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Abstract—Current weakly supervised object localization and
segmentation rely on class-discriminative visualization techniques
to generate pseudo-labels for pixel-level training. Such visualiza-
tion methods, including class activation mapping (CAM) and
Grad-CAM, use only the deepest, lowest resolution convolutional
layer, missing all information in intermediate layers. We propose
Zoom-CAM: going beyond the last lowest resolution layer by
integrating the importance maps over all activations in interme-
diate layers. Zoom-CAM captures fine-grained small-scale objects
for various discriminative class instances, which are commonly
missed by the baseline visualization methods. We focus on
generating pixel-level pseudo-labels from class labels. The quality
of our pseudo-labels evaluated on the ImageNet localization task
exhibits more than 2.8% improvement on top-1 error. For weakly
supervised semantic segmentation our generated pseudo-labels
improve a state of the art model by 1.1%.

I. INTRODUCTION

Visual CNN explanation models allow computer-generated
labels (pseudo-labels) to replace laborious human annotations.
For example, semantic segmentation [1], [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12] requires expensive pixel-level
annotations. Such pixel-level annotations can be generated by
CNN visualization methods, with the great advantage of only
requiring image-level labels, saving huge annotation costs. Our
proposed method focuses on generating fine-grained pseudo-
labels from class labels and demonstrated on bounding box
labels for object localization and segmentation pixel labels.

Excellent recent visual explanations such as Score-CAM
[13], Grad-CAM++ [14] and others [15], [16] focus on de-
cision faithfulness (causality); yet do not give high-precision
localization maps, see Figure 2. This is a problem, as weakly
supervised learning methods require fine-grained localization
maps to generate pseudo-labels from class information [17].
Here, we make the observation that current methods use the
last convolutional layer (CL) at the lowest resolution. In fact,
small objects are eliminated easily after several pooling layers
in most CNN models for classification. Our hypothesis is that
by including the visualization maps from intermediate CL, the
quality of the pseudo-labels can be improved.

The last CL offers the most semantically comprehensive
spatial information with the smallest dimensions. Moreover,
the deconvolution is straightforward when computing the rate
of change in the class output with respect to the last CL, as
commonly there are few (or none) nonlinear layers in between,
to impair the mapping. Nevertheless, the resolution is severely
compromised once the visualization map from the last CL are

projected into the input image. This results in coarse visualiza-
tion with over-highlighted regions in the background or even
missing small-scale objects that are completely removed due
to several pooling operations. In Grad-Cam [18], there were
unsuccessful attempts to go beyond CL as shown in Figure 4.

In this paper we investigate Zoom-cam: Zoomed-in pseudo-
labels for weakly supervised learned using just class labels.
We bridge the visualization between the last CL to the input
image by visualizing and integrating not only the last but
all the feature maps from intermediate CL. Our focus is to
generate fine-grained pseudo-labels that highlight the class
objects accurately in the original image, as illustrated in
Figure 1. We have the following contributions:

e Zoom-CAM generates high-resolution visualization
maps, capable of identifying several instances of the
same class as well as objects with different scales that
are often missed by other methods, see Figure 2.

o« We introduce an effective gradient back-propagation
scheme to obtain weight masks for a linear combination
of intermediate feature maps.

o We demonstrate quantitatively that the best explanation
belongs to the last CL, yet combining the visualization
maps from intermediate layers reduces the noise corre-
sponding to the locality of the gradient flows.

e On the ImageNet localization task we show 2.8% and
3.7% improvement on top-1 and top-5 errors, respec-
tively, when the objects are localized using Zoom-CAM
visual explanations compared to Grad-CAM .

o By plugging our method in a state of the art weakly
supervised model [7] it improves by 1.1% where our
mloU for visual explanations outperforms [14], [13], [18].

In the rest of this paper, we refer to the heatmaps that are
resized to the input image (See Figure 1) as visual explana-
tions. The importance weight matrix for aggregated feature
maps in CL are called weigh masks. Note that activation units
and activation neurons are used interchangeably.

