
No frame left behind: Full Video Action Recognition

Xin Liu1 Silvia L. Pintea1 Fatemeh Karimi Nejadasl2 Olaf Booij2 Jan C. van Gemert1

Computer Vision Lab, Delft University of Technology1 TomTom2

Abstract

Not all video frames are equally informative for recog-
nizing an action. It is computationally infeasible to train
deep networks on all video frames when actions develop
over hundreds of frames. A common heuristic is uniformly
sampling a small number of video frames and using these
to recognize the action. Instead, here we propose full video
action recognition and consider all video frames. To make
this computational tractable, we first cluster all frame acti-
vations along the temporal dimension based on their simi-
larity with respect to the classification task, and then tem-
porally aggregate the frames in the clusters into a smaller
number of representations. Our method is end-to-end train-
able and computationally efficient as it relies on tempo-
rally localized clustering in combination with fast Ham-
ming distances in feature space. We evaluate on UCF101,
HMDB51, Breakfast, and Something-Something V1 and V2,
where we compare favorably to existing heuristic frame
sampling methods.

1. Introduction

Videos have arbitrary length with actions occurring at
arbitrary moments. Current video recognition methods use
CNNs on coarsely sub-sampled frames [2, 25, 29, 32, 39,
42, 46, 48, 49, 51] because using all frames is computa-
tionally infeasible. Sub-sampling, however, can miss cru-
cial frames for action recognition. For example, as shown
in Fig. 1, sampling the frame with the dish in the pan is cru-
cial for correct recognition. We propose to do away with
sub-sampling heuristics and argue for leveraging all video
frames: Full video action recognition.

It is worth analyzing why training CNNs on full videos is
computationally infeasible in terms of memory and calcula-
tions. The calculations in the forward pass yield activations,
while the backward pass calculations give gradients which
are summed over all frames to update the weights. Many
of these calculations can be done in parallel and thus are
well-suited for modern GPUs. When treating videos as a
large collection of image frames, the amount of calculations
are not too different from those on large image datasets [5].

Make scrambled eggs

Make pancakes

Make scrambled eggs

Heuristic frame sub-sampling 2

Make scrambled eggs

Heuristic frame sub-sampling 1

Proposed: Full video action recognition

0 1
1 00 1 1

1 0 1
1 0 0

All frames

Figure 1. Sub-sampling can miss crucial frames in videos and
may cause confusion for action recognition: e.g. compare the two
sub-samplings heuristics in row 1 and row 2: Without sampling
the dish in the pan it is difficult to classify. Instead, as shown
in row 3, we propose to efficiently use all frames during training
by clustering frame activations along the temporal dimension and
aggregating each cluster to a single representation. The temporal
clustering is based on Hamming distances over frame activations,
which is computationally fast. With the assumption that similar
activations have similar gradients, the aggregated representations
approximate the individual frame activations. We efficiently uti-
lize all frames for training without missing important information.

Regarding memory, however, there is a crucial difference
between videos and images: The video loss function is not
per-frame but on the full video. Hence, to do the backward
pass, all activations for each frame, for each filter in each
layer need to be stored in memory. This even doubles for
storing their gradients. With 10-30 frames per second, this
quickly becomes infeasible for even just a few minutes of
video. Existing approaches can trade off memory for com-
pute [3, 4, 13] by not storing all intermediate layers, yet
they do not scale to video as they would still need to store
each frame. The main computational bottleneck for training
video CNNs is memory for frame activations.

Here, we propose an efficient method to use all video
frames during training. The forward pass computes frame

1

activations and the backward pass sums the gradients over
the frames to update the weights. Now, if only the network
was linear, then a huge memory reduction could be gained
by first summing all frame activations in the forward pass,
which would reduce to just a single update in the back-
ward pass. Yet, deep networks are infamously non-linear,
and have non-linearities in the activation function and in
the loss function. Thus, if all frames were independent,
treating the non-linear network as linear would introduce
considerable approximation errors. However, subsequent
frames in a video are strongly correlated, and it’s this corre-
lation that makes it possible for existing approaches to use
sub-sampling. Instead of sub-sampling, we propose to pro-
cess all frames and exploit the frame correlations to create
groups of frames where the network is approximately linear.
We use the ReLU (Rectified Linear Unit) activation func-
tion, which is linear when the signs of two activations agree,
to estimate which parts of the video are approximately lin-
ear. This allows us to develop an efficient clustering algo-
rithm based on Hamming distances of frame activations as
illustrated in Fig. 1. By then aggregating the approximately
linear parts in a video in the forward pass, we make large
memory savings in the backward pass while still approxi-
mating the full video gradient.
We summarize the contributions of our work as follows:

• We propose a method that allows us to use most or
even all video frames for training action recognition
by approximated individual frame gradients with the
gradients of temporally aggregated frame activations;

• We devise an end-to-end trainable approach for effi-
cient grouping of video frames based on temporally
localized clustering and Hamming distances;

• Extensive experiments demonstrate that our method
compares well to state-of-the-art methods on sev-
eral benchmark datasets such as UCF101, HMDB51,
Breakfast, and Something-Something V1 and V2.

2. Related work

Action recognition architectures. Actions in video in-
volve motion, leading to deep networks which include op-
tical flow [8, 10, 35], 3D convolutions [2, 6, 15, 21] and
recurrent connections [10, 36, 41, 40, 47]. Instead of heavy-
weight motion representations, a single 2D image can reveal
much of an action [20, 23, 35, 42]. 2D CNNs are extremely
efficient, and by adding motion information by concatenat-
ing a 3D module in ECO [51], modeling temporal relations
in TSN [50] or simply shifting filter channels over time in
TSM [29] their efficiency is complemented by good accu-
racy. For this reason, we build on the TSM [29] architecture
and modify it for full video action recognition.

