In this case the concepts are
again typically colorful, such as the many variations of a GraphicalMap, or a colorful flag in the
background of Mr. EmileLahoud. In this case, however, performance increases. We deem that this
is the case because there is significant variation in the colors. By using soft-assignment this varia-
tion is better modeled. The concept DuoNewsAnchorPersons increases for the Wiccest features in
both the SVM as in the Fisher classifier. Again, we attribute the gain of soft-assignment to slight
variation between the examples. With slight variation in the images, hard assignment may choose
complete different visual words, whereas soft-assignment proves robust. The concept SplitScreen is
found in the top five of three feature-classifier combinations. Only the Gabor-Fisher does not have
this concept in the top five. This concept is characterized by a strong artificial edge in the middle
of the screen. Besides this edge, there is some variation on the people present in the screens. Again,
soft-assignment seems to be able do deal better with this variation. The concept Bird improves
for Wiccest-Fisher and for Gabor-SVM. This concept is a repetitive commercial. We attribute the
reason why static or near-copies benefit most to the fact that minor changes in the image content
results in minor changes in the soft-assignment approach. In contrast, minor image content changes
in the traditional codebook model may give rise to completely different codewords stemming from
the hard-assignment in this method. In figure 4.6 we show example images for some concepts.

4.5.2 Experiment 2: Semantic Vocabulary vs. Globally-clustered Vocabulary

As a second experiment, we focus on the difference between a semantic vocabulary and a clustered
vocabulary. In figure 4.9 we show the results with hard-assignment and soft-assignment over the two
features and over the two classifiers. This figure shows that increasing the number of visual words
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Figure 4.9: Comparing a semantic codebook vocabulary with a globally-clustered codebook vocabulary
for hard-assignment and soft-assignment. Results are shown in mean average precision over 101
concepts. The semantic vocabulary is the same as in experiment 1. Note that the Wiccest and
the Gabor features have different vocabulary sizes. This is the case, because the number of clusters
depends on the similarity function of the visual features (see appendix 4.A).

increases the performance. Moreover, the figure shows a clear advantage of using an SVM classifier
over the Fisher classifier. Nevertheless, for Gabor features with a vocabulary of 1480 codewords
the Fisher classifier proves competitive to an SVM classifier. Note that a larger vocabulary not
always yields the best results. For example, for the Fisher classifier with soft-assignment, the largest
vocabulary is not the best performing one. Furthermore, the figure shows that for Wiccest features
and a Fisher classifier the performance difference between a semantic and a clustered vocabulary
is only slightly in favor of the semantic vocabulary when both vocabularies have an equal number
of visual words (±60). In contrast, for Gabor features a semantic vocabulary is more beneficial,
yielding a higher performance for a lower number of codewords. We credit this difference between
the Wiccest and the Gabor features to the difference in dimensionality between the features. The
Wiccest features use only 12 numbers, whereas the Gabor features consist of histograms of 101
bins. Since the feature-space of the Gabor descriptor is much higher in dimensionality, it is harder
to fill this space, let alone find discriminative visual words. In contrast to clustering, a semantic
vocabulary is given by manual annotation. This annotation step introduces meaningful visual
words without the need to partition a high-dimensional feature space. Nevertheless, a fixed sized
semantic vocabulary is outperformed by a clustered vocabulary for both features. This performance
gain comes at a price, paid by an exponentially growing visual word vocabulary, leading to a more
complex, and therefore less compact model. Comparing the results of a semantic vocabulary and a
clustered vocabulary for the SVM classifier, shows a clear advantage for a clustered vocabulary. The
clustered vocabulary already outperforms a semantic vocabulary with half the number of codewords
in the case of Wiccest features. Moreover, for the Wiccest features the hard-assignment method
outperforms the soft-assignment method for large vocabularies. In the case of the Gabor features,
the hard-assignment performance equal to soft-assignment for large vocabularies. Nevertheless, for
an SVM classifier, soft-assignment proves robust over the size of the vocabulary. Soft-assignment
clearly outperforms hard-assignment for compact vocabularies.

In figure 4.10 we show per concept the vocabulary size which gives the best performance.
Moreover, we show the contours of the areas that perform within 90% of the best score. When
comparing soft-assignment versus hard-assignment, it can be seen that for soft-assignment there are
more areas where the performance is within 90% of the best score. Hence, soft-assignment seems



4.5. EXPERIMENTAL RESULTS 39

0 25 50 75 100

28

39

61

92

150

256

447

819

1587

3223

V
o
ca

b
u
la

ry
 s

iz
e

Hard assignment, Wiccest

0 25 50 75 100

28

39

61

92

150

256

447

819

1587

3223

Soft assignment, Wiccest

0 25 50 75 100
Concept number

45

60

85

129

197

297

482

808

1480

2754

V
o
ca

b
u
la

ry
 s

iz
e

Hard assignment, Gabor

0 25 50 75 100
Concept number

45

60

85

129

197

297

482

808

1480

2754

Soft assignment, Gabor

Experiment 2 (Best vocabulary size)

Best Score

Figure 4.10: The red dots indicate the best performing vocabulary size for each concept. The
contours highlight the area within 90% of the best performance.
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Figure 4.11: Comparing a semantic vocabulary with a concept-specific vocabulary, both using soft-
assignment.

more robust to the size of the vocabulary. Furthermore, the figure shows that soft- assignment has
more variation in the size of the best vocabulary than hard-assignment. Hence, soft-assignment
seems the better choice for compact vocabularies. Moreover, as the variation in the size of the best
vocabulary suggests, it may prove beneficial to tune a vocabulary per concept, instead of using a
global vocabulary. This tuning per concept is explored in the next section.

4.5.3 Experiment 3: Semantic Vocabulary vs. Concept-specific Clustered Vo-
cabulary

In an attempt to create more compact vocabularies while keeping performance on par, we evaluate
individual vocabularies that are tuned to the specific concept at hand. These concept-specific vo-
cabularies are created by restricting the radius-based clustering algorithm to the positive examples
of a semantic concept. To constrain the computations, we limit this experiment to the Fisher clas-
sifier only and to the 39 concepts that were used in the TRECVID 2006 benchmark. Moreover, we
select a fixed radius for the clustering algorithm: r = 1.2 for the Wiccest features and r = 4.5 for
the Gabor features. These radii are selected with the intention to closely match the performance
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Figure 4.12: The 10 concepts that benefit most from a concept-specific vocabulary over a semantic
vocabulary.

Experiment 1 Experiment 2 Experiment 3
Semantic Clustered Concept-Specific

Feature Size MAP Size MAP Size MAP

Wiccest 60 0.219 205 0.251 128.7 0.244
Gabor 60 0.235 249 0.270 118.5 0.254

Table 4.2: The number of codewords used to obtain the same performance over three types of
vocabularies: semantic (Experiment 1), clustered (Experiment 2), and concept-specific (Experiment
3). The size of the codeword vocabulary is shown, with the mean average precision in brackets
for Wiccest features and Gabor features using soft-assignment. In the case of the concept-specific
vocabulary, we show the average number of codewords, since this varies per concept.

of the semantic vocabulary.
The performance differences between the semantic vocabulary and the concept-specific vocabu-

laries for the Wiccest and Gabor features using soft-assignment are shown in figure 4.11. Note that
the performance of both methods is closely aligned. Nevertheless, there are a few concepts that
perform better with a concept-specific vocabulary. The top ten of the concepts that increase most
are shown in figure 4.12. Some video frames containing these concepts are shown in figure 4.6.
In the top ten, there are three concepts (animal, weather, sky) that increase for both features.
The other features that improve per visual feature seem related to the feature type. The Wiccest
features are related to edge statistics as found in natural images, and the concepts that improve are
related to natural scenes (animal, mountain, waterbody, desert, sports, sky, crowd). Furthermore,
it is striking that seven concepts out of the top ten for the Wiccest features consist of elements that
are also used in the semantic vocabulary (mountain, waterbody, desert, charts, maps, sky, crowd).
We speculate that this is the case because the improved concepts for the Wiccest features focus on
natural images, and the semantic vocabulary consists mainly of naturally occurring codewords. In
the case of Gabor features, that are more related to color and texture frequency, the concepts that
improve may rely on colored texture for discrimination (prisoner, flag USA, meeting, entertain-
ment, weather, studio). Nevertheless, disregarding those few outliers who outperform the semantic
vocabulary, both vocabulary types perform more or less equal, as intended.

In table 4.2 we show the number of codewords used to achieve more or less the same performance.
The number of codewords for the concept-specific vocabulary was found by increasing the radius
of the clustering algorithm, until the performance of the concept-specific clustered vocabulary was
reached. The results show that an annotated vocabulary has the most compact descriptor, with only
60 visual words. In contrast, the globally-clustered vocabulary requires at least three times more
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Method Manual Computational Compact Performance
Strong Weak StrongWeak StrongWeak

Semantic − ± + − + − ±
Globally clustered + − ± + − + +
Concept-specific clustered + − − + + + +

Table 4.3: Summary of the four evaluated methods to obtain a compact and expressive codebook.
We indicate if a method requires manual annotation effort, computation effort, and if the method
yields compact models, with good performance. We distinguish between a strong classifier such as
an SVM and a weak classifier such as Fisher’s linear discriminant. A + denotes good, − indicates
bad, and ± is medium. Note that soft-assignment is performed after vocabulary creation, thus it
is not affected by annotation nor clustering.

visual words than a semantic vocabulary. The individually clustered concept-specific vocabularies
require two times the number of codewords than a semantic vocabulary. However, those concept-
specific vocabularies are still only half the size of a globally clustered vocabulary. Hence, while a
semantic vocabulary proves the most descriptive, the concept-specific clustered vocabularies yield
a more powerful descriptor than a globally clustered vocabulary.

4.5.4 Summary of Experimental Results

We summarize the results in table 4.3. The first observation we can make is that soft-assignment
typically outperforms hard-assignment in the codebook method. This improvement has been shown
for two different visual features and for both a semantic vocabulary and a clustered vocabulary
over two classifiers. Only for a very large vocabulary and an SVM classifier hard-assignment
may improve over soft-assignment. Furthermore, the semantic vocabulary which requires manual
annotation work has been shown to provide a competitive vocabulary when a weak classifier is used.
In the case of the Fisher classifier it yields excellent performance with a minimum number of visual
words leading to compact and expressive codebooks. For the Fisher classifier, a clustered vocabulary
outperforms a semantic vocabulary when the number of visual words is high enough. However, this
high number of visual words leads to less compact models, which may be infeasible for large video
datasets. In the case of a strong classifier, the results show that clustered vocabularies outperform
a semantic vocabulary. However, an SVM classifier takes more effort to train, with additional
complication with cross-validation for parameter tuning [139]. Additional results indicate that the
number of visual words in a clustered vocabulary may be reduced by tuning this vocabulary to
each concept. These tuned vocabularies retain categorization performance while maintaining a
reasonably compact vocabulary.

4.6 Conclusions

Given the vast amount of visual information available today, the applicability of automatic visual in-
dexing algorithms is constrained by their efficiency. Accordingly, this Chapter focuses on compact,
and thus efficient, models for visual concept categorization. We considered the codebook algorithm
where model complexity is determined by the size of the vocabulary. We structurally compared
four approaches that lead to compact and expressive codebooks. Specifically, we compared three
methods to create a compact vocabulary: 1) global clustering, 2) concept-specific clustering and
3) a semantic vocabulary. The fourth approach increases expressive power by soft-assignment of
codewords to image features. We experimentally compared these four methods on a large and
standard video collection. The results show that soft-assignment improves the expressive power
of the vocabulary, leading to increased categorization performance without sacrificing vocabulary
compactness. Further experiments showed that a semantic vocabulary leads to compact vocabu-
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Figure 4.13: Some examples of the integrated Weibull distribution for β = 1, µ = 0, varying values
for γ ∈ {1

2 , 1, 2, 4} .

laries, while retaining reasonable categorization performance. A concept-specific vocabulary leads
to reasonable compact vocabularies, while providing fair visual categorization performance. Given
these results, the best method depends at the application at hand. In this Chapter we presented
a guideline for selecting a method given the size of the video dataset, the desirability of manual
annotation, the amount of available computing power and the desired categorization performance.

4.A Appendix: Image Features

4.A.1 Wiccest Features

Wiccest features [40] utilize natural image statistics to effectively model texture information. Tex-
ture may be described by the distribution of edges at a certain region in an image. Hence, a
histogram of a Gaussian derivative filter is used to represent the edge statistics. The histogram
describes image statistics in natural textures, which are well modeled with an integrated Weibull
distribution [40]. This distribution is given by

f(r) =
γ

2γ
1
γ βΓ( 1

γ )
exp

{
−1
γ

∣∣∣∣r − µβ
∣∣∣∣γ} , (4.4)

where r is the edge response to the Gaussian derivative filter and Γ(·) is the complete Gamma
function, Γ(x) =

∫∞
0 tx−1e−1dt. The parameter β denotes the width of the distribution, γ represents

the ‘peakness’ of the distribution, and µ denotes the mode of the distribution. See figure 4.13 for
examples of the integrated Weibull distribution.

The Wiccest features for an image region consist of the Weibull parameters for the illumination
invariant edges in the region at σ = 1 and σ = 3 of the Gaussian filter [136]. The β and γ values
for the x-edges and y-edges of the three opponent color channels normalized by the intensity [44]
yields a 12-dimensional descriptor. The similarity, SW , between two Wiccest features is given by
the accumulated fraction between the respective β and γ parameters,

SW(F,G) =
∑(

min(βF , βG)
max(βF , βG)

min(γF , γG)
max(γF , γG)

)
, (4.5)

where F and G are Wiccest features.

