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Abstract—Occlusion degrades the performance of human pose
estimation. In this paper, we introduce targeted keypoint and
body part occlusion attacks. The effects of the attacks are system-
atically analyzed on the best performing methods. In addition, we
propose occlusion specific data augmentation techniques against
keypoint and part attacks. Our extensive experiments show that
human pose estimation methods are not robust to occlusion and
data augmentation does not solve the occlusion problems. 1

I. INTRODUCTION

Human Pose Estimation is the task of localizing anatomical
keypoints such as eyes, hips, knees and localizing body-
parts like head, limbs, corpus, etc., with many applications
in segmentation [24], [25], [52], action recognition [28], [30],
[40], pose tracking [14], [54], gait recognition [39], [44],
autonomous driving [12], [32], [50], elderly monitoring [10],
[31] and social behaviour analysis [22], [48]. All these ap-
plications rely on correct and robust pose estimation. In this
paper we investigate the robustness of human pose estimation
methods to a natural and common effect: Occlusions.

Occlusions are common and occur frequently in the wild
as for example by a random object, another person [15], and
self-occlusion [18]. Prior works address occlusion in a general
way and exploits segmentation [32] or depth information [33].
Where [36] evaluates robustness with image and domain-
agnostic universal perturbations. In contrast, we systematically
analyze targeted occlusion attacks not only for keypoints, but
also for and body parts and investigate the sensitivity of pose
estimation to occlusion attacks.

A promising solution to occlusions is data augmentation,
which is practically a default setting for deep learning ap-
plications [37] where image flipping, rotation, and scaling
offer endless data variations [6], [37], [45]. As such, regional
dropout and mixup methods improve the generalization per-
formance of image classification [9], [16], [41], [46], [49],
[55], [59], [60], object localization and detection [7], [11], [38]
and segmentation [13]. In pose estimation, [19] applies region
based augmentation by exchanging a single keypoint patch
with a random background patch. More recent approaches
[42], [53] use half-body augmentation wherewith the presence
of more than 8 keypoints, by choosing upper or lower body
keypoints. We implement systematic data augmentation meth-

1For the code and the extended version:
https://github.com/rpytel1/occlusion-vs-data-augmentations
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Fig. 1: Qualitative example how HRNet-32 [42] predictions
change after keypoint blackout on the nose (first row) and
part blurring on the corpus (second row). For both examples
keypoints change for head, nose, eyes and ears.

ods for occlusion for keypoint and body parts to investigate
how data augmentation can remedy occlusion attacks.

We have the following contributions: First, we conduct
a structured investigation on the occlusion problem of pose
estimation and introduce occlusion attacks. Second, we inves-
tigate occlusion-based data augmentation methods. Third, we
show that data augmentation does not provide robustness to
occlusion attacks.

II. RELATED WORK

Human Pose Estimation. Deep learning methods in human
pose estimation can be divided into 2 categories: bottom-up
and top-down. Bottom-up approaches [3], [6], [21], firstly lo-
calize identity-free keypoints and then group them into person
instances. Top-down approaches [5], [29], [42], [53] firstly
detect a person in the image and then perform a single person
estimation within the bounding box. The top-down approaches
achieve the state of the art results on various multi-person
benchmarks such as COCO [26], MPII [1]. Within top-down

https://github.com/rpytel1/occlusion-vs-data-augmentations
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Fig. 2: Visualization of keypoint annotations in COCO dataset
and proposed part mapping.

approaches 2 categories can be distinguished: regressing direct
location of each keypoint [4], [47] and keypoint heatmaps
estimation [8], [29], [42], [51], [53] followed by choosing the
locations with the highest heat values as the keypoints. The
best performing methods on COCO keypoint challenge use
a cascade network [5], [23] to improve keypoint prediction.
The ’SimpleBaseline’ [53] proposes simple but effective im-
provement by adding few deconvolutional layers to enlarge
the resolution of output features. HRNet [42] which is built
from multiple branches can produce high-resolution feature
maps with rich semantics and performs well on COCO. Some
works advance performance of HRNet via improvement over
standard encoding and decoding of heatmaps [58] and basing
data processing on the unit length instead of pixels [17] with an
additional off-set strategy for encoding and decoding. Because
of their good accuracy and wide adaptation, we focus on top-
down methods, HRNet and SimpleBaseline and bottom-up
approach Higher HRNet.