II. RELATED WORK

Automatic Pseudo-labels Generation. Our work focuses
on generating high-precision visual explanations from class
label information to be used for weakly supervised object
localization and segmentation models. Earlier practices to
retrieve localization information from class labels utilize the
intermediate feature maps. Oquab et al [19] show the object
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Fig. 1. We generate high-precision pixel-level pseudo-labels for weakly supervised localization and segmentation. We exemplify pseudo-label generating for
an example image with “bike” and “person” classes. The pseudo-labels for the intermediate layers are generated by back propagating the gradient of the
class score w.r.t. the activations (see Section III) demonstrating localization of the different instances of the class object. Note that the one from only the last
convolutional layer over highlights the area around the object and misses the small instances. For clarity, visual explanations are up-sampled to the input size.

localization ability of image classification CNNs by trans-
ferring mid-level image representations using a global max
pooling layer. Current weakly supervised object segmentation
and localization methods [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [20], [21] take advantage of visualization tech-
niques such as CAM and Grad-CAM to automatically generate
pseudo labels for training purposes. Therefore, the quality of
the pseudo labels generated by visualization methods majorly
affects the segmentation performance. In this context, a precise
and complete visual explanations is of great importance. Wei
et al [4] aggregated multiple CAM visualizations generated
by dilated CNNs with different rates to obtain more accurate
regions in visual maps. Lee et al [5] randomly selected hidden
units from CNNs to generate multiple localization maps that
highlight different parts of the class discriminative objects.
We evaluate the quality of the generated visualizations by
Zoom-Cam, using a weakly supervised segmentation CNN
model proposed in [7] as a measure for the precision of visual
explanations. the quality of the generated visual explanations
is improves in [17] by hiding different parts of the input
while generating the visual explanations using CAM. In [17]
the final pseudo-labels for object and action localization are
generated by aggregating several explanations, in the cost of
larger computations.

To the best of our knowledge, all weakly supervised seg-
mentation and localization methods rely on visual explanation
techniques to generate the pseudo-labels. We are the first to
target completeness in visual explanations for weakly super-
vised tasks.

Visualizing CNNs. Many explainability work [13], [14],
[22], [23], [24] focuses on the faithfulness of the visual expla-
nations to the decision made by a CNN. We noticed that even
though these methods are serving their purpose to spot the
causal features, they lack the precision and completeness re-
quired for accurate pixel-level localization. We discuss related
literature on visualizations of CNNs in the following. Inspired
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by [25], [26], we describe three categories: 1) Deconvolution
methods 2) Blind methods and 3) Representation methods.

Deconvolution methods [27], [22], [28] aim at mapping
the maximum of activation units in CLs, back to the orig-
inal images. Zeiler and Fergus [22], in a pioneering work,
attempted to interpret the CNN filters by deconvolution to
identify what input patterns lead to the maximum activation.
Springenberg et al [27] proposed guided backpropagation to
visualize the feature maps in networks without max-pooling
layers (fully convolutional). Even though easily interpretable,
Deconvolution methods generate visualizations within several
forward and backward passes and thus computationally expen-
sive. The visual explanations generated by Deconvolution are
not fine-grained, due to the non-linear nature of CNN models
that makes the inverse mapping impossible.

Blind methods follow the black box approach, where the
system between input and output is assumed inaccessible.
Blind methods [29], [30], [23], [31] generate visual explana-
tions by perturbing (setting pixel intensities to zero, blurring
the region or by adding noise) the input in pixel-space to
measure the variation in model prediction score. The input
regions that increase the classification score (no spatial cues)
are reflected in highly activated feature maps with spatial
information. [29] covered small-region inputs with patches
to identify the highly activated units in the receptive fields.
[23] use random binary masks on the entire image. Having
infinite options for variations of input space, motivated blind
methods to integrate perturbation into loss function [32], [30].
[32] backpropagated the gradients of feature maps to learn
a perturbation mask for the input space. Blind methods are
known to be reliable and faithful to the underlying model
as they capture the CNN response w.r.t. the global changes
imposed on the input. Nevertheless, testing different range of
variations in the input space impose a great computational
burden for generating visual explanations.



Representation methods [33], [34], [18], [14], [35], [13]
generate visual explanations based on gradients and/or weights
under the assumption that these are accessible. This is in
contrast to the blind approach. Commonly, in representation
method the gradient flow is used as a local measure that
captures the variation of the output w.rt. the features. A
popular technique is the class activation mapping (CAM)
proposed by Zhou et al [35], which generates visual ex-
planations as a linear weighted combination of activation
maps of the last convolutional layer. To do so, the model
architecture has to change by replacing the fully connected
layers with a global average pooling (AP) layer and subsequent
retraining. Selvaraju et al [18] proposed gradient-weighted
class activation mapping (Grad-CAM), by using the average
gradients of target class w.r.t. the last convolutional feature
maps to compute the CAM weights without re-training the
CNN model. Grad-CAM++ [14], the variant of [18], aims
at generating more accurate localization maps by individually
weighting the activation units in the last feature map, instead
of the global average pooling in [35], [18]. Score-CAM [13]
is an input-perturbation-based variant of CAM that measures
the class posteriors directly yet relying on the activation
units in the ultimate layer. Our Zoom-CAM is the first to
exploit intermediate convolutional feature maps for generating
pseudo-labels used for weakly supervised learning.