4.A.2 Color Gabor Features

As an alternative to Wiccest features, one may use the popular Gabor filters. Gabor filters may be
used to measure perceptual surface texture in an image [15]. Specifically, Gabor filters respond to
regular patterns in a given orientation on a given scale and frequency. A 2D Gabor filter is given
by

G̃(x, y) = Gσ(x, y) exp
{

2πi
(

Ωx0

Ωy0

)(
x

y

)}
, i2 = −1, (4.6)
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(a) Intensity channel (b) Red-Green channel (c) Blue-Yellow channel

Figure 4.14: Some examples of the color Gabor filter with the chosen orientations, scales and
frequencies.

where Gσ(x, y) is a Gaussian with a scale σ,
√

Ω2
x0

+ Ω2
y0 is the radial center frequency and

tan−1( Ωy0
Ωx0

) the orientation. Note that a zero-frequency Gabor filter reduces to a Gaussian fil-
ter. An example of color Gabor filters is shown in figure 4.14. Illumination invariance is obtained
by normalizing each Gabor filtered opponent-color channel by the intensity [55]. A histogram is
constructed for each Gabor filtered color channel, where the Gabor similarity measure, SG , is given
by histogram intersection,

SG(I,M) =
n∑
j=1

min(Ij ,Mj), (4.7)

where Ij is bin j of the n-dimensional histogram of image I.
In the case of a Gabor filter, its parameters consist of orientation, scale and frequency. We follow

Hoang et al . [55] and use four orientations, 0◦, 45◦, 90◦, 135◦, and two fixed (scale, frequency) pairs:
(2.828, 0.720), (1.414, 2.094), where we append zero frequency color to each scale. Furthermore, the
histogram representation of the Gabor filters uses 101 bins for each Gabor filtered color channel.





Chapter 5

Visual Word Ambiguity1

Verbal descriptions of visual characteristics like a color or a texture are often ambiguous. For
example, quantifying a texture with “A predominantly smooth yellowish-red surface with a few
cracks” leaves considerable room for interpretation. One of the interpretations of the popular
codebook model for automatic image classification [1, 5, 11, 13, 12, 14, 20, 33, 135, 136, 61, 62,
67, 68, 70, 74, 77, 82, 83, 93, 95, 96, 100, 132, 114, 125, 126, 128, 146, 150, 153] is that it ex-
presses images in terms of visual words. The model represents high-dimensional image features
by discrete and disjunct visual prototypes that are predefined in a vocabulary. The visual word
analogy of the codebook model includes semantic modeling at the word level [14, 136, 82, 146] or
at the topic level [1, 13, 14, 33, 67, 100, 125, 150]. Spatial image layout [1, 12, 14, 68, 83, 125]
can be seen as modeling phrases, whereas visual vocabulary tuning [62, 67, 70, 95, 128, 150, 153]
resembles modeling domain-specific terminology. These models incorporate image-specific proper-
ties within the conceptual visual word analogy. In this Chapter we introduce another aspect of the
visual word analogy, namely the use of ambiguous linguistic quantifiers as “some”, “a few”, “-ish”,
“predominantly”, “much”. Without such quantifiers to express ambiguity, the description of the
aforementioned texture is reduced to “A smooth red surface”. We incorporate ambiguity in the
codebook model by smoothly assigning continuous image features to discrete visual words. We show
that ambiguity modeling leads to more expressive models that improve classification performance.

One inherent component of the codebook model is the assignment of image feature vectors to
visual words in the vocabulary. Here, an important assumption is that a discrete visual word is
a characteristic representative of an image feature. The continuous nature of visual appearance
complicates selecting a representative visual word for an image feature. An image feature may
have zero, one, or multiple candidates in the visual word vocabulary. With one candidate there
is no ambiguity. Selecting a codeword from multiple realistic candidates gives rise to visual word
uncertainty, whereas visual word plausibility refers to selecting a codeword without a suitable
candidate in the vocabulary. Figure 5.1 illustrates these cases. Current methods assume that an
image feature is well represented by its single, best representing visual word.

The contribution of this Chapter is an investigation of visual word ambiguity leading to explicit
ambiguity modeling in the codebook model. We investigate the effect of ambiguity modeling on
four aspects of the codebook model. First, we investigate the classification performance of various
types of ambiguity modeling. Second, we look at vocabulary expressiveness by relating ambiguity
modeling and the vocabulary size. Third, we consider the effect of ambiguity on the image feature
dimensionality. Our fourth contribution investigates the connection between ambiguity modeling
and the number of image categories. All contribution are thoroughly experimentally verified on five
well-known image categorization datasets: 15 natural scenes, Caltech-101, Caltech-256, and Pascal
VOC 2007/2008. Given the current drive of the state of the art to increase feature dimensionality,
vocabulary size, and the number of image categories, we argue that our contributions play an
important role in practical image classification.

This Chapter is organized as follows. The next section discusses the related literature on

1Published in IEEE Transactions on Pattern Analysis and Machine Intelligence [140].
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Figure 5.1: An example illustrating visual word ambiguity in the codebook model. The small dots
represent image feature vectors. The labeled red circles are visual words found by unsupervised
clustering. The triangle represents a data sample that is well suited to the codebook model. Visual
word uncertainty is exemplified by the square, whereas visual word plausibility is illustrated by the
diamond.

codebook-based scene classification. Section 5.2 introduces ambiguity in the codebook model. We
show the performance and consequences of our method on five datasets in section 5.3, whereas
section 5.4 concludes the Chapter. In this Chapter we use the terms codeword and visual word
interchangeably.

5.1 Related Work

The visual word vocabulary in the codebook model may be constructed in various ways. Typically,
a vocabulary is constructed by applying k-means clustering on image features [13, 68, 70, 74, 93,
100, 132, 114, 125, 150, 153]. K-means minimizes the variance between the clusters and the data,
placing clusters near the most frequently occurring features. The most frequent features, as noted
by Jurie and Triggs [62] and others [11, 100], are not necessarily the most discriminative. The
discriminative power of the vocabulary may be improved by alternative clustering algorithms [62,
70], incorporating image class labels [150, 83, 153], or creating specifically tuned vocabularies for
each image category as suggested by Perronnin et al . [95] and others [67, 128]. In contrast to
clustering, a vocabulary may be obtained by manually labeling image patches with a semantic
label [14, 136, 82, 146]. For example, Vogel et al . [146] construct a vocabulary by labeling image
patches of sky, water or grass. The idea behind a semantic vocabulary is that the meaning of an
image may be expressed in the meaning of its constituent visual words. Both the semantic and the
clustered vocabulary creation methods may reduce visual word ambiguity by carefully selection the
vocabulary. For example, when distinguishing a sunset from a forest, the ambiguity between the
colors pink and orange is irrelevant, since both colors will be absent in a forest. Careful vocabulary
selection, however, does not address visual word ambiguity itself.

In literature, visual word ambiguity modeling is used occasionally, often ad-hoc motivated, and
rarely evaluated. Tuytelaars and Schmid [128] and Jiang et al . [61] assign an image feature to visual
words that are neighbors in feature space. Alternatively, a probabilistic visual word voting scheme
may be used [1, 5, 20, 77, 95, 96]. Here, each image feature contributes to multiple visual words
relative to the posterior probability of the image feature given the visual word. Since multiple
visual words are being considered, these methods cope with visual word uncertainty. These works
recognize the importance of visual word uncertainty and show that it leads to increased classification
performance. These works, however, lack a clear motivation for their type of ambiguity modeling,
and ignore visual word plausibility. The plausibility of a visual word is employed by Boiman et
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al . [11] who use the distance to the single best neighbor in feature space. Their method cannot
select multiple relevant visual words and therefore does not take visual word uncertainty into
account. The uncertainty of a visual word as well as its plausibility are used by Jégou et al . [60].
The authors weight closer neighbors heavier than farther ones, without normalizing the scores to a
posterior probability. Hence, multiple candidates can be selected, and implausible ones are given
a low weight. None of these methods provide much motivation or evaluation for their choice of
dealing with visual word ambiguity. In this Chapter, however, we motivate and evaluate several
types of visual word ambiguity, extending our preliminary work [135] with state-of-the-art results
on two additional datasets, an extensive evaluation of the vocabulary size, and ample extra analysis
for all evaluated datasets.

Besides direct ambiguity modeling, ambiguity might be addressed by modeling visual word co-
occurrences. Co-occurrence modeling may address ambiguity because it is likely that similar visual
words with high ambiguity co-occur frequently. When these ambiguous visual words are grouped
together their intra-ambiguity is resolved. Co-occurring visual word modeling is performed after
assigning visual words to image features. Typically, co-occurrence is captured with a generative
probabilistic model [9, 10, 56]. A generative codebook model [1, 13, 14, 33, 67, 77, 100, 125, 150]
assumes that the visual words in an image are generated by underlying, latent, topics. These
topics, in turn, characterize a distribution over the visual word vocabulary. With the assumption
that similar visual words often co-occur, a generative model may deal with visual word uncertainty
since similar visual words will be modeled by the same topic. Moreover, a generative model may
take visual word plausibility into account because non-representative visual words will attain low
probabilities. A generative probabilistic model, however, is dependent on large amount of visual
word co-occurrence counts, or co-occurrence with the same other words, to properly model am-
biguity. In contrast, directly modeling visual word ambiguity does not rely on such constraints.
What is more, since a generative visual word model builds on top of visual word assignments, direct
ambiguity modeling can be used as input for a generative model. In this Chapter we do not take
generative models into account. A generative model on top of our ambiguity modeling would add
another layer of complexity. This additional complexity complicates measuring the effect of direct
ambiguity modeling. Since we are interested in measuring ambiguity, we concentrate on direct
ambiguity modeling.

5.2 Visual Word Ambiguity by Kernel Codebooks

Given a vocabulary of codewords, the traditional codebook approach describes an image by a
distribution over codewords. For each word w in the vocabulary V the traditional codebook model
estimates the distribution of codewords in an image by

CB(w) =
1
n

n∑
i=1

{
1 if w = arg min

v∈V
(D(v, ri));

0 otherwise,
(5.1)

where n is the number of regions in an image, ri is image region i, and D(w, ri) is the distance
between a codeword w and region ri. Typically, the regions ri are detected interest regions, or
densely sampled image patches. The codebook model represents an image by a histogram of word
frequencies that describes the probability density over codewords.

A robust alternative to histograms for estimating a probability density function is kernel density
estimation [113, 11]. Kernel density estimation uses a kernel function to smooth the local neigh-
borhood of data samples. A one-dimensional estimator with kernel K and smoothing parameter σ
is given by f̂(x) = 1

n

∑n
i=1Kσ (x−Xi), where n is the total number of samples and Xi is the value

of sample i.
Kernel density estimation makes use of a kernel with a given shape and size. The kernel size

determines the amount of smoothing between data samples whereas the shape of the kernel is related
to the distance function between data samples [9, 143]. In this Chapter we use the SIFT descriptor
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Best Candidate Multiple Candidates
Constant Weight Traditional Codebook Codeword Uncertainty
Kernel Weighted Codeword Plausibility Kernel Codebook

Table 5.1: The relationship between various forms of codeword ambiguity and their properties.

that draws on the Euclidian distance as its distance function [71]. The Euclidean distance assumes
a Gaussian distribution of the SIFT features, with identity as the covariance. Hence, the Euclidian
distance is paired with a Gaussian-shaped kernel Kσ(x) = 1√

2πσ
exp(−1

2
x2

σ2 ). The Gaussian kernel
assumes that the variation between an image feature and a codeword is described by a normal
distribution. This normal distribution has a smoothing parameter σ which represents the size of
the kernel. This smoothing parameter determines the degree of similarity between data samples,
and is dependent on the dataset, the feature dimensionality, and the range of the feature values.
Note that we do not try to obtain the best fit of the data. In contrast, we aim to find the kernel
size that discriminates best between classes. Therefore, we tune the kernel size discriminatively by
cross-validation. Hence, the size of the kernel is dependent on the dataset and the image descriptor,
whereas the shape of the kernel follows directly from the distance function.

In the codebook model, the histogram estimator of the codewords may be replaced by a kernel
density estimator. Moreover, a suitable kernel (such as the Gaussian kernel) allows kernel density
estimation to become part of the codewords, rather than the data samples. Specifically, when the
kernel is symmetric, Kσ(x−Xi) = Kσ(Xi−x), it trivially follows that there is no distinction between
placing the kernel on the data sample or placing the kernel on a codeword. That is, if the centre of
the kernel coincides with the codeword position, the kernel value at the data sample represents the
same probability as if the centre of the kernel coincides with the data sample. Hence, a symmetric
kernel allows for transferring the kernel from the data samples to the codewords, yielding a kernel
codebook,

KCB(w) =
1
n

n∑
i=1

Kσ (D(w, ri)) , (5.2)

where n is the number of regions in an image, ri is image region i, D(w, ri) is the distance between
a codeword w and region ri, and σ is the smoothing parameter of kernel K. The outcome now is
represented by a continuous variable rather than a discrete one.