Occlusion in pose estimation. Occlusion in pose estimation
is an under-studied problem. In [36] analyses of occlusions are
done for deep pose estimators by domain-agnostic universal
perturbations. More recently, attempts to solve the occlusion
problem in pose estimation are suggested via the usage of
segmentation of occluded parts [32] and depth of in an image
[33]. OcclusionNet [34] predicts occluded keypoints via graph-
neural networks yet it is applied only on vehicles. Different
from these methods, in our paper we introduce keypoint
occlusion attacks and body part occlusion attacks and give
a structured analysis of occlusion on human pose estimation.

Data augmentation. Data augmentation is a strong,
simple and popular approach to increase model robustness.
Removing part of the image improves generalization of image
classification [9], [55], [60] and object localization-detection
[7], [11], [38]. Mixup [16], [46], [59] approaches which
create a combination of two images are often used in image
classification. [13][57] combine regional dropout and MixUp
methods for image segmentation [13] and image classification
[57] task. [19] proposes a cutmix-like approach where a small
patch from the background is pasted on the single keypoint
or vice versa. For the human pose estimation methods [4],
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Fig. 3: Robustness comparison of HRNet [42] and Simple-
Baseline [53] against (a) keypoint and (b) part occlusion
attacks. HRNet is more robust against both attacks, yet both
attacks drop performance, where part attacks deteriorate more.

[51], [56], scaling, rotation and flipping is commonly used as
data augmentation. Random cropping is also used in bottom-
up approaches [3], [6], [21]. More recent top-down approaches
[5], [42], [53] employ the usage of half body transform by
a probability of 0.3 choosing either upper or lower body
keypoints. We introduce and evaluate new data augmentation
methods for keypoint and for body parts specifically designed
against occlusion attacks for human pose estimation.

III. SENSITIVITY TO OCCLUSION ATTACKS

We investigate the effect of occlusion attacks on MS COCO
dataset [26]. COCO contains challenging images with the
unconstrained environment, different body scales, variety of
human poses and occlusion patterns. The dataset contains over
200k images with 250k person instances labelled with 17
keypoints. Models are trained on COCO train2017 datasets
which includes 57k images and 150k person instances. The
evaluation is done on val2017 set which contains 5k images.

The occlusion attack experiments are conducted with HR-
Net [42] and Simple Baseline [53] for two aspects: (i) keypoint
attacks, where the occlusion area is a centred circle on the
chosen keypoint, (ii) body part attacks, where the occlusion
area is the minimum rectangle covering all keypoints of a
chosen part. The COCO keypoints and the proposed groups
of body parts can be seen in Figure 2. For the analyses,
COCO pretrained HRNet and Simple Baseline are evaluated
by the performance of the network against keypoint and part
occlusion attacks on COCO validation set.

HRNet and SimpleBaseline produce heatmap instead of
predicting direct single location for each keypoint. The ground
truth heatmaps are generated by using 2D Gaussian of size
13x13. Thus, as a default, we choose the size of the occlusion
circle with a radius of 6 pixels for keypoint attacks to cover
the keypoint heatmap. We have 3 different keypoint attacks: (i)
Gaussian blur (blurring) attack, (ii) attack by filling with black
pixels (blackout), (iii) attack by filling with a mean intensity
value of a given image (meanout).

Body parts occlusion attacks are designed to draw a min-
imum rectangle which covers all the keypoints of a chosen
part. Similar to the keypoint attacks, we have 3 different part



attacks which are applied to the occlusion area: blurring with
the kernel size 31 and sigma 5, blackout and meanout. These
attacks can be applied on both small parts such as head, arms,
hips and larger parts like upper body, lower body, left and
right side (Figure 2 b and c).

We compare HRNet and Simple Baseline according to their
robustness to keypoint and part occlusion attacks. Figure 3
shows that both attacks are quite successful as occlusion
causes the performance to drop. HRNet is more robust against
keypoint and part occlusion attacks. For further analyses, we
only use HRNet as a baseline for our investigations.