III. METHODOLOGY

Our proposed method is inspired by Grad-CAM [18] and
its variants, and we use the backward gradients from the class
score (before softmax) to weight the neurons in the feature
maps. In addition, by extending the gradient flow beyond the
LC, Zoom-CAM enables the visualization of any intermediate
layers in CNN. This extension is not straightforward and is
explained in the following

A. Revisiting CAM and Grad-CAM

Suppose Ay (7, ) is the i, j-th activation in the k-th feature
map of the last convolutional layer. Following the definition in
CAM and Grad-CAM , the final score for the class ¢, before
softmax, is the weighted sum of the average pooled activation
neurons in the last convolutional layer:

=D ai Y A g), (1)
k i,j

where af, are the CAM weights once the network is retrained
by replacing the fully connected layers with a global AP layer.
Grad-CAM shows that af, can be replaced with the average
gradient of the class score w.r.t. the neurons in Aj. Thus,
retraining is not required and the gradients can be obtained by
single backward pass operation. Accordingly, the visualization
map for Grad-CAM is given by:

:—ReLUZ ZaAk” k(i,7)), @

where Z is the number of activation units in the feature maps
of the last convolutional layer and S¢ is the score for class

c. The ReLU function in Eq. (2) guarantees that only neurons
with positive contribution to the gradient of the class score are
considered. Note that by defining L7 ; from Eq. (1), the sum of
the elements in Lf ; is guaranteed to be equal to the class score
S¢. Grad-CAM averages the gradients in the feature maps to
get af as weights for linear combination of feature maps.
Instead, we use the back propagated gradients as a weight mask
(matrix) applied to the feature maps. Careful reformulation of
the problem is essential for extracting the weigh masks as
explained in the following.

B. Visualizing Intermediate Layers

Here we go beyond Grad-Cam and describe how Zoom-Cam
visualizes the intermediate layers. Suppose B,(m,n) is the
m, n-th activation in the p-th feature map of the penultimate
convolutional layer. Based on the common operational units
in a forward pass of a CNN model, B, is passed through a
non-linear function f such as ReLU, sigmoid, tanh, etc. Then
f(Bp) for all p=1,2,..., P in the penultimate convolutional
layer is convolved with the k-th filter and summed over p to
generate the last convolutional feature map, i.e., Ag. Given that
convolution is a linear operation, one can write the sum over
the activation units in Ay, as a weighted sum of f(B,(m,n)):

ZAk(ij Zkan Zf 3)
4,3

The elements in matrix W}, are the sum over subset of filter
weights for k-th kernel. In turn, the filter weights in each
subset is a function of m, n-th position in B,,, the size of the
kernel, the stride and the padding of the convolution.
Substituting Eq. (3) in Eq. (1) yields the following

S¢ = Z aj, Z Wi (m,n) Zf(Bp(m,n)). 4)
k m,n P

Similar to Eq. (2), the visualization map of the penultimate
convolutions is defined by removing the summation over m, n
in Eq. (4), resulting in

LSy, =Y agWi(m,n) Y f(By(m,n)).  (5)
k p

Note that the nonlinear function f including the ReLU
function, batch-norm, or pooling layer, is fixed in the backward
pass as we are not in the training process. Thus, f(B,) can
be replaced with a Hadamard product of matrix IV, ¢ R"™",
representing the nonlinear operation, and B, € R"". Let us
define F'° € R™" as the matrix representation of the penul-
timate convolutional layer after non-linearity in the backward
pass

ZN m,n)(B,(m,n)). (6)

From the chain rule, one can write the gradient of the final
score for class ¢ w.r.t. the represented penultimate convolu-
tional layer as

0S¢
OF¢(m,n)

0S¢

_ % 821” Ak(lv.])

OF¢(m,n)

)
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Fig. 2. Examples of pseudo-labels generated by Zoom-CAM visual explanations (ours), Grad-CAM [18], Score-CAM [13] and Grad-CAM++[14]. Zoom-CAM
aggregates visual maps through all intermediate layers, which captures objects with different scales and several instances of the same class. The over-highlighted
regions relate to false positive. Zoom-CAM can generate fine-grained pseudo-labels by increasing the true positive and reducing the false positive.