In essence, a kernel codebook alleviates the hard mapping of features in an image region to
the codeword vocabulary. This soft-assignment models two types of ambiguity between codewords:
codeword uncertainty and codeword plausibility. Codeword uncertainty indicates that one image
region may distribute probability mass to more than one codeword. Conversely, codeword plau-
sibility signifies that an image feature may not be close enough to warrant representation by any
relevant codeword in the vocabulary. Each of these two types of codeword ambiguity may be
modeled individually. Codeword uncertainty,

UNC(w) =
1
n

n∑
i=1

Kσ (D (w, ri))∑|V |
j=1Kσ (D(vj , ri))

, (5.3)

normalizes the amount of probability mass to a total constant weight of 1 and is distributed over all
relevant codewords. Relevancy is determined by the ratio of the kernel values for all codewords v
in the vocabulary V . Thus, codeword uncertainty retains the ability to select multiple candidates,
however does not take the plausibility of a codeword into account. In contrast, codeword plausibility,

PLA(w) =
1
n

n∑
i=1

{
Kσ (D(w, ri)) if w = arg min

v∈V
(D(v, ri));

0 otherwise,
(5.4)

selects for an image region ri the best fitting codeword w and assigns it probability mass propor-
tional to the kernel value of that codeword. Hence, codeword plausibility will give a higher weight
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Figure 5.2: An example of the weight distribution of a kernel codebook with a Gaussian kernel,
where the square, diamond and triangle represent the image features taken from figure 5.1.
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Figure 5.3: Summary of different types of codeword ambiguity, according to table 5.1. These
distributions are based on the kernels shown in figure 5.2.

to more relevant data samples. However, it cannot select multiple codeword candidates. Note that
the selection of a single codeword retains sparsity, which is advantageous for large datasets. The
relation between codeword plausibility, codeword uncertainty, the kernel codebook model, and the
traditional codebook model is summarized in table 5.1.

An example of the weight distributions of the various types of codeword ambiguity with a
Gaussian kernel is shown in figure 5.2. Furthermore, in figure 5.3 we show an example of various
codeword distributions corresponding to different types of codeword ambiguity. Note the weight
difference in codewords for the data samples represented by the diamond and the square. Where
the diamond contributes full weight in the traditional codebook, it barely adds any weight in the
kernel codebook and codeword plausibility model. This may be advantageous, since it incorporates
the implausibility of outliers. Furthermore, in the traditional codebook, the square adds weight to
one single codeword, whereas the kernel codebook and codeword uncertainty adds weight to the
two relevant codewords. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords. Hence, the
kernel codebook approach can be used to introduce various forms of ambiguity in the tradition
codebook model. We will experimentally investigate the effects of all forms of codeword ambiguity
in section 5.3.

In this Chapter we consider the kernel size fixed for all codewords. We have considered a variable
kernel density estimator [113], where the smoothing factor σ varies per codeword. This variable
smoothing factor could be determined by the variance of the image features that are assigned to
each codeword by the clustering algorithm. However, varying the kernel size for each codeword
yields an inhomogeneous feature space where distances are measured differently depending on their
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Figure 5.4: Histograms of Euclidean distances over 200 clusters, where each column represents a
different cluster. The top row displays the distances from this cluster to all other points in the
train set. The data samples that are closest to this cluster are indicated as in whereas the points
that are assigned to other clusters are denoted out. The bottom row shows the distances from this
cluster center to all other cluster centers.

location in feature space. Essentially, a varying kernel size makes certain codewords more important
than others. This difference in codeword importance may be justified, however, should be tied to
the final classification performance. Since the classification performance is not taken into account
by an unsupervised clustering algorithm, we adhere to a homogenous feature space by keeping the
kernel size fixed for all codewords.

The ambiguity between codewords will be influenced by the number of words in the vocabulary.
A large vocabulary allows a rich selection of visual words, increasing the likelihood that an image
feature is well-represented. Moreover, in the case of a large vocabulary, the probability of multiple
relevant visual words increases, suggesting the use of visual word uncertainty. On the other hand,
when the vocabulary is small, essentially different image parts will be represented by the same
vocabulary element. This misrepresentation may be alleviated by considering visual word plausi-
bility. Hence, visual word ambiguity influences both small and large vocabularies. We extensively
investigate the effect of the vocabulary size in section 5.3.

Since codewords are image descriptors in a high-dimensional feature space, we expect a rela-
tionship between codeword ambiguity and feature dimensionality. With a high-dimensional image
descriptor, codeword ambiguity will become more significant. If we consider a codeword as a high-
dimensional sphere in feature space, then most feature points in this sphere will lay on a thin
shell near the surface. Hence, in a high-dimensional space, more feature points will be close to the
boundary between codewords than in a lower-dimensional feature space. Thus, they introduce am-
biguity between codewords. See Bishop’s textbook on pattern recognition and machine learning [9,
Chapter 1, pages 33–38] for a thorough explanation and illustration of the curse of dimensionality.
Consequently, increasing the dimensionality of the image descriptor will in general increase the
level of codeword ambiguity. In the next section we will experimentally investigate the effects of
the dimensionality of the image descriptor.

5.3 Experiments

We experimentally compare codeword ambiguity modeling against the traditional codebook ap-
proach for five large and varied datasets: fifteen natural scene categories from Lazebnik et al . [68],
Caltech-101 by Fei-Fei and Perona [32], Caltech-256 by Griffin et al . [49] and the Pascal VOC sets of
2007 [28] and 2008 [29]. We start our experiments with an in-depth analysis of our methods on the
set of fifteen natural scene categories, after which we transpose these findings to the experiments
on the two Caltech sets and the two issues of Pascal VOC. For our experimental setup we closely
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bedroom (FP) coast (OT) forest (OT)

highway (OT) industrial (L) inside city (OT)

kitchen (FP) living room (FP) mountain (OT)

office (FP) open country (OT) store (L)

street (OT) suburb (FP) tall building (OT)

Figure 5.5: Example images from the Scene-15 dataset. Each category is labeled with the annotator,
where (OT) denotes Oliva and Torralba [94], (FP) is Fei-Fei and Perona [33], and (L) refers to Lazebnik
et al . [68].

follow Lazebnik et al . [68] as this setup has shown excellent performance on these datasets.

5.3.1 Experimental Setup

To obtain reliable results, we repeat the experimental process 10 times. We select 10 random
subsets from the data to create 10 pairs of train and test data. For each of these pairs we create
a codeword vocabulary on the train set. The exact same codeword vocabulary is used by both
the codebook and the codeword ambiguity approaches to describe the train and the test set. For
classification, we use an SVM with a histogram intersection kernel. Specifically, we use libSVM,
and use the built in one-versus-one approach for multi-class classification. We use 10-fold cross-
validation on the train set to tune parameters of the SVM and the size Kσ of the codebook kernel.
The classification rate we report is the average of the per-category recognition rates which in turn
are averaged over the 10 random test sets.

For image features we follow Lazebnik et al . [68], and use a SIFT descriptor sampled on a regular
grid. A grid has been shown to outperform interest point detectors in image classification [33, 62,
93]. We compute all SIFT descriptors on overlapping 16x16 pixel patches, computed over a dense
grid sampled every 8 pixels. Due to small implementation differences, our re-implementation of [68]
performs slightly under their reported results. However, we use the same re-implementation for
all methods of codeword ambiguity. Thus we do not bias any method by a slightly different
implementation.

We create a codeword vocabulary by radius-based clustering. Radius-based clustering ensures
an even distribution of codewords over the feature space and has been shown to outperform the
popular k-means algorithm [62]. Whereas Jurie and Triggs [62] use mean-shift with a Gaussian
kernel to find the densest-point, we maximize the number of data samples within its radius r for
efficiency reasons.

In figure 5.4 we illustrate for 200 clusters the effect of clustering. We show the similarity
distribution from cluster centers to other SIFT descriptors. The similarity distribution adheres to
a Weibull shape, as expected [19]. For the Scene-15 dataset, the radius-based clustering algorithm
used a radius of r = 240 to arrive at 200 clusters. Note, that this radius guarantees that the next
cluster is at least a distance of 2r away, as can be seen in the bottom row of figure 5.4. Furthermore,
note that for each cluster, the distance distribution from the cluster to all points (top row) is fairly
similar to the distance distribution from this cluster to the other clusters (bottom row). This
similarity suggests that the clusters give a good representation of the complete data.
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Figure 5.6: Classification performance results of various types of codeword ambiguity for the Scene-
15 dataset over various vocabulary sizes and feature dimensions.
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Figure 5.7: Analysis of the class label overlap as predicted by various types of codeword ambiguity
for the Scene-15 dataset.

5.3.2 Experiment 1: In-depth Analysis on the Scene-15 Dataset

The first dataset we consider is the Scene-15 dataset, which is compiled by several researchers [33,
68, 94]. The Scene-15 dataset consists of 4,485 images spread over 15 categories. The fifteen scene
categories contain 200 to 400 images each and range from natural scenes like mountains and forests
to man-made environments like kitchens and offices. In figure 5.5 we show examples of the scene
dataset. We use an identical experimental setup as Lazebnik et al . [68], and select 100 random
images per category as a train set and the remaining images as the test set.

For the Scene-15 dataset, we analyze the types of codeword ambiguity, vocabulary size and
feature dimensionality. To evaluate the effect of feature dimensionality on visual word ambiguity
we project the 128 length SIFT descriptor to a lower dimensionality. This dimension reduction is
achieved with principal component analysis, which reduces dimensionality by projecting the data
on a reduced-dimensional basis while retaining the highest variance in the data. We compute a
reduced basis on each complete training set, after which we project the train set and corresponding
test set on this basis. We reduce the feature length from 128 dimensions to 12 dimensions. A
projection to 60 dimensions shows very similar results (data not shown). In evaluating vocabulary
size, we tune the radius in the radius-based clustering algorithm to construct eight differently sized
vocabularies. The vocabulary sizes we consider are {25, 50, 100, 200, 400, 800, 1600, 3200}. The
results for all types of codeword ambiguity evaluated for various vocabulary sizes and the two
feature dimensionalities (12 and 128) are given in figure 5.6.

We start the analysis of the results in figure 5.6 with the various types of codeword ambiguity.
The results show that codeword uncertainty consistently outperforms other types of ambiguity for
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Figure 5.8: Analysis of the best kernel size, found with 10-fold cross-validation, used by various
types of codeword ambiguity for the Scene-15 dataset.

all dimensions and all vocabulary sizes. This performance gain is not always significant, however.
Nevertheless, for 128 dimensions and a vocabulary size of 200, codeword uncertainty (UNC) outper-
forms hard assignment with a vocabulary size of 400 and this trend holds for larger vocabulary size
pairs: (200-unc > 400-hard), (400-unc > 800-hard), (800-unc ≥ 1600-unc) and (1600-unc
> 3200-hard). On the other end of the performance scale there is codeword plausibility, which
always yields the worst results. The third option, a kernel codebook, outperforms hard assignment
for smaller vocabulary sizes. For smaller vocabulary sizes the differences between codeword ambi-
guity types become more pronounced, whereas using a larger vocabulary dampens the differences
between ambiguity types. And, as expected, the highest performance gain for codeword ambiguity
is in a higher-dimensional feature space. When taking overall performance into account, the re-
sults indicate that a higher-dimensional descriptor yields the best results. Moreover, increasing the
vocabulary size seems to asymptotically improve performance for all methods. We will investigate
larger vocabularies in more detail, later.

To gain insight in the performance variation between the various types of codeword ambiguity
we show the overlap percentage between the predicted category labels for all paired method in
figures 5.7. The first thing that is striking in figure 5.7, is the high category label overlap between
hard assignment and codeword plausibility. This high overlap may be explained by noting that
codeword plausibility resembles hard assignment when the kernel size is sufficiently large. Inspecting
the kernel sizes as found with cross-validation reveals that the kernel size for codeword plausibility
is indeed large. The kernel size for codeword plausibility is typically 200 or larger, whereas the
other types of codeword ambiguity range around 100. Furthermore, this label overlap between hard
assignment and codeword plausibility is highest with a small number of dimensions. This may be
due to the fact that a higher-dimensional space leaves more room for implausible features than a
lower dimensional space. The kernel codebook and hard assignment pair have the least number
of labels in common. This low label overlap may be expected, since these two types represent the
extremes of the types of codeword ambiguity as shown in table 5.1. Further differences of label
overlap can be seen between the low- and the high-dimensional feature space. In a high-dimensional
feature space there tends to be less correlation between category labels. In a high-dimensional
space, the differences between the types of ambiguity become more pronounced, reducing the label
overlap. A further trend may be observed in the increased overlap for an increasing vocabulary
size. Increasing the vocabulary size yields an increased performance, which requires more labels to
be predicted correctly. We attribute the increase in label overlap to those images that are predicted
correctly by a larger vocabulary. This link between increased performance and increased category
label overlap also explains that the category label overlap is generally high between all types of
codeword ambiguity.

To evaluate the influence of the kernel size, we show the kernel size found with 10-fold cross-
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Figure 5.9: Classification performance results of various types of codeword ambiguity for the Scene-
15 dataset, trained on 5 images per class. This figures illustrates the effect of relatively large
vocabulary sizes compared to the total number of image features.

validation in figure 5.8. The figure shows the optimal kernel size for the various ambiguity types
for the two feature dimensions and for an increasing vocabulary size. The kernel size for codeword
uncertainty and the kernel codebook show a low variance over the 10 random repetitions. This
indicates that these two types of codeword ambiguity have a stable, optimal kernel size. In contrast,
the best kernel sizes for codeword plausibility fluctuate heavily over the 10 repetitions. Analyzing
the scores, we found that increasing the kernel size of codeword plausibility beyond a sufficiently
large value does not change the classification scores much. I.e., for large kernel sizes there are
no implausible features left in the finite feature space. Therefore, sufficiently large kernels lead to
similar classification performance without a clear optimum, resulting in high kernel size variance for
codeword plausibility. In analyzing the kernel size over the number of vocabulary elements shows
that a larger vocabulary leads to slightly smaller kernels. This may be expected, since a larger
vocabulary is formed by a smaller radius between codewords. When considering the dimensionality
of the descriptor, it shows that lower dimensional features use a smaller kernel. This is the case
because low-dimensional features typically have a smaller Euclidean distance than high-dimensional
features. In summary, the kernel size depends on the type of ambiguity, feature dimensionality and
the number of codewords. Therefore, the optimal kernel size cannot be easily inferred from the data
and should be found in a discriminative manner, linking it directly to classification performance as
achieved with cross-validation.