A. How sensitive to key point occlusion attacks?

First, we analyze the effect of the occlusion size on the
average performance of the pose estimator on all keypoints.
Figure 4 indicates that pose estimator performance is inversely
proportional to the occlusion size and blurring, blackout, and
meanout attacks on average perform similarly. The size of the
occlusion decreases the average performance of the estimator
by approximately 3% when the radius of the occlusion circle
is chosen as 18 pixels.

Second, we show the class-specific performance drops for
each individual keypoints for each attack. In Figure 5, attack-
ing nose causes serious loss in mAP, almost 5% for blackout,
4.4% for meanout and 1.2% for blurring. The empirical results
indicate that the nose is the most important keypoint since
the occlusion of the nose causes notable performance drop.
After the nose, each eye influences the performance of other
keypoints mostly by approximately 1% with each occlusion
attack. Keypoints from less densely annotated places like
ankles or wrists are the least influential.

If we check the analysis of the reduced accuracy per
keypoint for the case of attacking nose (Figure 6a), the most
affected keypoints are the ones within close distance, which
are eyes and ears due to being a part of the head. Interestingly,
occluding nose affects the performance of the left eye estima-
tion more than occluding the left eye itself, respectively by
approximately 10% and 5% (Figure 6a, 6b). If we investigate
per keypoint performance for occluding left ankle, it can be
seen that the deprivation is by several magnitudes smaller than
in case of the nose or left eye occlusions. From the observation
of the analyses, it can be drawn that HRNet [42] is not robust
to keypoint occlusion attacks.

B. How sensitive to part occlusion attacks?

We analyze the effect of the part occlusion attacks on each
body parts given in Figure 2. Attacking the upper body, left and
right sides influence the overall performance the most, by more
than 44%, 24% and 24% with blackout attack respectively
since these three parts include the majority of the keypoints
(Figure 7). When we examine keypoint-specific accuracy drops
for the remaining keypoints of the upper body, it is clear that
blackout is the most influential attack, with a drop of almost
3% for left and right ankle (Figure 8a). If we investigate per-
keypoint behaviour for the corpus (Figure 8b), we observe
significant degradation of the performance on all the keypoints,

4 6 8 10 12 14 16 18
Occlusion size

5

4

3

2

1

0

Lo
ss

 i
n
 m

A
P

method
blurring
meanout
blackout

Fig. 4: The relation between occlusion size and average loss
in performance for keypoint level methods. Occlusion size
greatly affects the performance.

with left and right ankle affected the most. Interestingly,
attacking on one side improves performance of the the other
side (Figure 8c). Attacking on left side increases the mAP
score of right side such as shoulder, ear, elbow keypoints. The
analysis demonstrates that the pose estimator is sensitive to
part occlusion attacks.

IV. OCCLUSION AUGMENTATION AGAINST ATTACKS

We evaluate two main human pose estimation datasets:
COCO [26] has 200k images with 250k person instances,
labelled with 17 keypoints and MPII [1] has 40k persons,
each labelled with 16 joints. The train, validation and test sets
include 22k, 3k and 15k person instances respectively. For the
evaluation of MPII dataset, the validation set is used since the
labels of the test set are not available.

For training HRNet [42] models on COCO [26] and MPII
[1] we follow the original pipeline of HRNet. For COCO
dataset, human detection boxes are extended to fit 4:3 aspect
ratio, and cropped from the image and resized to 256x192.
The pose estimator is trained with the keypoint location of
the joints. The data augmentations that are used in HRNet
training include random rotation ∈ [−45o, 45o], random scale
∈ [0.65, 1.35], random flipping and half-body augmentations.
The Adam optimizer [20] is used to train the network with
the learning rate schedule following [53], starting with 1e− 3
and reduced to 1e − 4 and 1e − 5 at 170th and 200th
epochs respectively and the training is completed at the 210th
epoch. For MPII dataset, the training procedure of HRNet
is as followed: 256x256 input size is used and half-body
augmentations are discarded. For the evaluation of the models,
Object Keypoint Similarity (OKS) for COCO and Percentage
of Correct Keypoints (PCK) for MPII are used.

During testing, HRNet firstly employs an object detection
algorithm to obtain boxes with a single person. Afterwards the
pose estimator produces the keypoint location of the joints.