Frame sampling for action recognition. Realistic
videos contain more frames than can fit in memory. To
address this, current methods train by using sub-sampled
video frames [2, 29, 42, 51]. Additionally, the SlowFast [7]
network also explores the resolution trade-off across tem-
poral, spatial and channel dimension. Rather than using a
fixed frame sampling strategy, the sampling can be adap-
tive [29, 39, 46, 48, 49], or learned to select the best frame
[32], or rely on clip sampling [25]. In our work we do not
sub-sample frames, but use all frames of the videos, how-
ever our clustering is adaptive as it dynamically adapt to the
task and the loss function.

Using a subset of frames is computationally more effi-
cient. Using 5-7 frames is sufficient for state-of-the-art ac-
tion recognition on short videos [33]. Aiming for training
efficiency, the work in [43] uses stochastic mini-batch drop-
ping which drops complete batches rather than frames, with
a certain probability. Similarly, [45] uses variable mini-
batch shapes with different spatio-temporal resolutions var-
ied according to a schedule. Unlike these methods, we do
not focus on training efficiency, but propose a method that
allows the network to see all video frames during training.

Temporal pooling. To integrate frame-level features,
TSN [42] uses average pooling in the late layers of the net-
work. ActionVLAD [11] integrates two-stream networks
with a learnable spatio-temporal feature aggregation. In-
stead of performing temporal pooling or aggregation at
a late stage of the network, in [9] RankSVM is used to
rank frames temporally and then pool them together. As
a follow-up, in [1] a ’dynamic image’ is introduced, which
is a compact representation of the videos frames using the
‘rank pool’ operation. In [34, 37] temporal aggregation via
pooling and attention is used. Similar to these methods, our
proposal performs a temporal pooling of the network ac-
tivations, however this aggregation is done over clustered
activations and it allows us to process all video frames.

Efficient backpropagation. Given that 2/3 of the train-
ing computations and memory are spent in the backward
pass, existing work focuses on approximations. It is more
memory efficient to recompute activations from the previ-
ous layer instead of storing them [13], however this comes
at the cost of increased training time. In [30] gradient
approximations are used where activations are overwritten
when new frames are seen without waiting for the backward
pass to be performed. Also for efficient backpropagation,
randomized automatic differentiation can be used [31], gra-
dients can be reused during training [12], or even quantized
during backpropagation [44]. Similar to these works, we
use all frames to approximate the full video gradient.

2

3. Aggregated temporal clusters
3.1. Approximating gradients

We enable the use of all frames of a video during train-
ing. To this end, we calculate a single gradient to approxi-
mate the gradients of a group of frames. Our hypothesis is
that nearby frames in a video are alike, and thus have sim-
ilar activations, leading to congruent updates. When using
the ReLU (Rectified Linear Unit) activation function, we
know that for activations with agreeing signs, the activation
function is linear. Assuming that similar frames are approx-
imately linear, the standard computation of the sum of gra-
dients over all frames, becomes equivalent to first summing
all frame activations and then computing a single gradient.
This is computationally and memory efficient. Mathemati-
cally, for frames i, this can be formulated as:∑

i

∇wL(h(xiw)) = ∇wL

(∑
i

h(xiw)

)
, (1)

where x are frame activations, w are the network weights,
h(·) is an activation function, and L(·) is the loss function.
Note that Eq. (1) only holds in the ideal case when the ac-
tivation function h is linear for similar frames and the loss
function L is also linear. This is not generally the case, and
this approximation introduces an error.

With the above ideal scenario in mind, we can use
all video frames without calculating the gradient for each
frame, by grouping frames that agree in the sign of their
activations x. Over these grouped activations we calculate
a single gradient ∇wL(

∑
i h(xiw)). However, for similar

frames the sign of their activation values may not be in com-
plete agreement. Therefore, we aim to find which frames
can be safely grouped together, to minimize the error intro-
duced by our approximation in Eq. (1).

3.2. Error bound for the approximation

For ease of explanation, we consider two input video
frames and their activations x={x1,x2}, and a convolu-
tional operation with parameters w, denoted by xw. The
two frames have the same class label, y, since they come
from the same video. We consider a multi-class setting us-
ing the cross-entropy loss in combination with the softmax
function q, which for these two samples is:

L(x, y) = −1

2
(log qy(x1) + log qy(x2)) , (2)

where qc(xi)=
exp(h(xiwc))∑C

j=1 exp(h(xiwj))
, c∈{1, .., C} indexes

video classes and h(·) is theReLU activation function. The
gradient of the loss with respect to w is:

∇wL(x, y) =
x1(qc(x1)− δyc) + x2(qc(x2)− δyc)

2
,

(3)

where δyc is the Dirac function which is 1 when c=y.
In our method, we first average the two activations af-
ter the convolution and before the ReLU . We can do
this, because if we assume the activations have agree-
ing signs sign(x1w)=sign(x2w), then it holds that:
h(x1w)+h(x2w)

2 = h(x1w+x2w
2). In this case the cross-

entropy loss becomes:

L̂(x, y)=− log qy

(
x1 + x2

2

)
. (4)

In the backward pass, we calculate a single gradient of the
averaged activations as follows:

∇wL̂(x, y) =
x1 + x2

2

(
qc

(
x1 + x2

2

)
− δyc

)
, (5)

We now estimate the relative error introduced by our ap-
proximation by comparing equations Eq. (3) and Eq. (5) us-
ing Jensen’s inequality. We start from the softmax function
qc(·) and we recover back equations Eq. (3) and Eq. (5).
The softmax function qc(·) is convex, therefore we can ap-
ply to it Jensen’s inequality for the samples x1 and x2:
qc

(
(x1+x2)

2

)
≤ qc(x1)+qc(x2)

2 . We start by considering the

case (x1+x2)
2 > 0. If we multiply both sides of this inequal-

ity with (x1+x2)
2 we obtain that:

(x1 + x2)

2
qc

(
(x1 + x2)

2

)
≤ x1qc(x1) + x2qc(x2)

2

− 1

4
(x1 − x2)(qc(x1)− qc(x2)). (6)

In the left hand side of the inequality we recover precisely
the ∇wL̂(x, y) given by Eq. (5), while in the right hand
side we recover Eq. (3) minus the approximation error as
∇wL(x, y)− 1

4 (x1 − x2)(qc(x1)− qc(x2)). Note that for
the case y=c the additional Dirac terms in x cancel out.
We now consider also the case (x1+x2)

2 ≤ 0, which to-
gether with the previous case leads to the following bound
on the absolute difference between the gradients in Eq. (3)
and Eq. (5):

|∇wL(x, y)−∇wL̂(x, y)| ≤ 1

4
|(x1 − x2)(qc(x1)− qc(x2))|.

(7)
Thus, the difference between the two gradient updates is
bounded by a function depending on the difference between
the activations and their softmax responses. The closer to 0
the difference between the activations the smaller the dif-
ference between their gradient updates. We show in the
experimental section that, indeed, small differences in the
activations entail small differences in the loss.

The inequality in Eq. (6) holds under the condition that
the sign of activations agree. Therefore, we want to group
frames based on the sign similarity of their activations.

3

Figure 2. We adopt 2D ResNet-50 with TSM [29] a backbone. The input batch size is n with t frames. We cluster the activations of the
first block of size (nt, c, h, w) which groups t frames into g clusters and outputs new activations of size (ng, c, h, w), as input to the next
network blocks. Our full video method efficiently utilizes all frames and is end-to-end trainable.

Frames

0

10

20

30

C
um

ul
at

iv
e

H
am

m
in

g
D

is
ta

nc
e

0
2

5

8

11
13

18

25 26

30

Figure 3. An illustration of our two clustering algorithms. The
numbers on the solid line are pair-wise Hamming distances and
the solid line is the cumulative Hamming distance of frame f1 to
f10. For g=3 clusters, the cumulative clustering groups frames by
dividing the total cumulative distance on the y-axis into 3 equally
distanced segments, as shown with the dashed lines resulting in the
3 clusters (f1−f4), (f5−f7) and (f8−f10). The slope clustering
algorithm is based on the slope of the curve and here selects the
top-2 largest slopes, as shown with the solid green lines, which
results in the 3 clusters: (f1−f6), (f7), (f8−f10).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Frames

H
am

m
in

g
D

is
ta

nc
e

Figure 4. Hamming distances between similar frames and dissimi-
lar frames across 4 blocks of ResNet. The frames are taken from a
single Breakfast [26] video. We denote the frames that are similar
to their neighbors with circles and the dissimilar ones with squares.
Hamming distances are consistent across blocks.

3.3. Temporal clustering and aggregation

Using our proposal in Eq. (5) allows training on all video
frames. We group frames based on the sign agreement of
their activations. An efficient way to do this, is to binarize
the activation values by using the sign function and com-
pute a fast Hamming distance between binarized activations
to determine which frames to group.

Consecutive frames in a video are more likely to be sim-
ilar in appearance and are thus more likely to have simi-
larly signed activations. Therefore, we explore two vari-
ants of a temporal clustering algorithm based on Hamming
distances, where we allow a fixed number of clusters g to
match the available memory. We employ the temporal or-
der of video frames and calculate Hamming distances only
with neighboring frames. Fig. 3 illustrates the two temporal
clustering algorithms we consider here: cumulative cluster-
ing and slope clustering. We start by calculating the cumu-
lative Hamming distance C(x) for neighboring frames along
the temporal order:

CN (x) =

N−1∑
i=1

H(xi,xi+1), (8)

where xi is the binarized activation of frame i, H(·, ·) is the
Hamming distance, and N is the total number of frames.
For cumulative clustering, we divide the total cumulative
Hamming distance, C(x), into g even segments, where the
cluster id for frame i is dg Ci(x)CN (x)e. For the slope clustering,
the boundaries of the segments are defined by the frame in-
dexes corresponding to the top-g largest slopes where the
cumulative distance increases the most.

For efficiency, we cluster early on in the network, and
input to the subsequent layers only aggregated activations.
We assume that the sign of the activations corresponding
to two similar frames, approximately agree throughout the
network. To validate this, we visualize in Fig. 4 the Ham-
ming distance over activations corresponding to similar and
dissimilar frames. The distances corresponding to similar
frames remain consistent across different layers.

4

Putting everything together, we input a set of n videos
into our TSM-based [29] network architecture. After the
first block, we apply temporal clustering and average the
activations within each cluster, giving rise to g activations
per video. These aggregated activations are input to the sub-
sequent blocks of the network. Our method efficiently uti-
lizes all frames for training and it is end-to-end trainable,
as the gradients propagate directly through the aggregated
feature-maps. Fig. 2 depicts the outline of our method.

4. Experiments

We evaluate our method on the action recognition
datasets Something-Something V1 & V2 [14], UCF-
101 [38], HMDB51 [27] and Breakfast [26]. The consistent
improvements show the effectiveness and generality of our
method. We validate and analyze our method on a fully con-
trolled Move4MNIST dataset we created. We also include
ablation studies of the components of our method.

Datasets. Something-Something V1 [14] consists of 86k
training videos and 11k validation videos belonging to 174
action categories. The second release V2 of Something-
Something increase the number of videos to 220k. The
UCF101 [38] dataset contains 101 action classes and 13,320
video clips. The HMDB51 [27] dataset is a varied col-
lection of movies and web videos with 6,766 video clips
from 51 action categories. Breakfast [26] has long videos
of human cooking activities with 10 categories with 1,712
videos in total, with 1,357 for training and 335 for testing.
Our fully controlled dataset Move4MNIST has four action
classes {move up, move down, move left, move right}, and
1,800 videos for training and 600 videos for testing. Each
video has 32 frames, with a digit from MNIST [28] mov-
ing on a UCF-101 video background. To obtain a per-frame
ground truth of which frames are relevant we randomly in-
serted a consecutive chunk of UCF-101 background frames,
black frames and frames with MNIST digits that are not part
of the target classes. An example is shown in Fig. 7.