As illustrated in figure 5.6, increasing the vocabulary size increases the classification perfor-
mance and the performance of the four ambiguity types seems to converge. In figure 5.6, however,
the vocabulary sizes are relatively small. The largest vocabulary in figure 5.6 has 3200 elements
and comprises only 0.23% of all features. The behavior of relatively small vocabularies may not be
identical to relatively large vocabularies. With vocabulary sizes that are relatively large compared
to the total number of training image features, ambiguity type performance may diverge again.
To evaluate this, we compared ambiguity type performance on the Scene-15 dataset over relatively
large vocabularies.

To make the computation of relatively large vocabularies practically feasible, we reduced the
total number of features in the training set. The number of features may be reduced by only
extracting features on detected interest points in an image. However, interest point detection
would deviate too much from our uniform experimental setup for the Scene-15 dataset. Hence, we
keep extracting image features on a regular grid yet constrain the total number of image features
by reducing the number of images per class as is also done by [13, 33, 49]. For this experiment,
we randomly select 5 images for each of the 15 classes, using the remaining images for the test
set. The average number of training feature over the 10 random repetitions amounts to a total
of 67, 408 ± 348 unique SIFT descriptors. Our experiment is not as much concerned with the



5.3. EXPERIMENTS 55

0 1 2
Spatial Pyramid Level

68

70

72

74

76

C
la

ss
if
ic

a
ti

o
n
 R

a
te

 (
%

)

Scene-15

Hard Assignment
Codeword  Uncertainty
Codeword  Plausibility
Kernel Codebook

Figure 5.10: Classification performance on the Scene-15 dataset of various types of codeword am-
biguity using the spatial pyramid.

total number of features per se, but with the ratio between the number of features and the size
of the vocabulary. We want to measure the effect of relatively large vocabularies. We evaluated
vocabulary sizes ranging from 12 (0.02%) to 25,600 (38%) unique visual words. The underlying
assumption is that the results in this experiment trend will hold for various feature and vocabulary
sizes, however with similar ratios.

The results for relatively large vocabularies are given in figure 5.9. Note that the performance
for relatively small vocabularies show a similar trend as in figure 5.6. Hence, the results in figure 5.6
and figure 5.9 are in agreement. The main difference is the lower performance in figure 5.9 because
only 5 images per class are used for training. In figure 5.9 it can be seen that for vocabulary
sizes larger than 800 visual words (1.2%), the performance of all methods decreases. We attribute
this performance decrease to the curse of dimensionality, albeit that we use a discriminative SVM
classifier. In analyzing ambiguity types, it can be seen that for vocabulary sizes of 6,400 and higher,
the performance of hard assignment and visual word plausibility severely deteriorates. This may
be expected, since both of these ambiguity types can not select multiple suitable visual words. For
example, in the extreme case of a vocabulary size equal to the number of image features, codeword
plausibility and hard assignment map each training image feature to it’s own unique visual word,
reverting to exact feature matching. In contrast, the kernel codebook and codeword uncertainty
methods both allow selecting multiple relevant visual words. When increasing the vocabulary size,
the performance of these two types remains relatively stable, where codeword uncertainty is the
better performer. As shown by this experiment, a larger vocabulary does not necessarily yield
better results. Actually, a too large vocabulary severely deteriorates performance for codeword
plausibility and hard-assignment. A kernel codebook and codeword uncertainty, however, only
decrease slightly. Hence, for relatively large vocabularies visual word ambiguity modeling makes a
significant difference.

To show the modularity of our approach and improve results we incorporate the spatial pyra-
mid by Lazebnik et al . [68]. The spatial pyramid divides an image into a multi-level pyramid of
increasingly fine subregions and computes a codebook descriptor for each subregion. The spatial
pyramid has been shown to yield excellent performance [12, 68, 70]. We use the 128 dimensional
features and a vocabulary of 200 codewords in accordance with Lazebnik et al . [68]. The results for
the various forms of codeword ambiguity for the first two levels of the spatial pyramid are shown
in figure 5.10. Our best result with codeword uncertainty is 76.7± 0.4%, whereas hard assignment
scores 75.8± 0.6%, both on level 2 of the pyramid. Codeword uncertainty at pyramid level 1 out-
performs the traditional codebook at pyramid level 2, effectively saving a complete pyramid level.
For the Scene-15 dataset, codeword uncertainty gives the highest improvement at level 0 of the spa-
tial pyramid, which is identical to a codebook model without any spatial structure. Nevertheless,
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Figure 5.11: Relative confusion matrix of the Scene-15 dataset, for 200 codewords at level 0 of the
pyramid, best viewed in color. The relative confusion denotes the increase (blue) or decrease (red)
of the absolute classification score of codeword uncertainty compared to hard assignment matrix.
We show the average classification percentage per category. The value at column x and row y
represents the difference between codeword uncertainty and hard assignment in classifying images
of category y as category x.

codeword uncertainty outperforms the hard assignment of the traditional codebook for all levels in
the pyramid.

The relative confusion matrix of the Scene-15 dataset for 200 codewords at level 0 of the pyramid
is shown in figure 5.11. The relative confusion denotes the absolute difference between entries in the
confusion matrix of codeword uncertainty relative to the matrix of hard assignment. We focus on
hard assignment versus codeword uncertainty, since uncertainty gives the highest improvement of
the three types of visual word ambiguity. The non-diagonal entries that represent misclassification
rates mostly decrease, or do not change much. The only pair with a higher confusion rate is
the confusion between livingroom as bedroom. Nevertheless, this confusion is compensated by
increased discriminative ability between livingroom and the categories kitchen and office. Further
considerable confusion reduction is between open country as coast and highway as coast. Note that
codeword uncertainty improves or matches the correct classification performance for all categories,
given by the diagonal.

5.3.3 Experiment 2 and 3: Caltech-101 and Caltech-256

We conduct our second set of experiments on the Caltech-101 [32] and Caltech-256 [49] datasets.
The Caltech-101 dataset contains 8,677 images, divided into 101 object categories, where the num-
ber of images in each category varies from 31 to 800 images. The Caltech-101 is a diverse dataset,
however the obects are all centered, and artificially rotated to a common position. In figure 5.13
we show some example images of the Caltech-101 set. Some of the problems of Caltech-101 are
solved by the Caltech-256 dataset. The Caltech-256 dataset holds 29,780 images in 256 categories
where each category contains at least 80 images. The Caltech-256 dataset is still focused on single
objects. However, in contrast to the Caltech-101 set, each image is not manually rotated to face
one direction. In figure 5.14 we show some example images of the Caltech-256 set. We report
classification performance on both Caltech sets.

Our experimental results for both the Caltech-101 as Caltech-256 are generated by 30 images
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Figure 5.12: Classification performance of various types of codeword ambiguity using the spatial
pyramid. (a) Caltech-101 (b) Caltech-256.

Binocular (50 / 60) lobster (23 / 33) Bonsai (37 / 47) Platypus (27 / 47)

Leopards (87 / 78) wildcat (20 / 13) waterlilly (48 / 43) Flamingo head (60 / 56)

Figure 5.13: Examples of the Caltech-101 set. Top: the top 4 categories where our method improves
most, Bottom: the 4 categories where our method decreases performance. The numbers in brackets
indicate the classification rate (hard / uncertainty).

per category for training. For testing, we employed 50 images per category for the Caltech 101, and
25 images per category for the Caltech-256. These number of train and test images are typically
used for these sets [49, 68]. We use 128 dimensions, and compare the four types of visual word
ambiguity. The average classification results per spatial pyramid level for Caltech-101 and Caltech-
256 are shown in figure 5.12. These results on Caltech are similar to the results on the Scene-15
dataset. For both sets, the codeword uncertainty method outperforms the traditional codebook
considerably in the light of the difficulty of the problem and the simplicity of the improvement.
Our best result for Caltech-101 with codeword uncertainty is 64.1±1.5%, whereas hard assignment
scores 62.2± 1.2%, both on level 2 of the pyramid. For Caltech-256 our best result is 27.2± 0.4%,
whereas hard assignment scores 25.63± 0.5%. The classification performance difference per category
between hard assignment and codeword uncertainty are given in figure 5.15. For the Caltech-101
set, there are 86 categories that perform better, or equal with codeword uncertainty. In the case
of the Caltech-256 set, there are 199 categories with better or equal performance.

The relative confusion matrices of each Caltech dataset for 200 codewords at level 0 of the

revolver (27 / 35) desk-globe (33 / 41) cereal-box (20 / 29) photocopier (33 / 44)

Leopards (78 / 74) gorilla (18 / 15) goose (7 / 4) cannon (10 / 6)

Figure 5.14: Examples of the Caltech-256 set. Top: the top 4 categories where our method improves
most, Bottom: the 4 categories where our method decreases performance most. The numbers in
brackets indicate the classification rate (hard / uncertainty).
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Figure 5.15: The classification performance difference per category between hard assignment and
codeword uncertainty for (a) Caltech-101 and (b) Caltech-256.

pyramid are given in figure 5.16 and figure 5.17. The relative confusion denotes the difference
between entries in the confusion matrix of codeword uncertainty compared to the matrix of hard
assignment. Since the size of these datasets prohibits displaying the full confusion matrix, we show
the four categories that increase most, and the four categories that decrease most by using codeword
uncertainty over hard assignment. Moreover, for each of these categories we show their most
confusing, and least confusing category. We focus on the difference between codeword uncertainty
and hard assignment, since the former gives the best results and the latter is most commonly used
in literature. Some examples of the classes that increase, and decrease most are given in figures 5.13
and 5.14.

We start the analyses of the relative confusing matrices of the Caltech datasets with the cate-
gories where performance decreases most. These object categories consist mostly of natural images
that are captured including their contextual background. We deem this background as the reason
for a decreased performance by ambiguity modeling. The background is very similar for several
natural images. By incorporating ambiguity modeling this similarity is enhanced, leading to more
confusion. In analyzing the categories that improve most, we observe that these categories mainly
consist of man-made objects, and objects that are photographed without context. We conjecture
that the reason why these classes benefit most from codeword ambiguity is that these object classes
have little intra-class variation. Small variations may lead to completely different codewords when
using the hard assignment as in the traditional codebook model. In contrast, our approach of
ambiguity modeling will reserve weight for multiple, suitable codewords, leading to classification
improvements.

5.3.4 Experiment 4: PASCAL VOC07-20 and VOC08-20 Datasets

As a final experiment, we consider the Pascal VOC 2007 [28] and 2008 challenge [29]. The VOC
challenges consist of twenty object classes with 9,963 images in 2007 and in 10,057 images in 2008.
These image sets are each split in half to a given train and test set. The Pascal VOC Challenge
provides a yearly benchmark of object recognition algorithms. We follow the successful approach
by Marsza lek et al . [74], which was extended by Tahir and Van de Sande et al . [126]. Specifically,
for each image we combine Harris-Laplace point sampling with densely sampling every 6 pixels.
These points are subsequently represented by SIFT, and various color-SIFT descriptors [132]. The
descriptors of the train set with around 5000 features per image are subsequently clustered by k-
means to create a vocabulary of 4,000 codewords. This vocabulary is used in the codebook model
at level 1 of Lazebniks spatial pyramid where we use a support vector machine with a χ2 kernel
for image classification. We fuse the classification scores for the various SIFT descriptors with
a simple geometric mean. The final classification performance is measured in average precision,
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Figure 5.16: Relative confusion matrix for the Caltech-101 dataset, best viewed in color. We show
the 4 categories that increase most, and the 4 categories that decrease performance most. Each
of these 8 categories is paired with its most confusing and least confusing category. The value at
column x and row y represents the difference between codeword uncertainty and hard assignment
in classifying images of category y as category x.

which represents the area under the precision-recall graph.
We experimentally compared the traditional codebook model with codeword uncertainty and

with the best two participating systems on the respective Pascal challenge. In figure 5.18 we
show the results for both Pascal VOC 2007 and 2008. For Pascal VOC 2007 (VOC07-20) our
implementation with codeword uncertainty performs best for 15 of the 20 object classes. The
best method for the 5 other object classes is INRIA Genetic. In terms of mean average precision
over all object classes, our implementation with codeword uncertainty scores best with 0.605,
followed by INRIA Genetic with 0.594, hard assignment with 0.580 and XRCE with 0.556. Note
that the traditional codebook model occupies the third place, whereas replacing hard assignment
with codeword uncertainty yields the best result. Moreover, codeword uncertainty outperforms
hard assignment for all 20 categories of VOC07-20. In the case of Pascal VOC 2008 (VOC08-
20), SurreyUvA SRKDA claims 9 categories, LEAR shotgun wins 9, and codeword uncertainty
is the best for 4 categories2. The best system in mean average precision is SurreyUvA SRKDA
with 0.549, followed by LEAR shotgun with 0.545, codeword uncertainty with 0.541 and 0.521 for
the traditional codebook. The SurreyUvA SRKDA system with the best mean average precision
already uses codeword uncertainty as a part of their method [126]. The main difference between
SurreyUvA SRKDA and our results presented here, is the use of a classifier with multiple kernel
learning which is out of scope for this article. In comparing hard assignment with codeword
uncertainty, the latter slightly decreases the performance for the category cow. For the other 19
categories of VOC08-20 the performance of codeword uncertainty is equal or better than hard
assignment.