A. Occlusion augmentation

We investigate the following three methods: (i) Targeted
Blurring, (ii) Targeted Cutout, (iii) Targeted PartMix. The
augmentation techniques are called as targeted, because we
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Fig. 5: Overall loss in mAP after performing keypoint level occlusion. L. and R. correspond to the left and right side respectively.
To note that, the occluded keypoint is included in the evaluation. Occluding nose causes the highest loss in performance.
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(a) The nose is the most influential keypoint
causes a significant drop in the performance
for the closest keypoints - left eye and right
eye by around 10%.
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(b) When we occlude the left eye, there is a
smaller loss in keypoint-specific performance
for the left eye than while occluding nose.
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(c) Left ankle is one of the least influential
keypoints with loss only visible for meanout
for occluded keypoint.

Fig. 6: Loss in AP for top 5 keypoints with largest deprivation, when an individual key point is occluded.
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Fig. 7: Change in mAP for various parts occluded. Upper body and sides are the parts that cause the highest loss in the
performance.
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(a) Significant loss in performance for all of
the remaining keypoints. Blackout affects the
method most.
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(b) Similar loss across remaining keypoints,
indicating that corpus is one of the most
influential parts.
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(c) Occluding the left side of the body im-
proves the performance of right shoulder, ear
and elbow.

Fig. 8: Change in AP for top 5 keypoints with the largest difference, when chosen part is occluded.

apply them on target locations of keypoints or parts instead
of random location in the image. It is important to state that
the proposed augmentation techniques are introduced after the
bounding box person detection, and it thus does not affect the
object detection method.

Targeted Blurring. We use Gaussian blur for two types of
targeted blurring: (i) keypoint blurring with a kernel size of 9

pixels (Figure 9a) and (ii) part blurring with a kernel size of
31 pixels shown in Figure 9d.

Targeted Cutout. The size of the keypoint cutout (Fig-
ure 9b-9c) and part cutout (Figure 9e) are similar to the
blurring equivalents. Instead of blurring, the area is colored
with mean value of the image.

Targeted PartMix. The method is designed to mitigate



(a) Blurring on left
hip (almost not visi-
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(b) Cutout on left hip. (c) Multi keypoint
Cutout.

(d) Part Blurring. (e) Part Cutout. (f) PartMix on the
right leg with a
pasted random arm.

Fig. 9: Targeted keypoint augmentations: a, b, c and targeted part augmentations: d, e, f.

the occlusions caused by another person (Figure 9f). In this
approach, a different part from a random image is pasted in the
place of a body part area. In this process, the keypoint labels
of newly pasted part are not introduced to heatmap labels.
This augmentation is only performed on body parts. Similar
to the part level blurring and cutout augmentation methods, the
occluded keypoints under the pasted area are still predicted.

B. Analyses of occlusion augmentation

All the following augmentation methods, except baselines,
already include flipping, rotation, scaling and half-body aug-
mentations. Each network obtains the boxes from Cascade
RCNN [2] detector which has ResNet50 backbone. The results
of each method can be seen in Table I.

Baselines. Table I indicates 3 baseline variants. Firstly,
HRNet without any augmentations obtains only 65.3% mAP
score. Secondly, adding flipping, rotation and scaling aug-
mentations improve non-augmented baseline by 8.6%. Last
variant is half body augmentation which adds only 0.4%
improvements on rotation and scaling augmentations.

Single keypoint augmentations. We check the performance
of 3 different augmentations: blurring, cutout and a combina-
tion of two of them which are applied on a single keypoint
with the varying probability of 0.2 and 0.5 (Figure 9a-9b). We
observe the highest improvement for blurring and cutout by
0.2% when the probability is chosen as 0.5 (Table I). Other
single keypoint variants do not improve the performance.

Multi-keypoint augmentations. We applied random multi-
keypoint variant blurring and cutout with a maximum of 5
keypoints with a probability of 0.2 (Figure 9c). The augmen-
tation decreases the model performance by 0.4%.

Part augmentations. 4 different part augmentation methods
are used: part blurring, part cutout, a combination of both
them and PartMix (Figure 9d, 9e and 9f respectively). To
demonstrate the effect of each augmentation, we apply them
with a probability of 0.2 and 0.5. In addition, the effect
of removing the labels of the occluded keypoint is also
investigated as removal column in Table I.

