Hand-tremor frequency estimation in videos S.L. Pintea¹, J. Zheng¹, X. Li¹, P.J.M. Bank², J.J. van Hilten², J.C. van Gemert¹ ¹Vision Lab, Delft University of Technology, Netherlands ²Department of Neurology, Leiden University Medical Center, Netherlands #### (I) Contributions: - Two hand-tremor frequency estimation methods from RGB videos; - Lagrangian using the motion of the hand in the image plane; - Eulerian using image information over time at the hand location, as extracted from intensity values and phase-images. - TIM-Tremor dataset containing: - 55 RGB patient videos, - ground-truth accelerometer recordings on the most affected hand, - depth video-data. ### (II) Prior work: - We use the pose estimation in [1] to detect the hand location. - We use the steerable pyramid from [2] for extracting image phase. Extra_pose (III) Lagrangian & Eulerian frequency estimation: ## Lagrangian frequency estimation (1): - detects hand locations $(x_i, y_i)_{i \in w(t)}$ over video temporal windows, w(t); - uses a Kalman filter to subtract the large motion black line, and retains the small motion — red line; - windowed Fourier transform is applied to obtain the frequency. #### Eulerian frequency estimation (1-4): - detects hand locations $(x_i, y_i)_{i \in w(t)}$ over video temporal windows, w(t); - obtains a smooth trajectory of hand positions using a Kalman filter, black line in (1); - crops hand-images along the trajectory; Hands_in_prontation Rest_in_supination - extracts 12 phase images (4 orientations, 3 scales) using the steerable pyramid [2]; - computes frequency at every pixel over time, over 13 channels: 12 phase + 1 grayscale; - accumulates the final frequency as average frequency over pixels. Thumbs_up (4) Pick the best phase-image and predict its maximum frequency f^* ### (IV) Dataset & Results: - We evaluate on 55 patients of our TIM-Tremor dataset. - Tasks vary in: posture, action performed, cognitive distraction, and entrainment. - We report accuracy as the number of videos where a tremor was present, and it was correctly detected: i.e. the absolute error < 1Hz. Accurate Quantity For All Tasks (Abs_Err < 1Hz) 40 periodic_videos 35 Euler_phase Euler_gray Quantity S S Lag_with_smooth Lag_no_smooth Accurate 10 Following Task Name # Writing right Top_nose_right Top_nose_left Spiral right Months_backward Counting 2_Hz_higher Finger_tapping #### (V) Dataset DOI & References: Dataset DOI: 10.4121/uuid:522d14ed-3019-4206-b49e-a4e674b6440a. - S. Wei et al: "Convolutional pose machines". In: CVPR (2016). - D.J. Fleet, A.D. Jepson: "Computation of component image velocity from local phase information". In IJCV 5(1), 77-104 (1990).