5.4 Discussion

This Chapter presented a principal improvement on the popular codebook model for scene classi-
fication. The traditional codebook model uses hard assignment to represent image features with
codewords. We replaced this basic property of the codebook approach by introducing uncertainty

2This totals to 22 because 2 systems share the best score for the categories person and bus.
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Figure 5.17: Relative confusion matrix for the Caltech-256 dataset, for the top 4 and bottom 4
categories as in figure 5.16. The value at column x and row y represents the difference between
codeword uncertainty and hard assignment in classifying images of category y as category x.

modeling, which is appropriate as discrete feature vectors are only capable of capturing part of
the intrinsic variation in visual appearance. This uncertainty is achieved with techniques based on
kernel density estimation.

The experiments on the Scene-15 dataset in figures 5.6 and 5.10 show that of the four considered
ambiguity types, codeword plausibility hurts performance. Codeword plausibility (PLA), and the
unnormalized kernel-codebook (KCB), are dominated by those few representative image features
that are significantly close to a codeword. In essence, PLA and to a lesser extent KCB, ignore
the majority of the features, and leads us to conclude that it is better to have an implausible
codeword representing an image feature then no codeword at all. When no codeword is selected,
all statistical classification techniques developed to deal with noisy data are not used to their
full potential. Therefore, codeword uncertainty yields the best results, since it models ambiguity
between codewords, without taking codeword plausibility into account.

The results in figure 5.6 indicate that codeword ambiguity is more effective for higher-dimensional
features than for lower dimensions. The curse of dimensionality prophesizes that increasing the di-
mensionality increases the fraction of feature vectors on or near the boundary of codewords. Hence,
increasing the dimensionality will increase codeword uncertainty, leading to better results for am-
biguity modelling with higher-dimensional features.

Figure 5.6 seems to suggest that a larger vocabulary is always better. Furthermore, the figure
suggests that for larger vocabularies the performance of hard assignment and soft-assignment con-
verges. Figure 5.9 illustrates that both these suggestions are not the case. Figure 5.9 shows that a
too large vocabulary severely deteriorates the performance of hard assignment, whereas codeword
ambiguity degrades only slightly. In the case of the VOC2007/2008 with around 5000 images in
the training set with close to 5000 features per image, a vocabulary of 4000 words is rather small.
Because of this relatively small vocabulary there is a significant improvement of soft-assignment
over hard assignment. Even more performance improvement can be expected by choosing a much
larger vocabulary. However, as shown in figures 5.6 and 5.9, the positive effect of a larger vocabu-
lary size on the performance decreases logarithmically. Hence, it takes a vocabulary size of several
orders of magnitude higher to obtain a significant improvement. Such larger vocabularies makes it
practically infeasible to compute all (color) descriptors, spatial pyramid levels, and machine learn-
ing techniques. In contrast, ambiguity modeling provides increased performance at much lower
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Figure 5.18: Average Precision of the traditional codebook model and codeword uncertainty per
category, compared against the best two participants for Pascal VOC 2007 (left) and Pascal VOC
2008 (right). The mean average precision for each method is shown in the legend. Note that
codeword uncertainty is used by the SurreyUvA SRKDA method that participated in Pascal VOC
2008.

Data set Train set size Test set size Performance Increase
Scene-15 1,500 2,985 4.0 ± 1.7 %
Caltech-101 3,030 5,050 6.3 ± 1.9 %
Caltech-256 7,680 6,400 9.3 ± 3.0 %
VOC07-20 5,011 4,952 4.3 %
VOC08-20 4,340 5717 3.8 %

Table 5.2: The relationship between the data set size and the relative performance of codeword
uncertainty over hard assignment for 200 codewords in the Scene-15 and Caltech datasets and 4,000
codewords for the VOC07-20 and VOC08-20 sets.

computational costs.
The results over the Scene-15, Caltech-101, Caltech-256, and Pascal datasets are summarized in

table 5.2. This table shows the relative improvement of codeword uncertainty over hard assignment.
Note that the result for the Pascal datasets is set apart, since it adheres to a different experimental
setup. As can be seen in this table, the relative performance gain of ambiguity modeling increases
as the number of scene categories grows. A growing number of scene categories requires a higher
expressive power of the codebook model. Since the effects of ambiguity modeling increase with
a growing number of categories, we conclude that ambiguity modeling is more expressive then
the traditional codebook model. The results of all experiments show that codeword uncertainty
outperforms the traditional hard assignment over all dimensions, all vocabulary sizes, and over all
datasets.

We have demonstrated the viability of our approach by improving results on recent codebook
methods. These results are shown on five well-known datasets, where our method consistently
outperforms the traditional codebook model. We have shown that ambiguity modeling can obtain
the same performance as hard assignment with a considerable smaller vocabulary. What is more, we
found that hard assignment suffers more from the curse of dimensionality, whereas our ambiguity
modeling approach reaps higher benefits in a high-dimensional feature space. Furthermore, the
performance of hard assignment completely deteriorates when using relatively large vocabularies,
while the proposed model performs consistently. Similarly, an increasing number of scene categories
increases the effectiveness of our method. As future image features and datasets are expected to
increase in size, our ambiguity modeling method is unambiguously likely to have more impact.





Chapter 6

Color Invariant Object Recognition
using Entropic Graphs1

6.1 Introduction

Humans are capable of distinguishing the same object from millions of different images. Machines
on the other hand have significant difficulty with this seemingly trivial task. One of the reasons that
computational object recognition is such a hard problem is that machines take sensory information
very literally, making object recognition vulnerable to accidental scene information. Such accidental
variations include scale, illumination color, viewing angle, background, occlusion, shadows, shading,
light intensity, highlights, and many more [117].

One approach to dealing with such photometric variations is found in the use of invariant
features. Invariant features remain unchanged under certain operations or transformations and are
used for various object recognition approaches. For example, the physical laws of image formation
can be used to factor out accidental scene effects. The dichromatic reflection model by [111]
integrates body and surface reflection properties. This model may be extended upon, to obtain
color invariant measurements [36, 37, 44, 47].

In order to compare object images, a similarity measure between image features is required.
Often, similarity measures are used that require some parameter tuning in order to be applicable to
other datasets or features. An example of such a parameter is the bin-size for histogram matching.
A generic alternative is found in the use of unparametric similarity measures. We use entropic
graphs [54] to compute an unparametric similarity between image features.

This Chapter utilizes color invariant features for object recognition. We employ an unparametric
entropic similarity measure to match object images. Furthermore, the object recognition scheme
is evaluated on a large dataset with real-world imaging conditions.

6.1.1 Related Work

A popular method for object recognition is to apply salient point detectors. This method deals
with problems, such as partial matching and occluded images. Specifically, [107] use salient point
detection for indexing gray images. The detected points are subsequently made robust for scale
changes and transformed to be rotationally invariant. In a similar approach, rotational and scale in-
variant keypoints allows for robust object detection [71]. Scale Invariant Feature Transform (SIFT)
features are extracted and matched against a database. A Hough transform gives high probability
to multiple features matched in one image. One problem with the interest point approach is the
repeatability of the salient point detection. For example, detection may vary depending on pose,
illumination, and background changes. Thus, salient points are not guaranteed to be the same over
various imaging conditions. Moreover, for images without high curvature the method might not
detect any salient points at all.

1Published in the International Journal of Imaging Systems and Technology [134].
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An alternative approach is given by [106] who take multiscale histograms of local gray value
structure in an image. Translation invariance is given by the use of histograms. Rotational in-
variance is achieved by using several rotated versions of a steerable filter in steps of 20◦. This
technique proves robust for rotated, occluded, and cluttered scenes. Grayscale images, however,
lack a significant amount of information compared to color images. In our opinion, using color
features in an object recognition approach is favorable, as color is a highly discriminative property
of objects.

A biologically inspired object recognition method is presented with SEEMORE [76]. Object
matching is achieved with histograms of 102 different filters. Each filter responds to different image
features like contour, texture, and color. Experiments are performed over a collection of 100 images.
The highest experimental recognition rate of 97% is achieved with color and shape features. By
using only color features, 87% recognition is achieved, as opposed to 79% without color. Thus color
information may significantly improve object recognition.

[37] propose color invariant histograms for illumination-independent object recognition. Under
the assumption of a slowly varying illumination, computed color ratios of neighboring pixels are
color invariant. The color ratio is computed by taking derivatives of the logarithm of the color
channels. Object recognition experiments were conducted for differing illuminations. Results show
that histograms of color ratios outperform color histograms. Histogram bin-size is usually set in
an ad-hoc manner, where the best bin size for a specific application is experimentally determined.
Kernel density estimation tries to overcome the problem of selecting a suitable bin size for a
histogram.

Color invariant histograms may be improved upon by using variable kernel density estima-
tion [47]. Here, an error propagation method is introduced to estimate the uncertainty of a color
invariant channel. This associated uncertainty is used to derive the optimal parameterization of
the variable kernel used during histogram construction. In this way, a robust estimator of invariant
density is constructed. However, noise characteristics of the camera system are often not available.

A solution to image matching without the use of histograms is found in assuming prior knowl-
edge about the probability distributions. A popular approach is mixture of Gaussian estima-
tion [149]. However, not all processes can be described with a fixed parameterized model. Further-
more, assuming one distribution might severely over-simplify the complexity of the data.

Entropic graphs [54] offer an unparameterized alternative to histograms, circumventing choosing
and fine tuning parameters such as histogram bin size or density kernel width. Alternatively,
classifiers such as support vector machines may be employed for object recognition [98]. A support
vector machine [141] finds the best separating hyper plane between two classes. In contrast to
support vector machines, entropic graphs allow to estimate information theoretic measures, like
entropy, divergence, mutual information and affinities.

In our approach, we extend the work of [106, 37, 47, 54] combining higher order color invariant
features with an entropy graph based similarity measure. We extract color invariant features from
object images, invariant to viewpoint, shadow and shading. As opposed to using a histograms or
kernel density estimations, we employ entropic graphs. The Henze-Penrose similarity measure is
then used to compute the similarity of two images. Finally, we evaluate our method on a large
collection of object images. The object image collection consists of 1,000 objects recorded under
various imaging circumstances.

The Chapter is organized as follows. The next section discusses the color invariant model,
section 6.3 introduces entropic graphs and the Henze-Penrose similarity measure. Section 6.4
presents experimental results, after which section 6.5 concludes the Chapter.

6.2 Color Invariant Features

Color is defined in terms of human observation. There is no one-to-one mapping of the spectrum of
a light source to the perceived color. The Gaussian color model described in [43] approximates the
spectrum with a smoothed Taylor series. In accordance with the human visual system, the Gaussian
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color model uses second order spectral information. The zeroth order derivative measures the
luminance, the first order derivative the ’blue-yellowness’, and the second order the ’red-greenness’
of a spectrum.

A RGB image is measured in the Red Green and Blue sensitivity components of the light. The
RGB sensitivities have to be transformed to the Gaussian spectral derivatives. In [43] an optimal
transformation matrix with the Taylor expansion in the point λ0 = 520nm and with a Gaussian
spectral scale of σλ = 55nm is derived under the assumption of standard REC 709 CIE RGB
sensitivities:  E

∂λE
∂λλE

 =

 0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

 R
G
B

 . (6.1)

When comparing images of the same object, differences in measurement due to the scene en-
vironment pose a problem. Taking two pictures of an object yields two different representations
of the same scene. Differences in lighting conditions and in camera rotation change the recorded
measurements of the scene. Image invariants deal with the problem to measure the information in
a scene, independent of properties not inherent to the recorded object. Color invariance aims at
keeping the measurements constant under varying intensity, viewpoint and shading. In [44] several
of these color invariants for the Gaussian color model are described. A property C invariant for
viewpoint, shadow and shading invariance, is given by

Cλmxn =
∂n

∂xn

1
E(λ, x)

∂m

∂λm
E(λ, x) m ≥ 1, n ≥ 0, (6.2)

where E is the energy. The C invariant normalizes the spectral information with the energy E
and computes the spatial derivatives independent of the spectral energy. Note that the derivatives
on the right-hand side of the equation represent measurements in the Gaussian color model. This
makes the local spatial neighborhood invariant for intensity changes like shadow and shading.

Each pixel can be described with a color invariant feature vector. For example a second order
spatial representation of a pixel E yields the invariant counterparts of

{Cλ, Cλx, Cλy, Cλxx, Cλxy, Cλyy,
Cλλ, Cλλx, Cλλy, Cλλxx, Cλλxy, Cλλyy}. (6.3)

Note that only color information is used as all luminance information is discarded.
The invariant expressions up to second order are given by,

Cλ = Eλ
E , Cλx = EλxE−EλEx

E2 , Cλy = EλyE−EλEy
E2 ,

Cλλ = Eλxx
E , Cλλx = EλλxE−EλλEx

E2 , Cλλy = EλλyE−EλλEy
E2 ,

Cλxx = EλxxE
2−EλExxE−2EλxExE+2EλE

2
x

E3 ,

Cλyy = EλyyE
2−EλEyyE−2EλyExE+2EλE

2
y

E3 ,

Cλxy = EλxyE
2+EλxEyE−EλyExE−EλExyE−2EλxEyE+2EλExEy

E3 ,

Cλλxx = EλλxxE
2−EλλExxE−2EλλxExE+2EλλE

2
x

E3 ,

Cλλyy = EλλyyE
2−EλλEyyE−2EλλyEyE+2EλλE

2
y

E3 ,

Cλλxy = EλλxyE
2+EλλxEyE−EλλyExE

E3 − EλλExyE−2EλλxEyE+2EλλExEy
E3 .

Indices denote differentiation by Gaussian convolution.