In the bottom part of Table I, cutout and PartMix show
0.2% and 0.1% improvements respectively. In all the variants
of blurring, small degradation or no improvement is observed.

The combination of part level variants of cutout and blurring
indicate some decreases of the performance for the removal
configuration with probability of 0.2 and 0.5 and do not
improve in non-removal configuration.

To conclude to findings from the Table I, flipping, rotation
and scaling augmentations add a huge performance gain to
the HRNet. However, including half-body, the occlusion based
augmentation methods do not improve the performance of the
pose estimator significantly.
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Fig. 10: Performance of chosen augmentations for HRNet-32
on various detection backbones and ground truth boxes. The
ground truth bounding box performs best. Yet, none of the
data augmentation methods help to improve performance over
0.2% for any object detector.

The effect of the object detection algorithms. HRNet [42]
is a top-down approach which utilizes an object detection algo-
rithm to obtain human instances. Therefore, the performance
of the pose estimation considerably depends on the detection
performance, namely detected human instances.

By the evidence of the Table I, we choose keypoint blurring,
part cutout and PartMix methods for further analysis as they
are the most promising augmentations.

We evaluate the pose estimation performances of vanilla
HRNet and also of HRNet with the chosen augmentation
methods with two 2-stage detectors, Faster RCNN [35] with
XCeption 101 backbone and Cascade RCNN [2]; 2 single-
stage detectors, RetinaNet [27] and EfficientDet D7 [43]; and
by using ground truth boxes of human instances (Figure 10).



Evaluation results

Augmentation level removal p AP AP 50 AP 75 APM APL AR

Baseline (no augments) - - - 65.3 86.4 72.6 62.6 70.7 70.2
Baseline (flip, rot, scale) - - - 73.9 90.0 80.9 70.4 80.3 78.3
Baseline (flip, rot, scale, half-body) - - - 74.3 90.6 81.7 70.7 80.7 78.8

Blurring k 7 0.2 74.3 90.4 81.6 70.8 80.6 78.7
k 7 0.5 74.5 90.4 81.8 70.8 80.8 78.7

Cutout k 7 0.2 74.3 90.4 81.7 71.0 80.3 78.7
k 7 0.5 74.5 90.5 81.7 70.9 80.7 78.8

Cutout + Blurring k 7 0.2 74.0 90.4 81.1 70.4 80.3 78.4
k 7 0.5 74.3 90.5 81.1 70.8 80.6 78.6

Blurring
p X 0.2 74.3 90.5 81.7 70.6 80.8 78.6
p X 0.5 74.0 90.5 81.1 70.5 80.4 78.4
p 7 0.5 74.1 90.3 81.1 70.6 80.2 78.5

Cutout
p X 0.2 74.2 90.5 81.2 70.8 80.4 78.6
p X 0.5 74.2 90.3 81.1 70.6 80.4 78.6
p 7 0.5 74.5 90.5 81.6 70.9 80.7 78.8

Cutout + Blurring
p X 0.2 73.4 90.3 80.8 69.9 79.5 77.8
p X 0.5 73.9 90.4 81.0 70.5 80.0 78.3
p 7 0.5 74.3 90.4 81.2 70.6 80.5 78.6

Multikeypoint (max. 5) - - 0.2 73.9 90.1 80.9 70.5 80.2 78.3

PartMix - X 0.5 74.3 90.5 81.1 70.7 80.6 78.7
- 7 0.5 74.4 90.7 81.5 71.1 80.5 78.8

TABLE I: Comparison of augmentation variants on COCO validation set for HRNet using CascadeRCNN bounding boxes.
Upper-part indicates single-keypoint augmentation and bottom-part shows multiple-keypoint augmentation. k and p in the
level column represent keypoint and part augmentations respectively. Removal column indicates if the occluded keypoints are
removed from prediction. Column p is the probability of augmentation. Keypoint cutout and blurring, and part cutout and
PartMix improve the performance. Other variants obtain results either on a par with baseline or worse than baseline.