The right side of Eq. (7) is carefully decomposed to two terms.
The first term is the scaled weights of Grad-CAM layer and
the second term can be derived from Eq. (3). Particularly, for a
ReLU activation function, the elements of matrix IV, in Eq. (6)
are zeros and ones, thus, Eq. (7) boils down to

1 08¢ . ;o
7 35, By(m ) = aj, Wi(m',n). 8)
where m’, n’ indicates the positive elements that are passed by
ReLU function. Comparing Eq. (5) and Eq. (8), reveals that the
weights for visualization map of the penultimate convolutional
layer are the gradients of the final score w.r.t. the features.
We refer to the Wy (m',n') as weight masks that are applied
(point-wise multiplication) to the feature maps. This is in
contrast to the Grad-CAM approach which uses the scalar
weighting of the feature maps.

The final visual explanation for Zoom-CAM , is calculated
by considering only the positive values in L7, , because we
are only interested in the activation neurons whose intensity
should be increased in order to increase the class score.

e 1 05¢
Linn = ReLU(7 z;;zp: 9%, Bp(m',n')

By(m/,n')).

€))
Eq. (9) can be extended for any intermediate CNN layer, by
replacing B, by that layer. In Grad-CAM , a single backward
pass up to the last CL, is performed to calculate the gradients.
In practice, Wy (m, n) is computed in the backward pass from
the AP layer of Grad-CAM to the target layer.

A Grad-CAM [18] extension visualizes intermediate con-
volutional layers by average pooling the elements of an
intermediate feature maps. In contrast, Zoom-CAM is using
Eq. (8) to calculate individual weights for different elements
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Fig. 3. Top-1 and top-5 localization error rates on ILSVRC2012 val dataset for ablation study. (a) Aggregating intermediate feature maps can consistently
improve the weakly supervised object localization ability, especially when the last two layers are integrated. (b) The localization error rates of Zoom-CAM
maps using feature maps from a single intermediate layer. The feature maps of the last layer contributes the most to the performance of object localization.

TABLE I
CLASSIFICATION AND LOCALIZATION ERROR RATES (%) ON
ILSVRC2012 VAL DATASET FOR PRE-TRAINED VGG 16 FROM PYTORCH.
Z0OM-CAM BY AGGREGATING VISUALIZATION MAPS FROM
INTERMEDIATE LAYERS ACHIEVES BETTER PERFORMANCE ON OBJECT
LOCALIZATION THAN GRAD-CAM. THE THRESHOLDS FOR ZOOM-CAM
AND GRAD-CAM MAPS ARE 25% AND 15% OF THE MAXIMUM VALUE.
Z00OM-CAM ACHIEVES LOWER ERROR.

Classification error Localization error

Top-1 Top-5 Top-1 Top-5
Zoom-CAM 31.87 11.54 59.11 48.64
Grad-CAM 31.87 11.54 61.95 52.35

of intermediate feature maps. The visual explanations for
different intermediate layers produced by Grad-CAM and
Zoom-CAM are presented in Figure 4.

C. Aggregation of Localization Maps

After generating intermediate layer visualization maps of
Zoom-CAM via Eq. (9), we need to aggregate these maps
and up-sample them to the input image resolution.

Given two Zoom-CAM visualization maps for different
intermediate layers, L;i j and Lfn’n, where ¢ < m and j < n,
the first step is the normalization. visualization maps are nor-
malized such that the values over single localization map range
from 0 to 1. Next, we up-sample L{ ; (smaller feature map)
to the size of Ly, ,, through bilinear interpolation. Finally, the
aggregated visualization maps L¢ will be obtained by:

L, , = max{N(L;, ), UN(L ;))}, (10)

where U(-) and N(-) denotes the up-sampling and normaliza-
tion operations, respectively.

Taking the maximum in Eq. (10) is a simple operation
that will preserve the importance of visualization maps, that
is reflected by the normalized values. Taking the average is
another option but we observed the smoothing of the weights
across the layers, which is not desirable for generating crisp
visualization maps.

IV. EXPERIMENTS

We evaluate the quality of the generated visual explanations
by Zoom-Cam. We mostly follow the validation framework
from Grad-CAM and CAM by evaluating on weakly super-
vised object localization and segmentation tasks, on ImageNet
and PASCAL VOC datasets, respectively. Moreover, sample
visualization are reported in the supplementary material for
qualitative inspection of the results.