6.3 Entropic Graphs

This section advocates entropic difference measures as an alternative to commonly used difference
measures. The entropy measures the information content of a random variable. The information
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Figure 6.1: An example of a 4-nearest neighbors graph.

in one variable may be used to describe another, by utilizing the mutual information between
the two variables. High mutual information implies a high similarity between the two random
processes. The difference between two probability distributions is given by the Kullback-Leibler
(KL) divergence. The KL divergence between p(x) and q(x) may be seen as the average error by
describing distribution p(x) with a distribution q(x). Entropic distance measures are theoretically
sound and can capture non-linear relations between probability distributions. Several applications
of entropy can be found, for example, in image registration [123], image retrieval [142], video
modeling [16], and saliency detection [63].

The entropy of high dimensional features is hard to estimate. Two methods to compare images
are: 1) histogram matching and 2) assuming a fixed probability density function. Entropy may
be estimated from a histogram. A histogram is a fast and easy to compute method, making no
assumptions on the underlying probability distribution. However, the problem of selecting a suitable
histogram bin size is more of an art than science. Moreover, for a fixed resolution per dimension,
the number of bins increases exponentially in the number of dimensions. Kernel density estimators
are a general case of histogram methods [148]. Nevertheless, the problems of selecting the size of
the kernel and the curse of dimensionality also apply to kernel density estimation. Another solution
to estimating entropy is by assuming prior knowledge about the probability distributions. When
the probability distributions can be described with a parameterized model the computation of the
entropy becomes feasible. However, not all processes can be described with a fixed parameterized
model. Furthermore, assuming one distribution might severely over-simplify the complexity of the
data.

Entropic graphs provide an unparameterized, efficient way to estimate the entropy of high di-
mensional data [54]. An entropic graph is any graph whose normalized total weight (sum of the edge
lengths) is a consistent estimator of Rényi’s α-entropy. Examples of entropic graphs are the Mini-
mum Spanning Tree and the k-nearest neighbor graph. One advantage of combinatorial methods is
that the computation and storage complexity increase linearly in feature dimension. Additionally,
graph based estimators have fast asymptotic convergence rates and bypass the complication of
choosing and fine tuning parameters such as histogram bin size or density kernel width.

Rényi’s α-entropy [104] is a generalization of the Shannon entropy and is defined by

Hα(f) =
1

1− α
log
∫
X
fα(x)dx . (6.4)

The α-entropy converges to the Shannon entropy H(f) = −
∫
f(x) log f(x)dx, as α → 1. For α

smaller than 1, the tails in the distribution are heavily weighted in the entropy.
The α-entropy can be estimated by the length of a minimal graph through sample points. Given

a set Xn = {x1, x2, ..., xn} of n i.i.d vectors in a d-dimensional feature space, the length of a graph
is given by

Lγ(Xn) =
∑

e∈G(Xn)

|e|γ . (6.5)



6.3. ENTROPIC GRAPHS 67

(a) (b)

Figure 6.2: Example of the Henze-Penrose affinity in 2 dimensions. (a) The sample points {X}
(circle) and {Y } (square) are drawn from the same uniform distribution. The calculated affinity
is 0.85. (b) The sample points {X} (circle) and {Y } (square) are drawn from slightly different
uniform distributions. The calculated affinity is 0.41.

The graph G is over a suitable substructure, e.g. k-nearest neighbor graphs (see figure 6.1). Fur-
thermore, e are edges in a graph connecting pairs of Xi’s and |e| denotes the Euclidean distance.
The weighting γ ∈ (0, d) relates to the value of α in the α-entropy as α = (d− γ)/d, where d is the
dimensionality of the feature space.

The entropic graph estimator

Ĥα(Xn) =
1

1− α
logL(Xn)/nα − log c , (6.6)

is an asymptotically unbiased and consistent estimator of the α-entropy, where c is a constant
independent of the data.

Entropic graphs can be used to estimate several similarity measures. These similarity measures
include: the α-mutual information, α-Jensen difference divergence, the Henze-Penrose affinity, and
the α-geometric-arithmetic mean divergence. For α → 1, the α-divergence reduces to the Kullback-
Leibler divergence, and the α-mutual information to the Shannon mutual information. When α
approaches 1, central differences between the two densities become highly pronounced. When α
approaches 0, tail differences between two densities f and g become most influential. Therefore,
if the feature densities differ in regions where there is a lot of mass one should choose α close to
1 to ensure locally optimum discrimination. Alternatively, if the tails or extreme values of the
distribution describe the important events, α should be chosen close to 0.

One measure of similarity between probability distributions f and g is the Henze-Penrose
(HP) [53] affinity,

DHP = 2pq
∫

f(x)g(x)
pf(x) + qg(x)

dx , (6.7)

where p ∈ [0, 1] and q = (1− p).
In [89] an entropic graph algorithm for the Henze-Penrose affinity is introduced for given sam-

ple points {Xi}mi=1 of f , and {Yi}ni=1 of g. For given samples, the value for p in equation 6.7 is
directly related to the number of samples: p = m

m+n . The entropic graph algorithm to estimate the
Henze-Penrose affinity is given by:
1. Construct the k-nearest neighbor graph on the sample points {X} ∪ {Y } ;
2. Keep only the edges that connect an X-labeled point to an Y -labeled point ;
3. The HP-test affinity is given by the number of edges retained, divided by (m+ n)k for normal-
ization.
This algorithm constructs an entropic graph on the edges that connect classes {X} and {Y }.
Counting the connecting edges implies a power weighting with 0. Therefore, the value for α in the
estimated α-entropy is 1, emphasizing central differences between the two classes.
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i110 i120 i130 i140 i150 i160

i170 i180 i190 i210 i230 i250

Figure 6.3: Example object from the ALOI collection, viewed under 12 different illumination color
temperatures.

r0 r5 r10 r15 r20 r25 r30

Figure 6.4: Example object from the ALOI collection, viewed from different viewing directions.

In figure 6.2 we show two-dimensional examples of the Henze-Penrose affinity. The examples
show sample points {X} and {Y } drawn from the same uniform distribution, and from a slightly dif-
ferent distribution, respectively. The affinity between the points drawn from the same distribution
is significantly higher.

6.4 Experiments

Performance is evaluated with an object recognition task on the ALOI dataset [41]. The ALOI
collection consists of 1,000 objects recorded under various imaging circumstances. For each object
the viewing angle, illumination angle, and illumination color are varied. See figures 6.3, 6.4, 6.5
and 6.9, for examples of the collection.

The combination of a large image dataset with a considerable variety of appearance offers a
formidable challenge for object recognition. Object recognition is the problem of matching one
appearance of an object against a standardized version. One object may give rise to millions of
different images, as camera conditions may be varied endlessly. In our recognition experiment, one
prototypical version of each object in the ALOI dataset is indexed and the diversity of recorded
object variations in the collection are used for querying. An object is perfectly recognized when for
all different variations the correct indexed object is returned. In this case, one may assume that
the object can be recognized under a wide variety of real-life imaging circumstances.

l1 L2 L3 L4 L5 L6 L7 L8

c1

c2

c3

Figure 6.5: Example object from the ALOI collection, viewed under 24 different illumination
directions. Each row shows the recorded view by one of the three cameras. The columns represent
the different lighting conditions used to illuminate the object



6.4. EXPERIMENTS 69

6.4.1 Implementation

Entropic graphs are constructed with k-nearest neighbor search. The nearest neighbor search is
implemented using the approximation algorithm by [90]. The nearest neighbor search is simple
to implement and efficient in high dimensions. The algorithm proposed in [90] constrains possible
nearest neighbors of a point p inside a high-dimensional hypercube around p. For each dimension
i, the points outside the limits i− ε and i+ ε are discarded where the value of ε is typically small.
For given distributions, ε can be set to an optimal value. For unknown data, however, ε may be
empirically estimated. An offline sorted data structure makes discarding the points outside the
hypercube efficient. In the case of entropic graph construction, this data structure needs to be
computed for each query.

We extend the nearest neighbor algorithm specifically for entropic graph construction. Partic-
ularly, the approximate nearest neighbor algorithm is transformed to an optimal, exact algorithm.
An entropic graph computes the k-nearest neighbors for each query image Q with every database
image D. For each point p in the image D, the Euclidean distance to the k-th nearest neighbor,
which is furthest away, is stored. These distances are subsequently used as the ε values in com-
puting the neighbors to p in Q. Because this ε value is the point furthest away in D, all points
discarded can never be a k-nearest neighbor of Q∪D. Hence, yielding an optimal value for ε, thus
an exact, and more efficient entropic graph algorithm.

Before constructing the entropic graphs we pre-process the images to extract features. The
values of the color invariant N-jet are sub-sampled, thresholded and whitened. We compute the
second order color invariant N-jet by convolution with a Gaussian of σ = 2. Due to Gaussian
smoothing there is a high correlation between neighboring pixel values. Therefore, we keep only 1
pixel in a block of 4 pixels. Sub-sampling will significantly increase the speed of the entropic graph
construction. Color invariance is achieved by dividing by the intensity. Hence, the invariants are
unstable when the intensity approaches zero. All pixels with intensity lower than 15 gray values are
discarded. As the nearest neighbor search uses a hypercube, whitened (or sphered) data is required.
Whitening is achieved by dividing all data by a pre-computed standard deviation for each invariant
feature. The 1,000 reference images are used for the calculation of the standard deviation. The
extracted features are input for the entropic graph matching.

A single match on a standard PC takes 600 milliseconds. Given the size of the dataset, all
computations have been performed on the Distributed ASCI Supercomputer 2 (DAS-2), a wide-
area distributed computer located at five different universities in The Netherlands [3]. DAS-2
consists of five Beowulf-type clusters, one of which contains 72 nodes, and four of which have 32
nodes (200 nodes in total). All nodes consist of two 1.0 GHz Pentium III CPUs, at least 1.0 GByte
of RAM, and are connected by a Myrinet-2000 network.

We used the parallel Horus framework introduced in [109]. The Parallel-Horus framework is
a software architecture that allows non-expert parallel programmers to develop fully sequential
multimedia applications for efficient execution on homogeneous Beowulf-type commodity clusters.
The core of the architecture consists of an extensive software library of data types and associated
operations commonly applied in multimedia processing. To allow for fully sequential implementa-
tions, the library’s application programming interface is made identical to that of Horus, an existing
sequential library.

6.4.2 Results

We utilized the ALOI collection [41] for evaluation of object recognition performance. For each
object, 49 different appearance variations are evaluated. The 49 variations consist of: 12 illumina-
tion color variations, 13 rotated views of the object and 24 different illumination directions. Object
recognition requires reference images and query images. The reference images are the ones recorded
with white illumination and frontal camera with all lights turned on. The 49 query images per
object are all matched against the 1,000 reference images, making a total of 49,000 queries.

We compare our method with a standard work in object recognition [45]. This method uses
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Figure 6.6: Correct Cumulative object recognition. The number of object correctly recognized for
an increasing error tolerance. The legend indicates different experiments with RGB for histogram
intersection on RGB values, rgb for histogram intersection on normalized RGB values and egraphs
for our entropic graph algorithm.

histogram intersection on color invariant pixel values. The number of bins that is used for the
histograms is 32 per dimension, which is identical to value used in the original article. Object
recognition results on the ALOI collection are computed for RGB histograms and for normalized
rgb histograms.

Figure 6.6 shows the number of objects correctly recognized for an increasing error tolerance.
Each of the 49 viewing condition gives rise to a possible mistake. Therefore, the graph displays
the number of objects perfectly recognized if we allow 0 errors, to 1000 objects recognized if we
allow all 49 mistakes. A desirable graph starts high and has a steep ascend. Our method starts at
141 objects and for a 5% error (2 errors) 291 objects are recognized. For histogram intersection no
objects are recognized perfectly. Furthermore, it doesn’t matter much if RGB or normalized rgb
is used. However, the object recognition results based on entropic graphs significantly outperforms
color histograms.

To acquire some insight in the results for both object recognition methods, we analyzed the
recognition rate for each of the 49 viewing conditions. Figure 6.7 shows the object recognition
performance of both methods grouped by color temperature and rotation direction. See figure 6.3
and figure 6.4 for examples of these conditions. Note the considerable increase in recognition error
for both methods under changes in illumination color (i250, ..., i110). Hence, both methods are not
color constant, where the normalized color histograms suffer the most. Under different viewing an-
gles (r30, ..., r330) our proposed method shows a high degree of robustness. The error for histogram
intersection under different angles does not favor normalized or raw RGB values. Figure 6.8 shows
the object recognition performance of both methods for each camera and illumination direction.
See figure 6.5 for examples of these conditions. For the lighting directions l1 and l5 performance
degrades for both methods. This result is to be expected as the light shines only on a small part of
the object. Performance further decreases as the position of the camera (c1 vs c3) is farther away
from the frontal position, where camera 3 is particulary difficult for the histogram based method.
The raw RGB histograms suffer most from changes in lighting directions, which is to be expected
as no steps are taken to account for intensity changes. The results are summarized in table 6.1.
For all experiments, our method significantly outperforms the histogram based methods.
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Figure 6.7: Number of objects recognized, grouped by color temperature and rotation direction.
The conditions are abbreviated with letters. The prefix i indicates illumination color and r rep-
resents degrees of rotation. The legend indicates different experiments with RGB for histogram
intersection on RGB values, rgb for histogram intersection on normalized RGB values and egraphs
for our entropic graph algorithm.
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Figure 6.8: Number of objects recognized, grouped by camera and illumination direction. The
conditions are abbreviated with letters. The prefix c conforms to camera position and l denotes the
light source. The legend indicates different experiments with RGB for histogram intersection on
RGB values, rgb for histogram intersection on normalized RGB values and egraphs for our entropic
graph algorithm.
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RGB rgb egraphs
Color Temperature 52.14% 45.06% 80.43%

Rotation 91.85% 91.02% 97.35%
Illumination Direction (c1) 76.36% 77.74% 90.25%
Illumination Direction (c2) 59.04% 62.51% 81.51%
Illumination Direction (c3) 0.99% 0.79% 68.53%

Table 6.1: Percentage correct recognition for each method per condition. RGB is histogram in-
tersection for RGB values, rgb is histogram intersection for normalized RGB, and egraphs is the
entropic graph algorithm.

