Deep House of Cards? Testing the fundaments in image and video AI

TU Delft Computer Vision Lab Jan van Gemert

Whoami: Jan van Gemert Head of the Computer Vision Lab at TU Delft

Two main research themes:

- 1. Fundamental, empirical, understanding-based deep learning research (to)
- 2. Find, evaluate, and incorporate powerful yet flexible physical priors for data efficient visual recognition AI.

Applied on image, video, action, object, human analysis, ...

Deep learning and Machine learning

The scientific method^[1] in times of deep learning

Deep learning is powering the AI revolution. Yet, as a scientific field, it has growing pains^[2,3]

- Improvement-driven (large compute/data)
- Opportunistic (career driven)
- Reviewer damage (Benchmark fetish; Mathiness)
- Confusing speculation with explanation
- Not identifying the reasons for empirical gains.

With bigtech dominating data/compute^[4]; lets focus on fundaments.

^{[1]:} https://en.wikipedia.org/wiki/Scientific_method

^{[2]:} Lipton et al. "Troubling Trends in Machine Learning Scholarship", 2018.

^{[3]:} Sculley, David, et al. "Winner's curse? On pace, progress, and empirical rigor." 2018.

^{[4]:} Togelius, Julian, et al. "Choose your weapon: Survival strategies for depressed AI academics" Proc. of the IEEE (2024).

Video activity progress prediction

Useful for cooking, surgery scheduling, sports, video editing, etc.^[5]

^{[5]:} Becattini, Federico, et al. "Am I done? Predicting action progress in videos." ACM Trans. on Multimedia Computing 2020

Video activity progress prediction

Useful for cooking, surgery scheduling, sports, video editing, etc.^[5]

Example of phases (colors) in activities^[1]:

Action 1	
Action 2	
Action 3	
Action 4	

^{[5]:} Becattini, Federico, et al. "Am I done? Predicting action progress in videos." ACM Trans. on Multimedia Computing 2020

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

(a) UCF101-24 on full-videos.

(b) Breakfast on full-videos.

(c) Cholec80 on full-videos.

3 datasets

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

ResNet ResNet UTE Progress RSD ResNet ResNet UTE Progress RSD ResNet ResNet UTE Progress RSD -2D -LSTM Net Net -2D -LSTM Net Net -2D -LSTM Net Net (a) UCF101-24 on full-videos. (b) Breakfast on full-videos. (c) Cholec80 on full-videos.

3 datasets, 5 learning-based methods

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

3 datasets, 5 learning-based methods, 3 naive baselines 2 inputs evaluated: random noise; or the actual full video.

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

	static-0.5	random	frame-counting	'full-video' input	s 📕 'random	n-noise' inputs
35%			35%		35%	
30%			30%		30%	
25%			25%		25%	
بر ^{20%}			щ ^{20%}	1	u ^{20%}	
2 15% ;			₹ 15%		¥ 15%	
10%			10%		10%	
5%			5%		5%	
0% ResNet -2D	ResNet UTE -LSTM	Progress RSD Net Net	0% [.] ResNet ResNet -2D -LSTM	UTE Progress RSD Net Net	0% [.] ResNet ResI -2D -LS	Net UTE F
(a) UC	F101-24 on full-	-videos.	(b) Breakfast	on full-videos.	(c) Chole	ec80 on full-vi

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

3 datasets, 5 learning-based methods, 3 naive baselines 2 inputs evaluated: random noise; or the actual full video. Mean Average Error (MAE) evaluated.

- Random noise as input works well (combats visual overfitting?)
- Framecounting is hard to beat.

Testing fundaments gives insight!

^{[6]:} Boer et al. "Is there progress in activity progress prediction?" ICCV-w, 2023.

^{[7]:} Kayhan et al. "On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location", CVPR, 2020.

Class 1: Top-left

Class 2: Bottom-right

Single conv layer, single 5x5 kernel, zero-padding, ReLu, global max pooling, SGD, and a soft-max loss.

^{[7]:} Kayhan et al. "On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location", CVPR, 2020.

Class 1: Top-left

Class 2: Bottom-right

Single conv layer, single 5x5 kernel, zero-padding, ReLu, global max pooling, SGD, and a soft-max loss.

Can it predict the classes?

^{[7]:} Kayhan et al. "On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location", CVPR, 2020.

Class 1: Top-left

Class 2: Bottom-right

Single conv layer, single 5x5 kernel, zero-padding, ReLu, global max pooling, SGD, and a soft-max loss.

Can it predict the classes? Yes.

^{[7]:} Kayhan et al. "On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location", CVPR, 2020.

Class 1: Top-left

Class 2: Bottom-right

Single conv layer, single 5x5 kernel, zero-padding, ReLu, global max pooling, SGD, and a soft-max loss.

Can it predict the classes? Yes.

Even in standard architectures, commonly believed 'truths' may be subtle.

^{[7]:} Kayhan et al. "On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location", CVPR, 2020.

Long-term video analysis^[8]

Long-term understanding: temporal reasoning over short-term actions

Long term video analysis goes beyond short-term action recognition

Is this person shoplifting in the supermarket?

time

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term understanding: temporal reasoning over short-term actions

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term understanding: temporal reasoning over short-term actions

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term understanding: temporal reasoning over short-term actions

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term understanding: temporal reasoning over short-term actions

Analyze long-term vs short-term actions

Most short-term actions appear only in one long-term action class

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term understanding: temporal reasoning over short-term actions

- Most short-term actions appear only in one long-term action class
- Recognizing a single short-term action is sufficient: not long-term

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Long-term video analysis^[8]

Long-term understanding: temporal reasoning over short-term actions

Deteget	Classification accuracy (%)			
Dataset	Full Videos	Video Segments		
Breakfast	93.33	90.0		
CrossTask	100.0	97.2		
LVU – Relationship	88.89	88.89		
LVU – Scene	100.0	100.0		
LVU – Speaking	80.0	60.0		

Table 2: Average video recognition accuracy obtained from the *Full Videos Survey* and *Video Segments Survey* on the Breakfast [24], CrossTask [49] and LVU [41] datasets. The results suggest that long-term information is helpful but not necessary in the majority of the evaluated datasets.

^{[8]:} Strafforello et al. "Are current long-term video understanding datasets long-term?", ICCV-w, 2023.

Discussion

Deep learning research is great! Amazingly fast progress. It's important to get results and ideas out, so we can build on them.

As researchers it's our job to understand; and to rigorously evaluate scientific claims.

Keep testing the fundaments!

My fundamental, emperical, understanding-based deep learning research guidelines: http://jvgemert.github.io/links.html