Evaluation results
Augmentation level remove p Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline - - - 97.1 95.9 90.4 86.4 89.1 87.2 83.3 90.3
Blurring k 7 0.5 97.3 95.9 90.5 86.2 89.2 86.4 83.1 90.3
Cutout p 7 0.5 97.2 96.3 90.7 86.7 89.4 86.7 83.3 90.5
PartMix - 7 0.5 97.4 96.2 91.0 86.8 89.2 86.7 83.0 90.5

TABLE II: Results on MPII dataset. Keypoint blurring obtains on a par with the HRNet baseline, yet part cutout and PartMix
increase the performance.

All the augmentations indicate improvements using ground
truth bounding boxes by 0.2% for keypoint blurring and
PartMix, and 0.4% for part cutout. All the chosen augmen-
tation methods obtain better result with Cascade RCNN and
RetinaNet 0.1 − 0.2% depending on the augmentation. With
EfficientDet D7 detector, keypoint blurring and part cutout
result in similar to baseline except 0.1% improvement by
PartMix. For Faster-RCNN, keypoint blurring shows 0.2%
increase, yet part cutout degrades the performance by 0.1%.

The performances of baseline and the augmentations vary
depending on the object detector. The augmentation methods
improves the results slightly, yet the gain is insignificant.

Performance on MPII. We also test the data augmentation
methods on MPII dataset (Table II). If we check the total
contribution of the proposed augmentations, keypoint blurring
result in on a par with baseline, yet part cutout and PartMix
increase the performance by 0.2% for the metric PCK@0.5.

The largest improvement per keypoint is observed for elbows
by 0.6% and wrists by 0.3%, with the degradation on knees
and ankles by 0.4% and 0.2% respectively.

Similar to analyses on the COCO dataset, the proposed
augmentations can only improve the performance slightly.

How occlusion robust is data augmentation? Figure 11
shows the robustness of the baseline and the proposed aug-
mentations to the occlusion attacks. The analysis is done on
COCO dataset and the results are shown as mAP score of all
keypoints. We can clearly see that training with the keypoint
blurring augmentation makes the network more robust against
blurring attack, but there is no significant improvement for
the other keypoint attacks. In case of part attacks, we observe
an improvement across all augmentation methods over the
baseline. For the part augmentations, there is a significant
improvement against all part level attacks in comparison
to baseline. Specifically, PartMix has almost no advantages
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Fig. 11: Robustness comparison of proposed methods against
(a) keypoint and (b) part occlusion attacks. Part augmentations
improve the baseline but does not solve occlusion.

Evaluation results

Augmentation AP AP 50 AP 75 APM APL

Higher HRNet 67.1 86.2 73.0 61.5 76.1
Blurring (K) 66.5 86.3 72.1 60.6 75.7
Cutout part (no remove) 66.6 86.4 72.9 60.7 75.6
PartMix (no remove) 67.0 86.4 73.0 61.3 75.8

TABLE III: Results for bottom-up method, Higher HRNet [6].
The keypoint blurring, part cutout and Partmix degrade the
performance of bottom-up methods. The augmentations do not
help Higher HRNet.

against keypoint attacks, however, it improves part level meth-
ods about more than 5% in comparison to baseline. Part cutout
obtains similar performance with PartMix against part attacks.
Proposed augmentations reduce the performance deprivations
when we apply occlusion attacks, yet data augmentation still
does not solve the occlusion problem.

C. Augmentation on bottom-up method: Higher HRNet

We also apply occlusion augmentations on Higher HR-
Net [6], a bottom-up method. Higher HRNet is built on
HRNet-32 and inputs 512x512 sized images. The training
procedure follows Higher HRNet implementation from the
paper. Unlike top-down methods, Higher HRNet operates on
full-image and try to obtain the keypoints of each instance
from the full-image. When applying the augmentations on
Higher HRNet, we target all the human instances in the image.

Results in Table III show the augmentation methods to im-
prove AP50 score slightly. For AP, all augmentations degrade
performance by 0.6% for keypoint level blurring, by 0.5% for
part level cutout and by 0.1% for PartMix. Hence, using part
and keypoint augmentations do not improve the performance
of a bottom-up method.