Training & Inference. Following the setting in TSM [29],
our models are fine-tuned from Kinetics [24] pre-trained
weights and we freeze the Batch Normalization [19] lay-
ers for HMDB51 [27] and UCF101 [38] datasets. For other
datasets, our models are fine-tuned from ImageNet [5] pre-
trained weights. To optimize the GPU we train with a fixed
number of frames per batch. If the video has less frames,
we pad it repeatedly with the last video frame. We com-
pare and cluster the activations of all the frames in each
video, and get g average activations for each video, from
the first block of our model. We set the number of clusters
to g = {8, 16} to align with the sub-sampling methods us-
ing 8 or 16 frames. During testing, we follow the setting of
TSM and sample one clip per video and use the full resolu-
tion image with the shorter side 256.

Backbone architecture. For a fair comparison with the
state-of-the-art, we evaluate our method on the TSM [29]
backbone replying on the ResNet-50 [16] architecture. We
use TSM with a ResNet-18 as the backbone for the experi-
ments on our toy dataset Move4MNIST and for model anal-
ysis on the Breakfast dataset.

4.1. Are more frames better?

To make it computationally possible to use all individual
frames we evaluate on the fully controlled Move4MNIST
to test if using more frames during training is better than
sub-sampling. We use here the ResNet-18 [16] backbone
pretrained on ImageNet [5] and compare with TSM [29].
We evalute slope clustering and cumulative clustering, and
a cluster-free uniform grouping of evenly distributed seg-
ments and then aggregating them (Ours-uniform).

Model #Frames #Clusters FLOPs Runtime Top-1
/Video Mem./Video

TSM 8 - 14.56G 1.04GB 90.13 ± 0.38
TSM 16 - 29.12G 1.72GB 93.78 ± 0.33
TSM all - 58.24G 3.15GB 98.83 ± 0.16
Ours-uniform all 8 28.61G 1.56GB 90.25 ± 0.28
Ours-slope all 8 28.61G 1.56GB 93.33 ± 0.19
Ours-cumulative all 8 28.61G 1.56GB 94.08 ± 0.25
Ours-uniform all 16 38.51G 1.79GB 92.73 ± 0.25
Ours-slope all 16 38.51G 1.79GB 94.06 ± 0.18
Ours-cumulative all 16 38.51G 1.79GB 95.27 ± 0.21

Table 1. Training with all frames gives best accuracy. Our
method with slope or cumulative clustering outperforms the uni-
form grouping of evenly distributed segments and frame sub-
sampling. Our method has less FLOPs and runtime memory usage
than TSM training with all frames.

Table 1 shows that TSM trained on all the 32 frames of
a video in Move4MNIST significantly outperforms TSM
trained on 8 and 16 sub-sampled frames. The uniform
grouping of evenly distributed segments does not much bet-
ter than random sub-sampling, and uniform grouping per-
forms worse than random sub-sampling when the frame and
cluster numbers increased from 8 to 16. This can be ex-
plained since the videos in the Move4MNIST contain black
frames, UCF-101 background frames, and frames contain-
ing another digits at random positions, which can make sub-
sampling miss frames related to the task and evenly dis-
tributed segments group frames wrongly. Both our cluster-
ing approaches with 8 and 16 clusters do better than evenly
distributed segments or sub-sampling with 8 or 16 frames as
they can adapt to the content and dynamically choose which
frames to group. In addition, our method has significantly
reduced FLOPs and runtime memory when compared to the
baseline on all frames.

4.2. Do similar frames have similar gradients?

In this experiment, we evaluate our assumption that sim-
ilar frame activations have similar gradients. The activa-

5

Video 1 Video 2 Video 3

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0

A
ct

iv
at

io
ns

 E
uc

lid
ea

n
D

is
. Euclidean Distance

0.00

0.04

0.08

Hamming Distance

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0
Euclidean Distance

0.00

0.04

0.08

Hamming Distance

0.00 0.02 0.04 0.06 0.08
Gradients Euclidean Dis.

0.0

50.0

100.0

150.0
Euclidean Distance

0.00

0.04

0.08

A
ct

iv
at

io
ns

 H
am

m
in

g
D

is
.

Hamming Distance

Figure 5. An illustration of activation distance versus gradient distance for frames from three videos in Move4MNIST dataset. For frames
that are similar with respect to recognizing the action, the activation distance and the gradients distance between them have a nearly linear
relation for both the Euclidean distance and the Hamming distance. Our assumption that frames having similar activations with respect to
the task have similar gradients is validated.

tions and gradients are taken from the 1st block of ResNet-
18. We show the Euclidean and the Hamming activa-
tion distance versus the gradient Euclidean distance be-
tween all 32 ∗ 31/2 = 496 frame pairs for three videos
in Move4MNIST in Fig. 5. For both the Euclidean distance
and the Hamming distance the relation between activations
and gradients is close to linear. It validates our assumption
that frames having similar activations with respect to the
task have similar gradients.

We compare the ground truth gradients when training
truly on all frames to our efficient approximation. We use 16
clusters and compare our approximate gradients to the real
gradients which are from 3rd block of ResNet-18 for a video
in Move4MNIST. We compare the results of our method
with cumulative clustering, slope clustering and uniform
grouping. Results in Fig. 6 show that compared to uni-
form grouping, cumulative clustering and slope clustering
give smaller Euclidean distance between the single gradi-
ent from each cluster and the sum of gradients of frames in
the corresponding cluster. And cumulative clustering gives
even smaller gradients differences than slope clustering. In
other words, it means that our method with cumulative clus-
tering (the right hand side of Eq. (1)) approximates the stan-
dard gradients calculation (the left hand side of Eq. (1)) in
the network with a small difference.