Figure 6.9: 141 ALOI objects perfectly recognized by our method.

For 1,000 objects with 49 viewing conditions per object, we recognize 141 objects perfectly.
That is, the number of objects that correctly match all different recordings. Given the diversity in
recording circumstances, we may safely assume the objects will be recognized under a high variety
of real-life imaging conditions. Figure 6.9 displays the perfectly recognized objects. These objects
have no apparent visual similarity, indicating that our approach is not biased towards specific type
of objects.

6.5 Discussion and Conclusions

In this Chapter, an unparameterized entropy estimator in combination with color invariant features
are used for object recognition. We use color invariant features that keep image measurements
constant under varying intensity, viewpoint and shading. For similarity matching we employ a
measure based on entropic spanning graphs. Entropic graphs provide an alternative to traditional
approaches of image matching such as assuming a fixed probability distribution or histogram bin-
ning. The parameters required are the number of nearest neighbors and the value for α in the
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α-entropy. The number k of the k-nearest neighbors is not critical, however a higher k adds more
robustness. The value of α is set through the power weighting γ, it determines the importance
of the tails in a probability distribution. Therefore, α is an additional degree of freedom of the
entropy, where α = 1 is equivalent to the Shannon entropy. We introduce a new, efficient and exact
entropic graph matching algorithm, based on an approximate nearest neighbor algorithm. Despite
an efficient algorithm, one drawback to entropic distance measures is that they are computation-
ally more expensive than traditional approaches. Object recognition performance reported on a
large dataset show that color invariant entropic graph matching significantly outperforms histogram
based methods.
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Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis we explore robust and practical methods for visual scene categorization. To this
end, we scrutinize and improve the bag-of-visual-words, a.k.a. codebook model. In the codebook
model, image features are represented by discrete prototypes, describing an image as a histogram
of prototype counts. Prototype-histograms are subsequently used by a classifier to separate images
of visual scene categories. In this thesis we focus on the codebook model, and identify four core
parts where robust methods may improve the practical application of the model:

1. Prototype vocabulary size and eloquence: the more compact, i.e. smaller, the vocabulary, the
larger the image collections that can be indexed. Moreover, a prototype vocabulary may be
tuned to the image domain at hand.

2. Image feature sampling: the contextual surroundings of an object may be more informative
than the object itself.

3. Prototype to feature assignment: representing an image feature by multiple prototype candi-
dates over merely the best prototype.

4. Classification parameter tuning: careful classification performance estimation may allow more
accurate parameter tuning.

In the following paragraphs we summarize the contributions of this thesis per chapter:
Chapter 2, Episode-Constrained Cross-Validation in Video Concept Retrieval. In

this Chapter we propose an episode-constrained cross-validation method for estimating scene clas-
sification performance in video. The traditional method of cross-validation is based on shots,
whereas we propose a method based on episodes. Our episode-constrained method prevents the
leaking of nearly identical shots to the rotating hold-out set. Consequently, episode-constrained
cross-validation produces sets with an unbalanced number of relevant items. Such unbalances
sets apriori have a better Average Precision (AP) score, since AP is not normalized for the num-
ber of relevant items. To remedy this bias, we introduce a new performance measure: Balanced
Average Precision (BAP). We experimentally compare BAP with AP, and episode-constrained
cross-validation with shot-based cross-validation for two classifiers on a large video collection. The
results show that the bias of AP for unbalanced data does occur. However, in our dataset, BAP
performs equal to AP because the effect does not occur frequently enough in this set. Further
experimental evaluation shows that the episode-constrained method yields a more accurate esti-
mate of the classifier performance than the shot-based method. Moreover, when cross-validation
is used for parameter optimization, the episode-constrained method is better able to estimate the
optimal classifier parameters, resulting in higher performance on validation data compared to the
traditional shot based cross-validation.
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Chapter 3, Visual Scene Categorization by Learning Image Statistics in Context.
We present a scene category classification method by learning the contextual occurrence of proto-
concepts like sky, water, vegetation, etc., in images. We compactly represent these proto-concepts
by using color invariance and natural image statistics properties. We exploit similarity responses
as opposed to strict selection of a codebook vocabulary, and we have been able to generalize these
proto-concepts to be applicable in general image collections. We demonstrated the applicability of
our approach in a) learning 50 scene categories from a large collection of news video data; b) a col-
lection of 101 categories of images; c) two instances of the Pascal VOC object recognition challenge
and d) two large collections of photo-stock images, comprising 89 categories, where categories are
learned from one and categorized from the other. An important contribution is scalability, showing
that the proposed scheme is effective in capturing visual characteristics for a large class of concepts,
over a wide variety of image sets. Where specific methods may have better performance for specific
datasets, we have shown a method which is neither tuned nor optimized in parameters for each
collection. Hence, the method has proven to robustly categorize scenes from learned context.

Chapter 4, Comparing Compact Codebooks for Visual Categorization. In this Chap-
ter we focus on compact, and thus efficient, models for visual concept categorization. We use
the codebook scene classification algorithm where model complexity is determined by the size of
the vocabulary. We structurally compared four approaches that lead to compact and expressive
codebooks. Specifically, we compared three methods to create a compact vocabulary: 1) global clus-
tering, 2) concept-specific clustering and 3) a semantic vocabulary. The fourth approach increases
expressive power by soft-assignment of codewords to image features. We experimentally compared
these four methods on a large and standard video collection. The results show that soft-assignment
improves the expressive power of the vocabulary, leading to increased categorization performance
without sacrificing vocabulary compactness. Further experiments showed that a semantic vocab-
ulary leads to compact vocabularies, while retaining reasonable categorization performance. A
concept-specific vocabulary leads to reasonable compact vocabularies, while providing fair visual
categorization performance. Given these results, the best method depends at the application at
hand. In this Chapter we presented a guideline for selecting a method given the size of the video
dataset, the desirability of manual annotation, the amount of available computing power and the
desired categorization performance.

Chapter 5, Visual Word Ambiguity. With visual word ambiguity we refer to modeling
soft-assignment in the codebook model. One inherent component of the codebook model is the
assignment of discrete visual words to continuous image features. Despite the clear mismatch of this
hard assignment with the nature of continuous features, the approach has been applied successfully
for some years. In this Chapter we investigate four types of soft-assignment of visual words to image
features. We demonstrate that explicitly modeling visual word assignment ambiguity improves
classification performance compared to the hard-assignment of the traditional codebook model. The
traditional codebook model is compared against our method for five well-known datasets: 15 natural
scenes, Caltech-101, Caltech-256, and Pascal VOC 2007/2008. The results of all experiments
show that soft-assignment outperforms the traditional hard assignment over all dimensions, all
vocabulary sizes, and over all datasets. We demonstrate that large codebook vocabulary sizes
completely deteriorate the performance of the traditional model, whereas the proposed model
performs consistently. Moreover, we show that our method profits in high-dimensional feature
spaces and reaps higher benefits when increasing the number of image categories.

Chapter 6, Color Invariant Object Recognition using Entropic Graphs. In this Chap-
ter we combine an unparameterized entropy estimator with color invariant features for object
recognition. We use color invariant features that keep image measurements constant under varying
intensity, viewpoint and shading. For similarity matching we employ a measure based on en-
tropic spanning graphs. Entropic graphs provide an alternative to traditional approaches of image
matching such as assuming a fixed probability distribution or histogram binning. The parameters
required are the number of nearest neighbors and the value for α in the α-entropy. The number k
of the k-nearest neighbors is not critical, however a higher k adds more robustness. The value of α
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determines the importance of the tails in a probability distribution. Therefore, α is an additional
degree of freedom of the entropy, where α = 1 is equivalent to the Shannon entropy. We introduce
a new, efficient and exact entropic graph matching algorithm, based on an approximate nearest
neighbor algorithm. Object recognition performance reported on a large dataset show that color
invariant entropic graph matching significantly outperforms histogram based methods.

7.2 Conclusions and Discussion

This thesis contributes to practical automatic scene classification by endowing the bag-of-visual-
words model with more robust properties. The proposed properties increase the classification
performance or allow indexing of large, real-world image and video collections. This work allows
us to draw the following conclusions.

From chapter 2 we conclude that respecting the contextual narrative structure in video data
leads to accurate estimation of classification performance. More accurate estimation, in turn, leads
to better parameter selection yielding improved performance. We retain narrative structure by
treating a video episode as an atomic element during cross-validation. We imagine that more
advanced techniques such as automatic story-segmentation allow more fine-grained atomic story
elements. Smaller story units may improve performance estimation by achieving a more diverse
spread of stories over the rotating hold-out sets.

Chapters 3 and 4 allow us to conclude that scene context is capable of capturing the global
essence of an image. Moreover, a vocabulary of semantic prototypes like sky, water, vegetation,
etc., is suitable for many datasets. Such a semantic vocabulary is related to a recently proposed
method [31] that describes an image by its attributes such as has wheel, has head, is furry, is shiny,
etc. Such attributes allow a compositional approach to scene classification, where the meaning of
an image is made up of the meaning of its parts. In some sense this is a Homunculus argument,
where the problem of image classification is simply postponed to another level. Nevertheless,
classification of semantic prototypes or image attributes is intended to be simpler and limited in
options for atomic compositional elements. These elements fully determine what the model can
’see’. What compositional elements to choose, remains an open question [82].

Our third conclusion, drawn from chapters 3, 4 and in particular chapter 5, states that in the
codebook model the soft-assignment of image features to vocabulary elements is always beneficial
when compared to hard-assignment. We have observed this benefit for all vocabulary types: se-
mantic, concept-specific, and generic, for all vocabulary sizes: ranging from extremely small to
extremely large, for many datasets: Scene-15, Caltech-101, Caltech-256, the Mediamill challenge
and Trecvid collections, and for several image features: SIFT, Wiccest and Gabor features. Soft-
assignment reflects ambiguity in the visual word vocabulary. We model this ambiguity with a global
similarity function fitting to the image features at hand. However, more advanced methods may
readily be applied. We can imagine a classifier’s posterior probability, or a learned distance metric
that may change depending on its position in feature space.

On the matter of visual vocabulary compactness and large scale image indexing as studied in
chapter 4, we conclude that generally there is a compactness vs. performance tradeoff. This balance
may be tipped somewhat towards better performance by using soft-assignment and a visual word
vocabulary that is tuned to the problem at hand. Nevertheless, higher performance comes at a
price of less compact models. The choice of how much performance is ‘good enough’ depends on
the application at hand, or alternatively, determined by the size of the dataset and the choice of
available hardware.

Our final conclusion from chapter 6 states that entropy-based similarity measures can outper-
form histogram-based methods. Since a histogram is also used in the codebook model, an obvious
extension would be to use an entropic similarity measure instead of a visual word histogram. A
somewhat similar approach based on flexible image-to-image matching has shown excellent per-
formance [155]. Removing the histogram would eliminate the need for a visual word vocabulary
altogether; and with it the need for ambiguity modeling.
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[104] A. Rényi. On measures of entropy and information. In Proceedings of the 4th Berkeley
Symposium on Mathematical Statistics and Probability, volume I, pages 547–561, University
of California Press, Berkeley, 1961.

[105] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[106] B. Schiele and J. L. Crowley. Recognition without correspondence using multidimensional
receptive field histograms. International Journal of Computer Vision, 36(1):31–50, 2000.

[107] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(5):530–534, May 1997.

[108] F.J. Seinstra, J.M. Geusebroek, D. Koelma, C.G.M. Snoek, Marcel Worring, and A.W.M.
Smeulders. High-performance distributed image and video content analysis with parallel-
horus. IEEE Multimedia, 14(4), 2007.

[109] F.J. Seinstra and D. Koelma. User transparency: A fully sequential programming model for
efficient data parallel image processing. Concurrency and Computation: Practice & Experi-
ence, 16(6):611–644, 2004.

[110] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex.
In CVPR, pages 994–1000, 2005.

[111] S.A. Shafer. Using color to separate reflection components. Color Research and Applications.,
10(4):210–218, 1985.

[112] E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In IEEE
Conference on Computer Vision and Pattern Recognition 2007 (CVPR’07), June 2007.

[113] B. W. Silverman and P. J. Green. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, London, 1986.



BIBLIOGRAPHY 85

[114] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in
videos. In ICCV, volume 2, pages 1470–1477, October 2003.

[115] A.F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and trecvid. In Multimedia
Information Retrieval, pages 321–330, 2006.

[116] A.F. Smeaton, P. Over, and W. Kraaij. High-Level Feature Detection from Video in
TRECVid: a 5-Year Retrospective of Achievements. In Ajay Divakaran, editor, Multimedia
Content Analysis, Theory and Applications, pages 151–174. Springer Verlag, Berlin, 2009.

[117] A. W. M. Smeulders, J. M. Geusebroek, and T. Gevers. Invariant representation in image
processing. In IEEE International Conference on Image Processing, volume III, pages 18–21.
IEEE Computer Society, 2001.