A. Weakly Supervised Object Localization

We evaluate weakly supervised object localization using
the visual explanations generated by Zoom-CAM. We use a
pre-trained VGGI16 as a baseline on the ILSVRC2012 [36]
val dataset. We resize images to 224 x 224 x 3 and color
normalize the mean and the standard deviation. We generate
Zoom-CAM saliency map in addition to the class prediction.
The pixels with higher value than 25% of the max intensity
are preserved, which constructs several connected regions. We
keep the largest connected component and draw a bounding
box around it. This bounding box reveals the location of
the classified object. We follow the evaluation metrics of
ILSVRC2012 object localization task and report the top-1
and top-5 classification and localization error in Table I. For
localization score, the prediction counts when the classification
prediction matches the ground truth image label and the
predicted bounding box has over 50% overlap with the ground
truth bounding box. The results on the ImageNet localization
task exhibits around 2.84% improvement on top-1 error after
aggregating all intermediate layers. For both Zoom-CAM and
Grad-CAM we use the same CNN model for classification and
therefore the classification scores are the same.

1) Ablation Studies: Zoom-CAM aggregates feature maps
of all 13 intermediate layers in VGG16. We conduct ablation
experiments by aggregating different numbers of intermediate
layers including only a single intermediate layer. This is to
quantify the contribution of each layer to the accuracy of
generated visualizations by Zoom-CAM in terms of weakly



TABLE II
COMPARISON OF QUALITY OF PSEUDO-SEGMENTATION-LABELS OF PASCAL VOC 2012 val SET MEASURED IN 10U (%). THE BASE MODEL IS A
FINE-TUNED RESNET50, TRAINED ON IMAGE CLASS LABELS. THE ACCURACY OF ZOOM-CAM PSEUDO-LABELS COMPARES FAVORABLY TO OTHERS.

TIoU

Method 5 ° g o mloU
< 2 v o2 oz B . £ . = g 5§ & & o =
fE 2 2% 222358 3% %z 28222 %o
Grad-CAM++ 64.7 27.8 17.8 25.0 23.8 31.6 47.2 38.8 46.6 18.4 42.1 32.5 40.8 40.0 41.6 32.2 26.8 39.6 33.3 42.1 329 355
Grad-CAM  66.5 29.7 18.3 25.5 19.3 33.6 51.0 42.4 49.0 19.2 41.2 36.7 41.6 40.5 43.6 41.9 289 39.8 34.2 39.3 36.5 37.1
Score-CAM  68.1 31.8 19.1 29.7 29.3 30.9 50.3 45.3 479 19.8 41.8 32.3 44.7 42.0 47.2 354 279 42.8 36.6 47.1 31.8 38.2
Zoom-CAM 689 31.0 19.7 269 20.6 34.5 50.3 42.3 50.1 20.4 45.6 35.3 43.2 43.8 46.0 42.0 31.1 45.0 38.3 40.1 38.6 38.8

TABLE III
QUALITY OF PSEUDO SEMANTIC SEGMENTATION LABELS
IN MIOU, EVALUATED ON THE AUGMENTED PASCAL
VOC 2012 train SET.

Method mloU
CAM 48.3 [7]
Zoom-CAM 49.0

supervised object localization. Fig 3 (a) shows that aggregating
intermediate layers consistently improves the performance of
weakly supervised object localization, especially when the last
two layers are integrated. Fig 3 (b) shows the top-1 and top-5
localization errors for Zoom-CAM using the feature maps of
only single intermediate layer. As expected the last feature map
contributes the most to the performance in object localization.

B. Weakly Supervised Semantic Segmentation

We evaluate the visualization maps generated by Zoom-
CAM on weakly supervised semantic segmentation (WSSS)
task on PASCAL VOC 2012 [37] dataset. Although the dataset
contains semantic and instance segmentation labels, we only
take advantage of image-level class labels. The training set for
semantic segmentation is augmented by [38], which contains
10,582 images. The original val set with 1,449 images are
used for validation.

The task of weakly supervised segmentation leverages the
image-level class information to segment objects, including
semantic and instance segmentation. Recent works on weakly
supervised segmentation use CAM or Grad-CAM to generate
pseudo-segmentation-labels for training purposes. Therefore,
weakly supervised segmentation models are sensitive to the
quality of generated pseudo-labels by the visualization tech-
niques. We first compare the quality of pseudo-labels obtained
by Zoom-CAM and other visualization methods.