4.3. Analyzing model properties

We evaluate the clustering methods, the number of clus-
ters, and the training time efficiency on Breakfast and
Move4MNIST with a ResNet-18 backbone.

Different temporal clustering methods. We compare
slope clustering, cumulative clustering, and uniform group-
ing where the videos are split into equal segments. From Ta-
ble 2, cumulative clustering outperforms slope clustering,
while uniform grouping has the lowest top-1 accuracy. This
is because equal temporal grouping merges non similar
frames together leading to linear approximations of non-

1 2 3 4 5 6 7 8 9 10 111213141516
Clusters

0.00

0.05

0.10

G
ra

di
en

ts
 E

uc
lid

ea
n

D
is

ta
nc

e Cumulative
Slope
Uniform

Figure 6. Comparing the Euclidean distance between gradients of
the ground truth of truly using all frames to our efficient approxi-
mation per cluster for cumulative clustering, slope clustering and
uniform grouping on Move4MNIST. Compared to uniform group-
ing and slope clustering, cumulative clustering results in smaller
gradients difference and thus a better approximation.

Model #Frames #Clusters Tr. sec/epoch Top-1
TSM 8 - 97.6 59.1
TSM 16 - 113.7 61.4

Ours-uniform all 8 100.1 58.3
Ours-slope all 8 99.6 60.7
Ours-cumulative all 8 101.3 62.0

Ours-uniform all 16 114.0 60.2
Ours-slope all 16 114.5 63.7
Ours-cumulative all 16 115.2 64.4

Table 2. With 8 and 16 clusters we consistently outperform TSM
with 8 and 16 frames for comparable training time on the Breakfast
dataset.

linear information and incorrect network updates, resulting
in a low action recognition accuracy. A similar trend is also
visible on the Move4MNIST dataset in Table 1.

6

Figure 7. Temporal clustering results for a video in Move4MNIST.
Cumulative temporal clustering groups frames more accurately
than slope temporal clustering.

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

0 500 1000

15

16

17

18

19

20

Frames No.

Ep
oc

hs
 N

o.

Figure 8. Cumulative temporal clustering results over epochs for
six videos in the Breakfast dataset. Each cluster is shown in a dif-
ferent color. Clusters contains segments with different lengths.
Our cumulative temporal clustering groups frames with similar
activations together. The cluster lengths change according to the
changes in the frame activations during training.

In Fig. 7, we show the temporal clustering results for a
small number of frames of a Move4MNIST video. Cumu-
lative clustering correctly groups similar frames together,
while slope clustering groups moving zero frames and black
frames together.

Number of clusters. We conduct experiments using 8 and
16 clusters for our method, which follows the protocol of
TSM with 8 and 16 frames for training. Table 2 shows that
using 16 clusters consistently outperforms using 8 clusters
for all clustering methods. A larger number of clusters im-
proves accuracy. In the extreme case, the cluster numbers
equal the number of frames in a video, which is equiva-
lent with using all frames for training. From the table we
can also see that our cumulative temporal clustering imple-
mentation improves the top-1 accuracy by 2.9% and 3.0%,
separately for 8 clusters and 16 clusters comparing to TSM
with 8 and 16 frames.

To show that our cumulative temporal clustering algo-
rithm is different from the naive uniform grouping, we vi-

Model Backbone #Frames #Clusters Top-1

ResNet-152[18] ResNet152 64 - 41.1%
ActionVLAD [18] ResNet152 64 - 55.5%
VideoGraph [18] ResNet152 64 - 59.1%
TSM [29] (our impl.) ResNet50 16 - 72.1%

Ours-slope ResNet50 all 16 74.9%
Ours-cumulative ResNet50 all 16 76.6%

Table 3. Our method using either slope temporal clustering or cu-
mulative temporal clustering compared to existing works on the
Breakfast dataset. Our proposal outperforms TSM, and signifi-
cantly exceeds in top-1 accuracy methods using the deeper back-
bone architecture, ResNet-152. By using all frames our method
has an advantage on long-term video action recognition.

sualize the 8 clusters obtained from cumulative temporal
clustering for six videos over different epochs in the Break-
fast dataset in Fig. 8. Different videos have different seg-
ment lengths in the cumulative temporal clustering, which
takes the similarity of frame activations into consideration.
In Fig. 8, we also show that the cluster length changes over
epochs during training, since the activations change during
training.

Efficiency of training time. Table 2 gives the training time
per epoch for all the models. Our method with 8 clusters
and 16 clusters only has an increase of 3.7 seconds and
1.5 seconds in training time per epoch, when compared to
TSM with 8 frames and 16 frames. The results show that
our method is efficient during training time, while using all
video frames.

4.4. Comparison with the state-of-the-art

We compare our method with the state-of-the-art on
Something-Something V1&V2, Breakfast, UCF-101 and
HMDB51. All methods use ResNet-50 pre-trained on Ima-
geNet as a backbone, unless specified otherwise.

Comparison on the Breakfast dataset. We compare our
method with existing work on the Breakfast dataset, which
contains long action videos. Our method using either
slope temporal clustering or cumulative temporal cluster-
ing largely outperforms the three methods using ResNet-
152 as a backbones, in Table 3. Compared to TSM using 16
sub-sampled frames, our method improves the top-1 accu-
racy by 2.8% and 4.5% with slope temporal clustering and
cumulative temporal clustering, respectively. Methods us-
ing sub-sampling can easily miss important frames for the
recognition task on long action videos. Our method has an
advantage on the long videos for action recognition, by ef-
ficiently utilizing all the frames.

