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ABSTRACT
The localization quality of automatic object detectors is typ-
ically evaluated by the Intersection over Union (IoU) score.
In this work, we show that humans have a different view on
localization quality. To evaluate this, we conduct a survey
with more than 70 participants. Results show that for local-
ization errors with the exact same IoU score, humans might
not consider that these errors are equal, and express a prefer-
ence. Our work is the first to evaluate IoU with humans and
makes it clear that relying on IoU scores alone to evaluate
localization errors might not be sufficient.

Index Terms— object detection, IoU, human preference

1. INTRODUCTION

Fig. 1. Left: Two localizations where the magenta box (0.5
IoU) is accepted, and the cyan box (0.3 IoU) is rejected by
object detectors. Right: Two equally accepted localizations
(0.5 IoU) by object detectors. Which boxes do you accept?

The main difference between image classification and ob-
ject detection is that an object detector also has to predict
the object’s location, typically indicated by a bounding box
around the object. Object location can be used as a first step
for a downstream task, e.g., instance segmentation [1], or hu-
man pose estimation [2]. Alternatively, in this paper, we fo-
cus on the setting where an object detection is presented to
humans as an end result, where examples include visual in-
spection [3], or focusing attention in medical images [4]. We
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do not evaluate the object detector itself [5]. Instead, we eval-
uate if the predicted object location by object detectors aligns
with what humans consider a detected object.

Evaluating object detectors. Object detectors are com-
monly evaluated [5, 6, 7, 8, 9] with mean average precision
(mAP): the mean of the per-class average precision scores.
Average precision is the area under the precision-recall curve,
created by ranking all detections by confidence and then
checking if they are correct according to the ground truth.
The detection is correct if (1) the assigned class label is cor-
rect and (2) the detection location has sufficient overlap with
the ground truth. The Intersection over Union (IoU) score is
used to determine the overlap. The location of a detection is
correct if the IoU score is higher than a threshold, typically
0.5 or higher [10, 6]. In this paper, to the best of our knowl-
edge, we are the first to investigate how well the IoU measure
aligns with human localization quality judgments.

Human annotation for object detection. Extensive
crowdsourcing studies are performed to draw bounding boxes
around objects in images [11, 12] or the precise shape of the
object [13, 14]. Experiments in which crowd workers validate
object detections showed that annotators tend to be lenient
when validating bounding boxes, i.e., bounding boxes with
IoU < 0.5 are still accepted [15]. Furthermore, analyses
performed in [16] suggest that to efficiently and accurately
localize all objects in an image, several crowdsourcing tasks
are needed, such as verifying box correctness, verifying ob-
ject presence, or naming the object. In this paper, we extend
the work in [17, 18, 16] with four user studies investigating
which bounding boxes humans accept and prefer.

Contributions. We make the following contributions: (1)
We design four user studies to explore what kind of detec-
tions humans prefer and accept as good detections.1 (2) We
investigate the relationship between a too small bounding box
and a too large bounding box, where they both have the same
IoU score. (3) We analyze the impact of object symmetry and
bounding box position in human preference and acceptance

1Data and analysis is available at https://github.com/
ombretta/humans_vs_IoU.
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of detectors’ output. (4) We experiment with various object
sizes (small, medium, large) and recommend future studies.

Our results show that humans disagree with IoU for mea-
suring localization errors.

2. EXPERIMENTAL APPROACH

We perform four controlled experiments to evaluate the rela-
tion between IoU and human localization quality judgments
and study which object detections are accepted or preferred
by humans. We do not train or test any object detection mod-
els since they are highly influenced by many design choices,
e.g., model parameters, dataset. Thus, our boxes are gener-
ated according to the ground truth. We relate our findings
to machine-evaluated detections. For machine-evaluated de-
tections, we use the common IoU, measuring the localization
performance of the predicted box Bp with the ground truth
box Bgt, as IoU =

Bp∩Bgt

Bp∪Bgt
.

We address two important features of object localization:
(i) Box Size and (ii) Box Position, which are affected by the
IoU score, in four online user studies (two studies per fea-
ture).2 We also experiment with various object sizes (small -
S, medium - M, large - L)3 and IoU values (0.3, 0.5, 0.7, 0.9)
to study differences and similarities between humans and de-
tection algorithms.

Procedure and participants. All studies follow the same
procedure. Participants are given an example to introduce the
task. The task consists of a masked image to indicate which
object is investigated, the question that directly specifies the
object name, and the possible answers. The images are cho-
sen from the MS COCO dataset [19]. We ran the studies using
Qualtrics4. The user studies have been distributed among re-
search group members and authors’ peers.