1) Quality of Pseudo-labels: To evaluate the quality of
pseudo-labels, we generate saliency maps for each image in
the val set of PASCAL VOC 2012 via Zoom-CAM. We take
pre-trained ResNet50 on ImageNet [36] as the base model
and fine-tune it on the classification set of PASCAL VOC
2012. The mean average precision (mAP) is 94.1% for the
classification task evaluated on val set of PASCAL VOC 2012
classification task. Similarly, we take a threshold, 25% of
the max intensity for Zoom-CAM, on the saliency maps and

TABLE IV

SEMANTIC SEGMENTATION PERFORMANCE IN MIOU EVALUATED ON THE PASCAL
VOC 2012 val SET. THE PERFORMANCE OF WSSS USING PSEUDO-LABELS GENERATED

BY ZOOM-CAM IS BETTER THAN THE ONE BY CAM.

Method val
IRNet(ResNet50)-CAM 63.5
IRNet(ResNet50)-Zoom-CAM 64.6

search the largest connected component. Because images have
multiple labels, we threshold and fuse the saliency maps by
comparing saliency values of multiple labels pixel-wise as the
final pseudo-labels.

Table II shows the results for pseudo-segmentation-labels
using mean Intersection of Union (mloU) as evaluation metric.
For a single class, the quality of pseudo-labels is evaluated
by Intersection of Union (IoU). We can see that adding
intermediate featuremaps by Zoom-Cam compares favorably
to others.

Fig 2 shows sample visual explanations w.r.t. the semantic
object segmentation ground truth. These examples confirm that
Zoom-CAM captures objects with different sizes, which are
commonly lost in the last low-resolution convolutional layer.
Interestingly, Grad-CAM outperforms its recent variants such
as Score-CAM and Grad-CAM++ once inspected visually in
PASCAL VOC 2012 dataset. This is consistent with the results
in Table II where pseudo-labels generated by Grad-CAM-++
achieve lowest mloU.

2) Training the Weakly Supervised Semantic Segmentation
(WSSS) Baseline with Zoom-CAM Pseudo-labels: We re-train
the s.o.t.a. weakly supervised semantic segmentation model
[7] with generated psudo-labels by Zoom-CAM . We show
in Table II that Zoom-CAM generates pseudo-labels with
higher quality so we expect to see improvement in WSSS
baseline when trained by Zoom-CAM pseudo-labels. [7] trains
ResNet50 from scratch for the classification task of PASCAL
VOC 2012. Then they use CAM to generate pseudo-labels for
the training of their segmentation model. We replace CAM
pseudo-labels with Zoom-CAM pseudo-labels and re-train the
WSSS CNN model referred to as IRNet in [7]. Table III
shows the quality of pseudo-semantic-segmentation labels in
mloU, evaluated on the PASCAL VOC 2012 segmentation
train set. The quality of pseudo-labels generated by Zoom-
CAM is better than the ones generated by CAM reported
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Fig. 4. Comparison of visual explanation of single intermediate convolutional layer generated by Grad-CAM and Zoom-CAM. The images for each method
represents using the feature maps from the last convolutional layer to the first one. For the same original image (both dog and cat), these saliency maps are
generated w.r.t the “bull mastiff’ label. The basic model is pre-trained VGG16 model from PyTorch. Zoom-CAM is using Eq. (8) to calculate the different
weights for different elements of intermediate feature maps, while Grad-CAM takes the average of Eq. (8) for all elements of an intermediate feature maps.

in [7], therefore we expect better performance of IRNet on
segmentation task once trained with Zoom-CAM pseudo-
labels. Finally, Table IV shows the performance of IRNet using
pseudo-labels generated by Zoom-CAM and CAM, which
confirms our speculation. This is the ultimate experiment to
quantify the effect of more precise visualization maps in a
down-stream task such as WSSS. We observed that the mIoU
evaluated on PASCAL VOC 2012 val set for the re-trained
model by Zoom-CAM pseudo-labels improved by 1.1%.

V. CONCLUSION

We presented Zoom-CAM to generate high-quality pseudo-
labels by integrating visual maps over all intermediate layers in
classification CNNs. Zoom-CAM is a generalization of Grad-
CAM but differently we use weight masks to linearly combine
the feature maps at any intermediate CL. The results verify
our hypothesis that intermediate layers offer more accurate
localization of the object, in CNNs. The computation time

of Zoom-CAM visualization is mostly dominated by the time
of back-propagation, which is the same as Grad-CAM. We
would like to evaluate the faithfulness of our generated visual
explanations to the model prediction as well.
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