Comparison on the Something-Something dataset. In
Table 5, we list the results of our method compared to other
methods on the Something-Something V1&V2 datasets.
We achieve state-of-the-art performance on both V1 and

7

Model Backbone Pre-train #Frames #Clusters Top-1 UCF-101 Top-1 HMDB51
TSM [29] (our impl.) ResNet50 Kinetics 1 - 91.2% 65.1%
TSN [29] ResNet50 Kinetics 8 - 91.7% 64.7%
SI+DI+OF+DOF [1] ResNeXt50 Imagenet dynamic images - 95.0% 71.5%
TSM [29] ResNet50 Kinetics 8 - 95.9% 73.5%
STM [22] ResNet50 ImageNet+Kinetics 16 - 96.2% 72.2%

Ours-slope TSM-ResNet50 Kinetics all 8 96.2% 73.3%
Ours-cumulative TSM-ResNet50 Kinetics all 8 96.4% 73.4%

Table 4. Top-1 accuracy on UCF-101 and HMDB51. Our method performs only slightly better than the state-of-the-art on the scene-related
datasets UCF-101 and HMDB51. These datasets do not have much frame diversity per video, thus, the improvement of our method over
sampling methods is limited.

Model #Frames #Clusters Top-1 V1 Top-1 V2
TSN [29] 8 - 19.7% 30.0%
TRN-Multiscale [29] 8 - 38.9% 48.8%
TSM [29] 8 - 45.6% 59.1%
TSM [22] 16 - 47.2% 63.4%
STM [22] 8 - 49.2% 62.3%
STM [22] 16 - 50.7% 64.2%

Ours-slope all 8 46.7% 60.2%
Ours-cumulative all 8 49.5% 62.7%
Ours-cumulative all 16 51.4% 65.1%

Table 5. Top-1 accuracy on Something-Something V1 and V2
datasets. Our method using cumulative temporal clustering outper-
forms the state-of-the-art methods on both Something-Something
V1 and V2. Our method achieves limited accuracy improvement
for shorter videos.

V2, with outperforming STM of 8 frames by 0.3% and 0.4%
for V1 and V2, and STM of 16 frames by 0.7% and 0.9%
for V1 and V2 respectively. Comparing to TSM, we sig-
nificantly improve the top-1 accuracy of 8 frames by 3.9%
and 3.5%, and the top-1 accuracy of 16 frames by 4.2% and
1.7% for the V1 and V2 datasets. Although the Something-
Something dataset is characterized by temporal variations,
the video clips are short compared to the Breakfast dataset.
The methods using frame sampling heuristics can capture
the main movement in videos. Therefore, our accuracy im-
provement is not as pronounced as for the Breakfast dataset.

Comparison on the UCF-101 and HMDB51 datasets. We
train with 8 clusters and evaluate over three splits and re-
port averaged results in Table 4. Our performance is on par
with state-of-the-art methods on both datasets. The UCF-
101 and HMDB51 have a scene-bias, where motion plays
a limited role and just a few number of frames –or even a
single frame– is sufficient. Thus, methods relying on sam-
pling heuristics can correctly classify the actions and our
method using all frames is not expected to improve results.
To test this, we show results with a single frame in Table 4
which shows that TSM with 1 frame achieves comparable
accuracy to TSN with 8 frames on UCF-101 and outper-
forms TSN with 8 frames on HMDB51. For scene-biased
datasets, using all frames does not bring accuracy benefits.

5. Conclusion

We propose an efficient method for training action recog-
nition deep networks without relying on sampling heuris-
tics. Our work offers a solution to using all video frames
during training based on the assumption that similar frames
have similar gradients, leading to similar parameter updates.
To this end, we efficiently find frames that are similar with
respect to the classification task, by using a cumulative tem-
poral clustering algorithm based on Hamming distances.
The clustering based on Hamming distances enforces that
activations in a cluster agree in signs, which is a require-
ment entailed by our assumption that we can approximate
the gradients of multiple frames with a single gradient of
an aggregated frame. We accumulate the activations within
each cluster to create new representations used to classify
the actions. Our proposed method shows competitive re-
sults on large datasets when compared to existing work.

Despite our state of the art results, we identify several
limitations. One limitation is that the number of clusters is
fixed and thus not well-suited for inhomogeneous videos
with more semantic (shot) changes than clusters. This
could create a dependency for action proposals or other
approaches to pre-segment a video in homogeneous seg-
ments which somewhat counters the philosophy of using
full video action recognition. Another limitation is that for
grouping frames the only non-linearity we consider is the
activation function and do not use the non-linearity in the
loss. This limitation seems insurmountable, as memory
constraints prevent us to store all frame activations for
when the loss is computed. Nevertheless, with our current
results and analysis, we make a first move for action
recognition to go full video.

Acknowledgments This work is part of the research
program Efficient Deep Learning (EDL), which is
(partly) financed by the Dutch Research Council
(NWO).

8

References
[1] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action

recognition with dynamic image networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(12):2799–
2813, 2018. 2, 8, 12

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 6299–6308, 2017. 1, 2, 12

[3] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David
Begert, and Elliot Holtham. Reversible architectures for ar-
bitrarily deep residual neural networks. In AAAI, 2018. 1

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255, 2009. 1, 5

[6] Tran Du, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. C3d: Generic features for video analysis.
Corr, 2(8), 2014. 2

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 6202–6211, 2019. 2

[8] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1933–1941, 2016.
2

[9] Basura Fernando, Efstratios Gavves, José Oramas, Amir Gho-
drati, and Tinne Tuytelaars. Rank pooling for action recog-
nition. IEEE transactions on pattern analysis and machine
intelligence, 39(4):773–787, 2016. 2