Box Size. As illustrated in Fig. 2, we use two different
box sizes, small and large, with the same IoU score. The box
aspect ratio and position is taken from the ground truth box.
In the Size Preference study, we investigate the box size, and
ask participants which box size they prefer for a detection.
They can choose one option among: large box, small box or
“the size of the box does not matter”. In the Size Acceptance
study, we show either a small or a large box and ask partici-
pants if they accept or reject it as an object detection. For both
studies we evaluate IoU values (0.3, 0.5, 0.7, 0.9) and include
all object sizes (S, M, L). In the Size Preference study, we
annotate 72 images, with six images per each combination
between object size and IoU value. In the Size Acceptance
study, we annotate 96 images (eight per combination).

Box Position. As illustrated in Figure 3, we applied two
positional shifts to the ground truth box, for symmetrical and
asymmetrical objects, using a fixed IoU value of 0.5. Unlike

2Ethical approval was not required - we do not collect personal identifiers.
3We adopt the definition of object size provided with the MS COCO

dataset (https://cocodataset.org/#detection-eval).
4https://www.qualtrics.com/

Fig. 2. Size preference experiment. The columns indicate
Small, Medium and Large object categories. The colors rep-
resent IoU scores of each box: Red (0.9), Green (0.7), Ma-
genta (0.5) and Cyan (0.3). Top row: small bounding boxes;
Bottom row: large bounding boxes. The small and large
boxes of same color have the same IoU scores.

Fig. 3. Position preference experiment. The experiments
show the bounding box locations for IoU score 0.5 by shift-
ing them horizontally or vertically. Top row: symmetrical
objects; Bottom row: asymmetrical objects.

the size experiment, the predicted box size is fixed and only
the position of the box changes to evaluate the effect of the
position. Depending on the orientation of the object, the pre-
dicted box is shifted horizontally (back, front) or vertically
(top, bottom). Since symmetrical objects do not have front
and back sides, we consider front as the right side and back
as the left side of the object. Similarly to the size surveys,
in the Position Preference study, we ask participants if they
prefer a particular part or side of the object for detection. The
Position Acceptance study investigates if users would accept
the bounding box as a correct detection. In both position sur-
veys, we use 20 images, which are equally distributed across
object types (symmetrical, asymmetrical) and box positions
(front/top, back/bottom), with 5 images per category.

3. RESULTS

Analytical method. To study the human preference and ac-
ceptance of bounding box sizes and positions, we apply sev-
eral statistical tests. We apply the Chi-square test [20] to find
out if there are any associations between variables such as
object size and preferred box size or IoU value and preferred
box size. To understand whether differences in preference
proportions (e.g., small boxes, large boxes, no preference), or
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(a) Size Preference Study

(b) Size Acceptance Study

Fig. 4. Results from studies Size Preference and Size Accep-
tance. a) Percentage of preferred bounding box size (small,
large, no preference) for each IoU (0.3, 0.5, 0.7, 0.9) and ob-
ject size (S, M, L). b) Percentage of accepted bounding box
size (small, large) for each IoU and object size. The large
boxes are mostly preferred and accepted by humans.

acceptance proportions (e.g., front box, back box) are statis-
tically significant, we apply the Z-test [21] and the Cochran’s
Q test [22]. While the Z-test can only be applied to com-
pare two proportions, the Cochran’s Q test can be applied on
any number of proportions. In case of statistically significant
differences, we apply a posthoc Dunn test with Bonferroni
correction [23] to see which proportions are different. Since
for each study we perform multiple comparisons and statisti-
cal tests, we use a lower significance threshold than 0.05 (by
applying a Bonferroni correction), i.e., α = 0.05

#tests .
Size Preference. Figure 4(a) shows, per IoU and object

size, the percentage of preferred bounding box sizes. For 0.9
IoU value, people have no size preference — for each ob-
ject size, the option no preference is either the most chosen,
or similarly chosen as large boxes. For IoU values of 0.9,
posthoc Dunn tests with Bonferroni correction show that no
preference is statistically preferred for small and medium ob-
jects, but not for large objects. The prevalence of no prefer-

ence is sensible: for IoU > 0.9, the difference in appearance
between small and large boxes is subtle to the human eye.

For all other evaluated IoU values, 0.7, 0.5, 0.3, and for
all three evaluated object sizes, the Cochran’s Q test shows
that there are statistically significant differences in the pref-
erence of boxes. Posthoc Dunn tests with Bonferroni cor-
rection indicate that large boxes are statistically significantly
more preferred by humans. Small bounding boxes are always
the least preferred while large bounding boxes are always
the most preferred, irrespective of object size. We observe
a gradual preference increase of small bounding boxes as the
IoU value increases, and a comparatively higher increase in
having no preference (see Figure 5(a)). Using a Chi-square
test, we found an association between the IoU value and the
preferred bounding box size (χ2(2)=1227.84, p < 0.006).
We also notice a gradual decrease in the preference of small
bounding boxes with the decrease of the object size. These
results are shown in Figure 5(b). Using a Chi-square test, we
found a statistically significant association between the object
size and the size of the preferred bounding box (χ2(2)=62.05,
p < 0.006).