V. DISCUSSION AND CONCLUSION

In this study, we investigate the sensitivity of human pose
estimators to occlusion. Firstly, we introduce targeted keypoint
and body part occlusion attacks to show how much occlusion
affects the performance. Secondly, keypoint and part based
data augmentation techniques against occlusion are investi-
gated. The structured analyses indicate that deep pose estima-
tors are not robust to occlusion. With all the bells and whistles,

the current and proposed data augmentation methods do not
bring significant improvements on the performance of the top-
down pose estimators and even reduce the performance for the
bottom-up approaches. Our paper is important because it helps
data scientists looking for improvements against occlusions to
not work on data augmentation. Battling occlusions is still an
open problem for human pose estimation.

Part based attacks and augmentation are applied as a rect-
angle shape. This fact can introduce unusual artefacts because
natural occlusions can have arbitrary shapes. Each keypoint
augmentation is applied as a circle that covers the related
keypoint, yet in reality, keypoint occlusions can occur with
numerous shapes and ways e.g. self occlusion, occlusion by
other object. Moreover, for bottom-up approaches, the input
image into the network may have more perturbations since the
full image can contain multiple instances. This fact can harm
the learning process.
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APPENDIX

MORE RESULTS ON COCO VAL SET

HRNet results. For this experiment, we increase the input
resolution of images from 256x192 to 384x256. The training
process follows the aforementioned scheme for COCO dataset.

According to the analysis of the performance across a
variety of detection backbones shown in Figure 12, we notice
that PartMix is consistently improving performance - with the
greatest boost of 0.4% for Cascade R-CNN and 0.3% for
Faster RCNN. For both keypoint blurring and part cutout, we
observe no significant improvement or even the performance
decreases - for part cutout using EfficientDet, Faster RCNN
and RetinaNet and for Blurring using RetinaNet. All the pre-
sented augmentations show largest gain for Cascade RCNN.
Occlusion augmentations do not help to solve occlusion prob-
lems when higher resolution input is used.
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Fig. 12: Higher resolution input for HRNet 32: the resolution
is changed from 256x192 to 384x256. The best performance
across detection backbones is observed for PartMix.
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Fig. 13: Performance of chosen augmentations for Simple-
Baseline on various detection backbones and ground truth
boxes. Using the ground truth bounding boxes outperforms
all the SimpleBaseline methods with a detection backbones.

SimpleBaseline results. The usability of occlusion aug-
mentations are not only limited to HRNet, yet they can be
used with other top-down methods like SimpleBaseline [53].
In this experiment, we apply the occlusion augmentations
on SimpleBaseline method with different object detection
backbones. The training procedure of the network follows the
original implementation.

By checking the performance across the various detection
backbones we observe either small or no improvement at all
(Figure 13). PartMix show the most significant improvement

across detection backbones, with 0.4% boost in the perfor-
mance for the ground truth boxes and the boxes produced by
Cascade RCNN, 0.2% for EfficientDet and Faster RCNN and
0.1 % for RetinaNet. Cutout and Blurring improve at most
0.2% across all the detection backbones, apart from 0.4%
for Cutout using ground truth bounding boxes. According to
the results, proposed augmentation techniques do not solve
occlusion problems of SimpleBaseline method.

Ground truth Baseline T. Blurring (K)

Fig. 14: Qualitative comparison between ground truth (left),
baseline (middle) and keypoint Blurring (K) (right). 1st and
2nd rows respectively - misplacement of left wrist keypoint
and mismatch between knee keypoints in the baseline and
keypoint blurring fixes the mistakes. 3rd row - both baseline
and proposed method produce wrong keypoints. 4th row -
baseline produces near-optimal keypoints whilst keypoint blur-
ring makes mistake on left ankle keypoint. Data augmentation
does not solve occlusion problem.

VISUALIZATION OF RESULTS

Figure 14 presents a qualitative comparison between ground
truth, HRNet-32 Baseline and keypoint blurring augmentation.
In the first and second rows, keypoint blurring outperforms
the baseline by obtaining the position of the left wrist and
knee keypoints respectively. In the third row, both baseline and
keypoint blurring produce wrong keypoint predictions. Fourth
row presents failure case when baseline produces near-optimal
annotations, while the method with keypoint blurring predicts
left ankle in place of the right one.