[10] Harshala Gammulle, Simon Denman, Sridha Sridharan, and
Clinton Fookes. Two stream lstm: A deep fusion framework
for human action recognition. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pages 177–
186. IEEE, 2017. 2

[11] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,
and Bryan Russell. Actionvlad: Learning spatio-temporal
aggregation for action classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 971–980, 2017. 2

[12] Negar Goli and Tor M Aamodt. Resprop: Reuse sparsi-
fied backpropagation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1548–1558, 2020. 2

[13] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B
Grosse. The reversible residual network: Backpropagation
without storing activations. In Advances in neural information
processing systems, pages 2214–2224, 2017. 1, 2

[14] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,
Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin
Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,

et al. The” something something” video database for learn-
ing and evaluating visual common sense. In ICCV, volume 1,
page 5, 2017. 5

[15] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and im-
agenet? In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6546–6555, 2018. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 5

[17] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Timeception for complex action recognition. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 254–263, 2019. 11

[18] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Videograph: Recognizing minutes-long human
activities in videos. ICCV 2019, Workshop on Scene Graph
Representation and Learning, 2019. 7, 11

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. Proceedings of the 32nd International Confer-
ence on Machine Learning, 2015. 5

[20] Mihir Jain, Jan C Van Gemert, and Cees GM Snoek. What
do 15,000 object categories tell us about classifying and lo-
calizing actions? In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 46–55, 2015.
2

[21] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence,
35(1):221–231, 2012. 2

[22] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and
Junjie Yan. Stm: Spatiotemporal and motion encoding for
action recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2000–2009, 2019. 8,
11, 12

[23] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In CVPR,
2014. 2

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. CoRR, 2017. 5

[25] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:
Sampling salient clips from video for efficient action recogni-
tion. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6232–6242, 2019. 1, 2

[26] H. Kuehne, A. B. Arslan, and T. Serre. The language of ac-
tions: Recovering the syntax and semantics of goal-directed
human activities. In Proceedings of Computer Vision and Pat-
tern Recognition Conference (CVPR), 2014. 4, 5

[27] Hilde Kuehne, Hueihan Jhuang, E. Garrote, T. Poggio, and
Thomas Serre. Hmdb: A large video database for human mo-
tion recognition. 2011 International Conference on Computer
Vision, pages 2556–2563, 2011. 5

9

[28] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. 2010. 5

[29] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In Proceedings of
the IEEE International Conference on Computer Vision, pages
7083–7093, 2019. 1, 2, 4, 5, 7, 8, 11, 12

[30] Mateusz Malinowski, Grzegorz Swirszcz, Joao Carreira, and
Viorica Patraucean. Sideways: Depth-parallel training of
video models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11834–
11843, 2020. 2

[31] Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson,
and Ryan P Adams. Randomized automatic differentiation.
CoRR, 2020. 2

[32] Jian Ren, Xiaohui Shen, Zhe Lin, and Radomir Mech. Best
frame selection in a short video. In The IEEE Winter Confer-
ence on Applications of Computer Vision, pages 3212–3221,
2020. 1, 2

[33] Konrad Schindler and Luc Van Gool. Action snippets: How
many frames does human action recognition require? In 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, 2008. 2

[34] Fadime Sener, Dipika Singhania, and Angela Yao. Temporal
aggregate representations for long-range video understanding.
In European Conference on Computer Vision, pages 154–171,
2020. 2

[35] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 2

[36] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel,
and Ming Shao. A multi-stream bi-directional recurrent neu-
ral network for fine-grained action detection. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 1961–1970, 2016. 2

[37] Sibo Song, Ngai-Man Cheung, Vijay Chandrasekhar, and
Bappaditya Mandal. Deep adaptive temporal pooling for ac-
tivity recognition. In Proceedings of the 26th ACM interna-
tional conference on Multimedia, pages 1829–1837, 2018. 2

[38] Khurram Soomro, Amir Roshan Zamir, and M Shah. A
dataset of 101 human action classes from videos in the wild.
Center for Research in Computer Vision, 2(11), 2012. 5

[39] Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz.
Gate-shift networks for video action recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1102–1111, 2020. 1, 2

[40] Amin Ullah, Jamil Ahmad, Khan Muhammad, Muhammad
Sajjad, and Sung Wook Baik. Action recognition in video
sequences using deep bi-directional lstm with cnn features.
IEEE Access, 6:1155–1166, 2017. 2

[41] Vivek Veeriah, Naifan Zhuang, and Guo-Jun Qi. Differential
recurrent neural networks for action recognition. In Proceed-
ings of the IEEE international conference on computer vision,
pages 4041–4049, 2015. 2

[42] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works: Towards good practices for deep action recognition. In

European conference on computer vision, pages 20–36, 2016.
1, 2

[43] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang
Zhao, Yingyan Lin, and Zhangyang Wang. E2-train: Train-
ing state-of-the-art cnns with over 80% energy savings. In
Advances in Neural Information Processing Systems, pages
5138–5150, 2019. 2

[44] Simon Wiedemann, Temesgen Mehari, Kevin Kepp, and
Wojciech Samek. Dithered backprop: A sparse and quan-
tized backpropagation algorithm for more efficient deep neu-
ral network training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops,
pages 720–721, 2020. 2

[45] Chao-Yuan Wu, Ross Girshick, Kaiming He, Christoph Fe-
ichtenhofer, and Philipp Krahenbuhl. A multigrid method
for efficiently training video models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 153–162, 2020. 2

[46] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and
Shilei Wen. Multi-agent reinforcement learning based frame
sampling for effective untrimmed video recognition. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 6222–6231, 2019. 1, 2

[47] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S
Davis. Liteeval: A coarse-to-fine framework for resource ef-
ficient video recognition. In Advances in Neural Information
Processing Systems, pages 7780–7789, 2019. 2

[48] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,
and Larry S. Davis. Adaframe: Adaptive frame selection for
fast video recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1, 2

[49] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-
Fei. End-to-end learning of action detection from frame
glimpses in videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2678–2687,
2016. 1, 2

[50] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
pages 803–818, 2018. 2

[51] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas
Brox. Eco: Efficient convolutional network for online video
understanding. In Proceedings of the European conference on
computer vision (ECCV), pages 695–712, 2018. 1, 2, 11, 12

10

Appendix
In addition to the comparison with 2D models, we also show results of our method compared to the state-of-the-art 3D

models and additional 2D models on Breakfast, Something-Something V1 & V2, UCF-101 and HMDB51. [Nx] denotes the
new citations in the tables.