(a) IoU Value vs. Bounding Box Size

(b) Object Size vs. Bounding Box Size

Fig. 5. Results from Size Preference study. a) Percentage of
preferred bounding box size (small, large, no preference) for
each IoU value (0.3, 0.5, 0.7, 0.9). b) Percentage of preferred
bounding box size for each object size (S, M, L).

Size Acceptance. In Figure 4(b), we show the percent-
age of accepted small and large boxes, for each IoU value
and image size. For each IoU value, the acceptance of small
bounding boxes decreases with the decrease of object size,
the smaller the object, the less accepted the small bounding



(a) Preferred Box Position

(b) Accepted Box Position

Fig. 6. Results from studies Position Preference and Position
Acceptance. a) Percentage of preferred bounding box position
(front, back, no preference) for symmetrical and asymmetri-
cal objects. b) Percentage of accepted bounding box position
(front, back) for symmetrical and asymmetrical objects.

boxes. Large bounding boxes are always more accepted than
small bounding boxes, disregarding IoU values and object
sizes. The exception are medium objects with 0.9 IoU, where
small boxes are statistically significantly more accepted (z=-
2.82, p < 0.008). For the rest of the cases, large bounding
boxes are statistically significantly more accepted than small
bounding boxes for IoU values of 0.3, 0.5 and 0.7 and all ob-
ject sizes (p < 0.008), but are not more accepted for neither
small nor large objects with 0.9 IoU. We also found, c.f. Z-
test, that (1) large bounding boxes are always statistically sig-
nificantly accepted (p < 0.008) and (2) small bounding boxes
are only statistically significantly more accepted for 0.9 and
0.7 IoU (all object sizes) and large objects with 0.5 IoU.

Position Preference. Figure 6(a) presents the results
of the Position Preference user study. For symmetrical ob-
jects, participants have no preference regarding the position
(front/top or back/bottom) of the bounding box, no preference
being chosen the most. According to the Cochran’s Q test,
we also find that there are statistically significant differences
in proportions among the three options chosen by study par-
ticipants (χ2(2)=268.76, p << 0.017). A pairwise posthoc
Dunn test with Bonferroni correction indicates that there are
statistically significant differences between the proportions in
which no preference and front bounding boxes are preferred
(p << 0.017), as well as between the proportions of no
preference and back bounding boxes (p << 0.017).

For asymmetrical objects, however, the most preferred
bounding box is positioned at the front of the object. The
Cochran’s Q test shows that the difference in proportions

among the three options is statistically significant (χ2(2) =
576.74, p << 0.017). Posthoc analysis using the Dunn test
with Bonferroni correction shows that these differences are
statistically significant between each two possible answers
(front and no preference, front and back).

Position Acceptance. Figure 6(b) presents the results of
the Accepted Box Position study. For both symmetrical and
asymmetrical objects, the front bounding box is accepted in
higher proportions than the back bounding box. For symmet-
rical objects, we found sufficient evidence, c.f. Z-test, that
the proportion of back (z = -7.16, p < 0.008) and front (z = -
12.62, p < 0.008) bounding boxes of being accepted is higher
than the proportion of not being accepted. For asymmetrical
objects, however, only front bounding boxes are statistically
significant accepted (z = -20.18, p < 0.008). Similarly, for
each object type, we analyze whether one type of bounding
boxes is more accepted than the other. For both symmetrical
and asymmetrical objects, the front bounding boxes are statis-
tically significant more accepted than back bounding boxes.

4. DISCUSSION

In this paper, we performed four user studies to understand
which object detections are preferred and accepted by hu-
mans. We addressed two main features of object localization,
namely the scale (large, small) and the position (front/top,
back/bottom) of the bounding boxes, and we experimented
with objects of various sizes (small, medium, large) and sym-
metries (symmetrical and asymmetrical).

Our studies show a statistically significant relationship be-
tween the IoU value and the preferred bounding box size, as
well as between the object size and the preferred bounding
box size. Large bounding boxes are both the most preferred
and the most accepted, while object detectors accept and pre-
fer large and small boxes similarly if the boxes have the same
IoU scores. We also found that for asymmetrical objects, the
position of the bounding box matters for study participants,
since they tend to choose bounding boxes that define or help
them identify the object. This observation contrasts current
state-of-the-art object localization models [24, 25, 26, 27, 28,
29, 30], where all bounding box positions are considered cor-
rect, regardless of their orientation, when the IoU is higher
than the threshold.

Object detection models, when intended for humans,
should be developed in a user-centric manner i.e., they should
incorporate end-users preferences and comply with end-users
needs. Thus, future studies should focus more on under-
standing which aspects of the objects should be captured by
bounding boxes. The current study can also be extended by
considering multiple datasets, occluded or truncated objects
or images with multiple objects, as well as bounding boxes
that are not centered, or which are shifted in random posi-
tions. Nevertheless, future studies should consider improving
object detectors based on human preferences.
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