[118] A. W. M. Smeulders, J. C. van Gemert, J. M. Geusebroek, C. G. M. Snoek, and M. Worring.
Browsing for the national dutch archive. In International Symposium on Communications,
Control and Signal Processing (ISCCSP), 2006.

[119] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content based image
retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(12):1349–1380, 2000.

[120] C.G.M. Snoek, M. Worring, D.C. Koelma, and A.W.M. Smeulders. A learned lexicon-driven
paradigm for interactive video retrieval. IEEE Transactions on Multimedia, 9(2):280–292,
February 2007.

[121] C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, and A.W.M. Smeulders. The
challenge problem for automated detection of 101 semantic concepts in multimedia. In ACM
Multimedia, 2006.

[122] C.G.M. Snoek, Marcel Worring, J.M. Geusebroek, D.C. Koelma, F.J. Seinstra, and A.W.M.
Smeulders. The semantic pathfinder: Using an authoring metaphor for generic multimedia
indexing. TPAMI, 28(10), 2006.

[123] C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3d
medical image alignment. Pattern Recognition, 32(1):71–86, january 1999.

[124] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes using
transformed dirichlet processes. In NIPS, 2005.

[125] E.B. Sudderth, A. Torralba, W.T. Freeman, and A.S. Willsky. Describing visual scenes using
transformed objects and parts. IJCV, 77(1-3):291–330, May 2008.

[126] M. Tahir, K. van de Sande, J. Uijlings, F. Yan, X. Li, K. Mikolajczyk, J. Kit-
tler, T. Gevers, and A. Smeulders. Surreyuva srkda method, pascal voc 2008.
http://pascallin.ecs.soton.ac.uk/ challenges/VOC/voc2008/workshop/tahir.pdf.

[127] A. Torralba. Contextual priming for object detection. Int. J. Comput. Vision, 53(2):169–191,
2003.

[128] T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In
International Conference on Computer Vision, 2007.

[129] J.R.R. Uijlings, A.W.M. Smeulders, and R.J.H. Scha. What is the spatial extent of an object?
In CVPR, 2009.

[130] A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. Image classification for content-based
indexing. IEEE Transactions on Image Processing, 10(1):117–130, 2001.



86 BIBLIOGRAPHY

[131] A. Vailaya, A.K. Jain, and H.J. Zhang. On image classification: city images vs. landscapes.
Pat. Rec., 31(12), 1998.

[132] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek. Evaluating color descriptors for object
and scene recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, in press,
2010.

[133] J. van de Weijer, T. Gevers, and J. M. Geusebroek. Edge and corner detection by photo-
metric quasi-invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(4):625–630, 2005.

[134] J.C. van Gemert, G.J. Burghouts, F.J. Seinstra, and J.M. Geusebroek. Color invariant object
recognition using entropic graphs. International Journal of Imaging Systems and Technology,
16(5):146–153, 2006.

[135] J.C. van Gemert, J.M. Geusebroek, C.J. Veenman, and A.W.M. Smeulders. Kernel codebooks
for scene categorization. In ECCV, 2008.

[136] J.C. van Gemert, J.M. Geusebroek, C.J. Veenman, C.G.M. Snoek, and A.W.M. Smeulders.
Robust scene categorization by learning image statistics in context. In CVPR-SLAM, 2006.

[137] J.C. van Gemert, C.G.M. Snoek, C.J. Veenman, and A.W.M. Smeulders. The influence of
cross-validation on video classification performance. In ACM Multimedia, 2006.

[138] J.C. van Gemert, C.G.M. Snoek, C.J. Veenman, A.W.M. Smeulders, and J.M. Geusebroek.
Comparing compact codebooks for visual categorization. Computer Vision and Image Un-
derstanding, (in press), 2010.

[139] J.C. van Gemert, C.J. Veenman, and J.M. Geusebroek. Episode-constrained cross-validation
in video concept retrieval. IEEE Trans. Multimedia, 11(4):780– 785, 2009.

[140] J.C. van Gemert, C.J. Veenman, A.W.M. Smeulders, and J.M. Geusebroek. Visual word
ambiguity. IEEE Trans. Pattern Analysis and Machine Intelligence, in press, 2009.

[141] V.N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., 1995.

[142] N. Vasconcelos. On the efficient evaluation of probabilistic similarity functions for image
retrieval. IEEE Transactions on Information Theory, 50(7):1482–1496, 2004.

[143] N. Vasconcelos and A. Lippman. A unifying view of image similarity. In ICPR, pages 1038–
1041, 2000.

[144] J. Vendrig and M. Worring. Systematic evaluation of logical story unit segmentation. IEEE
Trans. on Multimedia, 4(4), 2002.

[145] J. Vogel and B. Schiele. Natural scene retrieval based on a semantic modeling step. In ICVR,
Dublin, Ireland, July 2004.

[146] J. Vogel and B. Schiele. Semantic modeling of natural scenes for content-based image retrieval.
Int. J. Comput. Vision, 72(2):133–157, 2007.

[147] H. Wactlar, T. Kanade, M. Smith, and S. Stevens. Intelligent access to digital video: The
informedia project. IEEE Computer, 29(5):46–52, May 1996. Digital Library Intiaive special
issue.

[148] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman and Hall, London, 1995.

[149] T. Westerveld and A.P. de Vries. Multimedia retrieval using multiple examples. In Proceedings
of The International Conference on Image and Video Retrieval (CIVR2004), Dublin, Ireland,
2004.



BIBLIOGRAPHY 87

[150] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual
dictionary. In ICCV, pages 1800–1807, 2005.

[151] J. Yang, M.Y. Chen, and A.G. Hauptmann. Finding person x: Correlating names with visual
appearances. In CIVR, 2004.

[152] J. Yang and A.G. Hauptmann. Exploring temporal consistency for video analysis and re-
trieval. In ACM Multimedia-MIR, 2006.

[153] L. Yang, R. Jin, C. Pantofaru, and R. Sukthankar. Discriminative cluster refinement: Im-
proving object category recognition given limited training data. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, June 2007.

[154] E. Yilmaz and J.A. Aslam. Estimating average precision with incomplete and imperfect
judgments. In CIKM, 2006.

[155] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid. Local features and kernels for classi-
fication of texture and object categories: A comprehensive study. Int. J. Comput. Vision,
73(2):213–238, 2007.



88 BIBLIOGRAPHY



Samenvatting1

Dit proefschrift is gericht op praktische en robuuste methodes voor geautomatiseerde visuele scene
herkenning. Hiervoor wordt de gevestigde algoritmiek verbeterd en uitgebreid. De gangbare meth-
ode voor scene herkenning vandaag de dag is het zogenaamde visuele woord algoritme. Dit al-
goritme neemt een vooraf gedefinieerd prototype alfabet en vervangt elk beeld-kenmerk door het
best passende prototype. Een histogram van prototype frequenties in een beeld wordt vervolgens,
met behulp van automatisch lerend algoritmes, gebruikt om verschillende scenes te herkennen. Dit
proefschrift richt zich op de volgende vier onderdelen van het visuele woord algoritme:

1. De grootte en eloquentie van het prototype alfabet: een kleiner alfabet maakt het mogelijk
om grotere beeld-collecties te beschrijven. Zo’n verkleining kan worden gerealiseerd door het
afstemmen van het alfabet op het beeld domein.

2. Beeld-kenmerk monstering: de contextuele omgeving van een object kan informatiever zijn
dan het object zelf.

3. Prototype toekenning aan kenmerken: een beeld-kenmerk kan gerepresenteerd worden door
meerdere prototypes, in plaats van alleen het beste prototype.

4. Leer-algoritme afstelling: een zorgvuldige schatting van de uitkomst van een zelf lerend algo-
ritme maakt een betere afstelling mogelijk.

In de volgende paragrafen staan de bijdrages gegroepeerd per hoofdstuk.
Hoofdstuk 2 biedt een verbetering voor de parameter afstelling van classificatie algoritmes in

de context van visuele scene herkenning in een grote collectie video’s. Deze verbetering stelt een
betere meting van de classificatie algoritme nauwkeurigheid voor. Een nauwkeurigheidsmeting laat
het classificatie algoritme meerdere malen trainen op een willekeurige verzameling van trainings-
beelden waarna vervolgens de resultaten worden geëvalueerd op een onafhankelijke test verzameling.
Normaliter worden beelden willekeurig verspreid over de train en test verzamelingen. Echter, om-
dat video een verhaalstructuur heeft, komen binnen een video dikwijls nagenoeg identieke beelden
voor. Dit heeft tot gevolg dat bij een willekeurige opdeling deze identieke beelden worden verdeeld
over de train en test verzamelingen. Hierdoor ontstaat een afhankelijkheid tussen de train en
test verzamelingen. Dit hoofdstuk laat ziet dat deze afhankelijkheid de uiteindelijke classificatie
nauwkeurigheid nadelig beinvloed, en biedt een oplossing door video’s te behandelen als atomair
eenheden. Als een consequentie daarvan worden volledige video’s willekeurig verdeeld over de train
en testverzamelingen in plaats van individuele beelden.

In hoofdstuk 3 wordt een scene herkenningsmethode gepresenteerd die de contextuele voorkomens
leert van proto-concepten zoals water, lucht, vegetatie, etc. in beelden. Deze proto-concepten
worden compact gerepresenteerd met behulp van kleur-invariantie en beeldstatistiek. Deze proto-
concepten worden als een alfabet voor het visuele woord algoritme gebruikt, waardoor er een zekere
mate van semantiek aan het algoritme wordt toegevoegd. Verder, gebruiken we een maat van geli-
jkenis tussen een beeld-kenmerk en alle prototypes, in tegenstelling tot alleen het beste prototype
te gebruiken. Het semantische alfabet leent zich om gebruikt te worden als een universeel alfabet,
toepasbaar op gevarieerde beeld-collecties. Dit wordt gedemonstreerd door het toe te passen op 50

1Summary in Dutch
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categorieën nieuws video, 101 beeld categorieën, twee uitgaves van een jaarlijkse beeld-herkennings
competitie en twee grote commerciele beeldcollecties waarbij de de ene set op de andere wordt
geëvalueerd. Een belangrijke bijdrage van dit hoofdstuk is schaalbaarheid. Er wordt aangetoond
dat een semantisch alfabet het mogelijk maakt om grote en gevarieerde beeld-collecties efficiënt kan
indexeren en verwerken.

Hoofdstuk 4 bouwt verder op hoofdstuk 3 en richt zich op compacte, en dus efficiënte, modellen
voor visuele concept herkenning. In het visuele woord algoritme, wordt de complexiteit van een
model bepaald door de grootte van het alfabet. In dit hoofdstuk worden vier methodes vergeleken
die ieder een compact en expressief alfabet oplevert: 1) een globaal groeperingsalgoritme voor locale
beeld-kenmerken 2) een groepering per concept 3) een semantisch alfabet, en de vierde methode
is het evalueren van het toekennen van meerdere alfabet elementen aan een beeld-kenmerk. Deze
methodes worden geëvalueerd op een aanzienlijke collectie van video’s. De resultaten tonen aan
dat meerdere alfabet elementen toekennen uitstekend werkt. Verder, is het kleinste alfabet de
semantische methode, en geeft een groepering per concept betere resultaten, maar is iets minder
compact. Dit hoofdstuk biedt een leidraad die af hangt van de hoeveelheid data, de soort data, de
applicatie, de gewenste hoeveelheid handmatig werk en de beschikbare reken capaciteit.

Hoofdstuk 5 gaat volledig over het toekennen van meerdere alfabet elementen aan een beeld-
kenmerk. In dit hoofdstuk worden drie methodes onderzocht om deze zogenaamde visuele woord
ambigüıteit te modelleren. Deze methodes worden vergeleken met de traditionele aanpak waarbij
alleen het beste element wordt gekozen. Er worden vijf welbekende beeld-collecties geëvalueerd, en
de resultaten van alle experimenten laten zien dat het expliciet modelleren van ambigüıteit altijd
beter werkt dan alleen de beste kiezen. Dit geldt voor alle visuele woord alfabet groottes, alle
groottes van beeld kenmerk beschrijvingen, en voor alle vijf de beeld-collecties. Verder, toont het
hoofdstuk aan dat een te groot alfabet is funest voor de resultaten van de traditionele methode maar
de voorgestelde methode van ambigüıteit modelleren is hier robuust tegen bestand. Ambigüıteit
modelleren werkt het best in hoog-dimensionale beeld-kenmerk ruimtes, en met talrijke categorieën.

Hoofdstuk 6 wijkt af van het visuele woord model, en beschrijft een ongeparametriseerde en-
tropie schatter met kleur-invariantie beeld-kenmerken voor object herkenning. Kleur-invariantie
wordt gebruikt om metingen constant te houden onder intensiteit, schaduw en gezichtspunt vari-
aties. Om gelijkenis te bepalen tussen beelden, stellen we methode voor gebaseerd op entropisch
omspannende bomen. Dit soort boom-structuren bieden een alternatief voor traditionele methodes
waarin vaak een statistisch verdeling wordt aangenomen, of waar een histogram gebruikt wordt.
De benodigde parameters zijn het aantal buren k in de omspannende boom, en een waarde α in
de α-entropie. De waarde k is niet kritisch, alhoewel een grotere k langzamer is, maar robuustheid
oplevert. De α-waarde hangt af van de applicatie, en bepaald het gewicht voor de staarten van
een kans verdeling, waar een waarde van α = 1 gelijk is aan de standaard Shannon entropie. Dit
hoofdstuk presenteert een nieuw, en efficiënt algoritme voor het vinden van buren in een hoog-
dimensionale ruimte. De resultaten tonen aan dat de methode gebaseerd op entropie beter werkt
dan een histogram gebaseerde methode.
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