Comparison on the Breakfast dataset.

Model Backbone #3D #Optical flow #Frames #Clusters Top-1

ResNet152[18] ResNet152 - - 64 - 41.1%
ActionVLAD [18] ResNet152 - - 64 - 55.5%
VideoGraph [18] ResNet152 - - 64 - 59.1%
TSM [29] (our impl.) ResNet50 - - 16 - 72.1%

I3D [18] 3D Inception-v1 X - 512 - 58.6%
I3D + ActionVLAD [18] 3D Inception-v1 X - 512 - 65.5%
I3D + VideoGraph [18] 3D Inception-v1 X - 512 - 69.5%
3D ResNet-50 + Timeception [17] 3D ResNet-50 X - 512 - 71.3%

Ours-slope ResNet50 - - all 16 74.9%
Ours-cumulative ResNet50 - - all 16 76.6%

Table 6. Our method using either slope temporal clustering or cumulative temporal clustering compared to existing works on the Breakfast
dataset. Our proposal outperforms TSM and the 3D model, and significantly exceeds in top-1 accuracy methods using the deeper backbone
architecture, ResNet-152. By using all frames our method has an advantage on long-term video action recognition.

Comparison on the Something-Something dataset.

Model Backbone #3D #Optical flow #Frames #Clusters Top-1 V1 Top-1 V2
TSN [29] ResNet50 - - 8 - 19.7% 30.0%
TRN-Multiscale [29] ResNet50 - - 8 - 38.9% 48.8%
TSM [29] Resnet50 - - 8 - 45.6% 59.1%
STM [22] ResNet50 - - 8 - 49.2% 62.3%
MSNet-R50 [N1] TSM-ResNet50 - - 8 - 50.9% 63.0%
I3D [N3] I3D X - 32 - 41.6% -
NL-I3D [N3] I3D X - 32 - 44.4% -
NL-I3D+GCN [N3] I3D X - 32 - 46.1% -
S3D-G [N4] Inception X - 64 - 48.2% -
ECO [51] BNIncep+3D Res18 X - 8 - 39.6% -
ECO [51] BNIncep+3D Res18 X - 16 - 41.4% -
ECO-En Lite [51] BNIncep+3D Res18 X - 92 - 46.4% -
ECO-En Lite-RGB+Flow [51] BNIncep+3D Res18 X X 92+92 - 49.5% -
DFB-Net [N2] 3D ResNet50 X - 16 - 50.1% -

Ours-slope TSM-ResNet50 - - all 8 46.7% 60.2%
Ours-cumulative TSM-ResNet50 - - all 8 49.5% 62.7%

Table 7. Top-1 accuracy on Something-Something V1 and V2 datasets. Our method using cumulative temporal clustering outperforms most
state-of-the-art methods on both Something-Something V1 and V2, and performs on par with ECO-En Lite with both RGB and optical
flow while slightly worse than MSNet-R50. Our method achieves limited accuracy improvement for shorter videos.

11

Comparison on the UCF-101 and HMDB51 dataset.

Model Backbone Pre-train #3D #Optical flow #Frames #Clusters Top-1 UCF-101 Top-1 HMDB51
TSM [29] (our impl.) ResNet50 Kinetics - - 1 - 91.2% 65.1%
TSN [29] ResNet50 Kinetics - - 8 - 91.7% 64.7%
SI+DI+OF+DOF [1] ResNeXt50 Imagenet - X dynamic images - 95.0% 71.5%
TSM [29] ResNet50 Kinetics - - 8 - 95.9% 73.5%
STM [22] ResNet50 ImageNet+Kinetics - - 16 - 96.2% 72.2%
MSNet-R50 [N1] TSM-ResNet50 Kinetics - - 8 - - 75.8%

ECO-En Lite [51] BNIncep+3D Res18 Kinetics X - 8 - 94.8% 72.4%
RGB I3D [2] 3D Inception-v1 Kinetics X - 64 - 95.1% 74.3%
Two-stream I3D [2] 3D Inception-v1 Kinetics X X 64+64 - 97.8% 80.9%
Ours-slope TSM-ResNet50 Kinetics - - all 8 96.2% 73.3%
Ours-cumulative TSM-ResNet50 Kinetics - - all 8 96.4% 73.4%

Table 8. Top-1 accuracy on UCF-101 and HMDB51. Our method performs only slightly better than the state-of-the-art on the scene-related
datasets UCF-101 and HMDB51, and worse than two-stream I3D, which uses both RGB and optical flow with 3D Inception-v1 backbone.
Given that these datasets do not have a large number of frames per video, the improvement of our method over sampling methods is limited.

References
[N1] Heeseung Kwon, Manjin Kim, Suha Kwak, and Minsu Cho. Motionsqueeze: Neural motion feature learning for video understand-

ing. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, 2020.
[N2] Brais Martinez, Davide Modolo, Yuanjun Xiong, and Joseph Tighe. Action recognition with spatial-temporal discriminative filter

banks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
[N3] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In Proceedings of the European Conference on Computer

Vision (ECCV), September 2018.
[N4] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal feature learning: Speed-

accuracy trade-offs in video classification. In Proceedings of the European Conference on Computer Vision (ECCV), September
2018.

12

